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Dans tout le chapitre, 𝕂 désignera ℝ ou ℂ.

1 Définition et existence de bases

1.1 Familles génératrices finies

Définition 1.1 (Espace vectoriel de dimension finie)

Soit 𝐸 un 𝕂-espace vectoriel. On dit que 𝐸 est un espace vectoriel de dimension finie s’il possède une
famille génératrice finie.

Remarque. 𝐸 est donc de dimension finie lorsqu’il existe une famille (𝑓1, 𝑓2, … , 𝑓𝑛) de vecteurs de 𝐸 tels que

𝐸 = Vect (𝑓1, 𝑓2, … , 𝑓𝑛) .

Remarque. Par convention, {0𝐸} est un espace vectoriel de dimension finie.

Exemple. On a déjà rencontré notamment :
— 𝕂𝑛, espace vectoriel de dimension finie engendré par la base canonique (𝑒1, 𝑒2, … , 𝑒𝑛).
— 𝕂𝑛[𝑋], espace vectoriel de dimension finie engendré par la base canonique (1, 𝑋, 𝑋2, … , 𝑋𝑛).
— ℳ𝑛,𝑝(𝕂), espace vectoriel de dimension finie engendré par la base canonique (𝐸𝑖,𝑗)(𝑖,𝑗)∈[[1,𝑛]]×[[1,𝑝]].

Proposition 1.2 (Modification d’une famille génératrice)

Soit 𝐸 un espace vectoriel de dimension finie et non réduit à {0𝐸} et ℱ = (𝑓1, 𝑓2, … , 𝑓𝑛) une de ses familles
génératrices. Alors pour tout vecteur 𝑒1 non nul de 𝐸, on peut trouver 𝑛 − 1 vecteurs de ℱ (que par
renumérotation éventuelle on note 𝑓2, ..., 𝑓𝑛) tels que la famille (𝑒1, 𝑓2, … , 𝑓𝑛) est une famille génératrice de
𝐸.

Exemple. La famille (1, 𝑋, 𝑋2, … , 𝑋𝑛) engendre 𝕂𝑛[𝑋], et (𝑋 + 1)2 ≠ 0. On peut donc trouver une nouvelle
famille qui engendre 𝕂𝑛[𝑋] :

((𝑋 + 1)2, 𝑋, 𝑋2, … , 𝑋𝑛) ou ((𝑋 + 1)2, 1, 𝑋2, … , 𝑋𝑛) ou ((𝑋 + 1)2, 1, 𝑋, 𝑋3 … , 𝑋𝑛)

Proposition 1.3 (Cardinaux des familles libres et génératrices)

Soit 𝐸 un espace vectoriel de dimension finie et non réduit à {0𝐸}. Soit ℒ une famille libre finie de 𝐸 et 𝒢
une famille génératrice finie de 𝐸, alors Card(ℒ) ⩽ Card(𝒢).

Remarque. Une famille n’est pas un ensemble, mais on lui étend la définition de cardinal pour simplifier les
écritures.

1.2 Construction de bases

Proposition 1.4 (Théorème de la base extraite)

Soit 𝐸 un espace vectoriel de dimension finie et non réduit à {0𝐸}. De toute famille génératrice finie de 𝐸,
on peut extraire une base finie de 𝐸.

Proposition 1.5 (Existence de bases en dimension finie)

Tout espace vectoriel 𝐸 de dimension finie et non réduit à {0𝐸} admet au moins une base (finie).

Exercice 1. Soit 𝐸 = Vect(1, 1 + 𝑋, 5 + 𝑋). Déterminer une base de 𝐸.
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Proposition 1.6 (Théorème de la base incomplète)

Soit 𝐸 un espace vectoriel de dimension finie et non réduit à {0𝐸}. Toute famille libre de 𝐸 peut être
complétée en une base finie de 𝐸.

Exercice 2. Compléter (𝑋 + 2, 𝑋 + 1) en une base de ℝ3[𝑋]. On admet (la suite du chapitre le justifiera) qu’il
suffit d’obtenir une famille libre à quatre éléments.

2 Dimension d’un espace de dimension finie

2.1 Définition et premières propriétés

Définition 2.1 (Dimension d’un espace vectoriel)

Soit 𝐸 un espace vectoriel de dimension finie non réduit à {0𝐸}. Toutes les bases de 𝐸 ont le même nombre
d’éléments. Cet entier naturel est appelé la dimension de l’espace vectoriel et est noté dim(𝐸).

Remarque. Par convention dim({0𝐸}) = 0.

Exemple. Cas des espaces vectoriels usuels (à connaître) :
— 𝕂𝑛 est un espace vectoriel de dimension 𝑛, dont une base est (𝑒1, 𝑒2, … , 𝑒𝑛).
— 𝕂𝑛[𝑋] est un espace vectoriel de dimension 𝑛 + 1, dont une base est (1, 𝑋, 𝑋2, … , 𝑋𝑛).
— ℳ𝑛,𝑝(𝕂) est un espace vectoriel de dimension 𝑛𝑝, dont une base est (𝐸𝑖,𝑗)(𝑖,𝑗)∈[[1,𝑛]]×[[1,𝑝]].

Exemple. On a vu dans un chapitre précédent que (((1+
√

5
2 )𝑛)𝑛∈ℕ, ((1−

√
5

2 )𝑛)𝑛∈ℕ) est une base de l’espace vectoriel
des suites vérifiant la relation de récurrence ∀𝑛 ∈ ℕ, 𝑢𝑛+2 = 𝑢𝑛+1 + 𝑢𝑛.
De manière générale, l’ensemble des suites récurrentes linéaires doubles vérifiant une relation donnée est un espace
vectoriel de dimension 2.

Exercice 3. Montrer que l’ensemble 𝐸 des solutions de ℝ dans ℝ de l’équation différentielle −2𝑦″ + 𝑦′ + 3𝑦 = 0
est un espace vectoriel dont on déterminera la dimension.

2.2 Caractérisations des bases

Proposition 2.2 (Cardinal d’une famille libre ou génératrice)

Soit 𝐸 un espace vectoriel de dimension finie 𝑛 ∈ ℕ∗. Alors :
— Toute famille libre ℒ de 𝐸 vérifie Card(ℒ) ⩽ 𝑛.
— Toute famille génératrice 𝒢 de 𝐸 vérifie Card(𝒢) ⩾ 𝑛.

Remarque. L’hypothèse 𝑛 ∈ ℕ∗ permet d’écarter le cas 𝐸 = {0𝐸}.

Proposition 2.3 (Caractérisation des familles libres ou génératrices par le cardinal)

Soit 𝐸 un espace vectoriel de dimension finie 𝑛 ∈ ℕ∗.
— Soit ℒ une famille libre de 𝐸. Alors ℒ est une base de 𝐸 si et seulement si Card(ℒ) = 𝑛.
— Soit 𝒢 une famille génératrice de 𝐸. Alors 𝒢 est une base de 𝐸 si et seulement si Card(𝒢) = 𝑛.

Exercice 4. Montrer que (1, 𝑋 + 1, 𝑋2 + 𝑋 + 1) est une base de ℝ2[𝑋].
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2.3 Rang d’une famille finie de vecteurs

Définition 2.4 (Rang d’une famille finie de vecteurs)

Soit 𝐸 un espace vectoriel et (𝑓1, 𝑓2, … , 𝑓𝑝) une famille finie de vecteurs de 𝐸. On appelle rang de la famille
(𝑓1, 𝑓2, … , 𝑓𝑝) et on note rg (𝑓1, 𝑓2, … , 𝑓𝑝) la dimension du sous-espace vectoriel qu’elle engendre :

rg (𝑓1, 𝑓2, … , 𝑓𝑝) = dim (Vect (𝑓1, 𝑓2, …, 𝑓𝑝)) .

Remarque. La famille étant finie, Vect (𝑓1, 𝑓2, …, 𝑓𝑝) est nécessairement un espace vectoriel de dimension finie (il
possède une famille génératrice finie), on peut donc bien étudier sa dimension.

Proposition 2.5 (Lien entre rang et liberté)

Soit 𝐸 un espace vectoriel et (𝑓1, 𝑓2, … , 𝑓𝑝) une famille finie de vecteurs de 𝐸. Alors rg(𝑓1, … , 𝑓𝑝) ⩽ 𝑝 et :

rg(𝑓1, … , 𝑓𝑝) = 𝑝 ⟺ (𝑓1, … , 𝑓𝑝) est libre.

Exercice 5. Dans ℝ2[𝑋], déterminer les valeurs de rg(𝑋, 𝑋2), rg(1, 𝑋 + 1, 𝑋, 𝑋2) et rg((𝑋 + 1)2, 𝑋2).

3 Sous-espaces et dimensions

3.1 Sous-espace d’un espace vectoriel de dimension finie

Proposition 3.1 (Sous-espace d’un espace vectoriel de dimension finie)

Soit 𝐸 un espace vectoriel de dimension finie et 𝐺 un sous-espace vectoriel de 𝐸. Alors 𝐺 est un espace
vectoriel de dimension finie et dim(𝐺) ⩽ dim(𝐸). De plus, si dim(𝐺) = dim(𝐸), alors 𝐺 = 𝐸.

Exercice 6. Soit 𝑛 ∈ ℕ∗. On note 𝒮𝑛(ℝ) l’ensemble des matrices symétriques de ℳ𝑛(ℝ) et 𝒜𝑛(ℝ) l’ensemble des
matrices antisymétriques de ℳ𝑛(ℝ).

1. Déterminer dim(𝒜2(ℝ)).
2. Déterminer dim(𝒮2(ℝ)).
3. Conjecturer les valeurs de dim(𝒮𝑛(ℝ)) et dim(𝒜𝑛(ℝ)).

Définition 3.2 (Sous-espaces particuliers, cas particuliers)

Soit 𝐸 un espace vectoriel de dimension finie 𝑛 ⩾ 2.
— Une droite vectorielle de 𝐸 est un sous-espace vectoriel de 𝐸 de dimension 1.
— Un plan vectoriel de 𝐸 est un sous-espace vectoriel de 𝐸 de dimension 2.

Proposition 3.3 (Formule de Grassman)

Soit 𝐸 un espace vectoriel de dimension finie et 𝐹 et 𝐺 deux sous-espaces vectoriels de 𝐸. Alors :

dim (𝐹 + 𝐺) = dim(𝐹) + dim(𝐺) − dim (𝐹 ∩ 𝐺) .

Exemple. Considérons deux plans vectoriels 𝐹 et 𝐺 de ℝ3, qui se coupent selon une droite 𝐷.

𝐺

𝐹

𝐷

On a bien dim(𝐹 + 𝐺) = 3 = dim(𝐹) + dim(𝐺) − dim(𝐹 ∩ 𝐺).
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3.2 Sous-espaces vectoriels supplémentaires

Proposition 3.4 (Existence d’un supplémentaire en dimension finie)

Soit 𝐸 un espace vectoriel de dimension finie 𝑛 ∈ ℕ∗ et 𝐹 un sous-espace vectoriel de 𝐸. Alors il existe un
sous-espace vectoriel 𝐺 de 𝐸 qui est supplémentaire de 𝐹 dans 𝐸.

Exercice 7. Soit 𝐹 = {𝑃 ∈ ℝ2[𝑋]|𝑃 (1) = 0}. Déterminer un supplémentaire à 𝐹 dans ℝ2[𝑋].

3.3 Caractérisation de deux sous-espaces vectoriels supplémentaires

Proposition 3.5 (Caractérisation de deux sous-espaces vectoriels supplémentaires)

Soit 𝐸 un espace vectoriel de dimension finie 𝑛 ∈ ℕ∗ et soit 𝐹 et 𝐺 deux sous-espaces vectoriels de 𝐸. Les
propriétés suivantes sont équivalentes :

1. 𝐹 et 𝐺 sont deux sous-espaces vectoriels supplémentaires dans 𝐸,
2. 𝐹 ∩ 𝐺 = {0𝐸} et dim(𝐹) + dim(𝐺) = 𝑛,
3. 𝐸 = 𝐹 + 𝐺 et dim(𝐹) + dim(𝐺) = 𝑛,
4. Si 𝐵1 est une base de 𝐹 et 𝐵2 est une base de 𝐺, la famille 𝐵 obtenue en juxtaposant les vecteurs de

𝐵1 et 𝐵2 est une base de 𝐸. On dit que la base 𝐵 est adaptée à la décomposition en somme directe.
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