
Exercices PCSI
É.Bouchet Espaces vectoriels de dimension finie
Exercice 1 (⋆). Montrer que F = ((1,−3, 0), (0, 2, 1), (1, 0,−1)) est une base de R3.
Résultat attendu : On montre que c’est une famille libre à dim(R3) = 3 éléments.

Exercice 2 (⋆). On pose E = R[X]. Soient F = Vect(X,X2) et G = {P ∈ R[X] | P (2) = 0}.
1. Montrer que F et G sont des sous-espaces vectoriels de E.
2. Montrer que F ∩G est une droite vectorielle.

Résultat attendu :
1. C’est immédiat pour F , on montre que G contient le polynôme nul et est stable par combinaison linéaire.
2. On montre que X2 − 2X est une base de F ∩G, donc dim(F ∩G) = 1.

Exercice 3 (⋆). On considère F = {P ∈ R2[X]|P (1) + P ′(1) = 0}.
1. Montrer que F est un sous-espace vectoriel de R2[X].
2. Déterminer une base de F puis sa dimension.

Résultat attendu :
1. F contient le polynôme nul et est stable par combinaison linéaire.
2. Une base de F est (X2 − 3, X − 2) (d’autres familles étaient possibles). Donc F est de dimension 2.

Exercice 4 (⋆). Démontrer que l’ensemble E des suites arithmétiques à valeurs dans R est un espace vectoriel.
Quelle est sa dimension ?
Résultat attendu : C’est un sous-espace vectoriel de l’ensembles des suites réelles, de dimension 2.

Exercice 5 (⋆). Soit F l’ensemble des fonctions C∞ sur R, solutions de y′′ + y′ − 2y = 0. Montrer qu’il s’agit
d’un espace vectoriel de dimension finie et déterminer une base.
Résultat attendu : C’est un sous-espace vectoriel de l’ensemble des fonctions définies de R dans R, dont une
base est (t 7→ et, t 7→ e−2t).

Exercice 6 (⋆). Soit E =
{
f : R → R|∃(a, b, c) ∈ R3 tel que ∀x ∈ R, f(x) = (ax2 + bx+ c) cos(x)

}
.

1. Montrer que E est un R-espace vectoriel.
2. Déterminer une base de E et sa dimension.

Résultat attendu :
1. C’est un sous-espace vectoriel de l’ensemble des fonctions réelles.
2. Une base est (x → cos(x), x → x cos(x), x → x2 cos(x)) et dim(E) = 3.

Exercice 7 (⋆⋆). Montrer que la famille
(
Xk(X − 1)n−k

)
0⩽k⩽n

est une base de Rn[X].
Résultat attendu : On montre que c’est une famille libre à n+ 1 = dim(Rn[X]) éléments.

Exercice 8 (⋆⋆). Dans Rn[X], soit H l’espace vectoriel des polynômes admettant 2 pour racine. Déterminer
une base et la dimension de H.
Résultat attendu : H est de dimension n, de base par exemple

(
Xk(X − 2)

)
k∈[[0,n−1]]

ou
(
(X − 2)k

)
k∈[[1,n]]

.

Exercice 9 (⋆). On se place dans R3. Déterminer le rang de la famille F = ((3, 2, 1), (1, 2, 3), (1, 1, 1)).
Résultat attendu : On trouve rg(F) = 2.

Exercice 10 (⋆). Déterminer le rang de la famille (X2 +X + 1, X2 + 3X + 1, 2X,X3 + 3) dans C[X].
Résultat attendu : C’est une famille de rang 3.

Exercice 11 (⋆⋆). Dans l’ensemble des applications définies de R dans R, on donne les éléments f0, f1, f2,
f3 et f4 définis par : pour tout réel x,

f0(x) = 1, f1(x) = cosx, f2(x) = cos2 x, f3(x) = sinx et f4(x) = cos(2x).

Déterminer le rang de la famille S = (f0, f1, f2, f3, f4).
Résultat attendu : On trouve rg(S) = 4.



Exercice 12 (⋆). Dans R4, on donne ε1 = (1, 0, 1, 1), ε2 = (2, 1, 3, 0), ε3 = (1,−1, 1, 1).
1. Prouver que (ε1, ε2, ε3) est une famille libre de R4, la compléter pour obtenir une base de R4.
2. Déterminer un sous-espace vectoriel supplémentaire de G = Vect(ε1, ε2, ε3) dans R4.

Résultat attendu :
1. ε4 = (1, 0, 0, 0) convient (par exemple).
2. La caractérisation des supplémentaires par les bases montre que Vect(ε4) convient.

Exercice 13 (⋆). On pose E = {(x, y, z) ∈ R3|y + z = 0}. Montrer que E est un sous-espace vectoriel de R3,
puis en déterminer une base. Déterminer ensuite un supplémentaire de E dans R3.
Résultat attendu : E contient (0, 0, 0) et est stable par combinaison linéaire, donc c’est un sous-espace
vectoriel de R3. Une base est (par exemple) la famille ((1, 0, 0), (0, 1,−1)). En la complétant, on trouve que
F = Vect((0, 1, 0)) est (par exemple) un supplémentaire.

Exercice 14 (⋆). On pose H = {(x, y, z) ∈ C3|3x+4y+5iz = 0}. H est-il un sous-espace vectoriel de C3 ? Si
oui, en donner une base et déterminer un sous-espace supplémentaire de H dans C3.
Résultat attendu : H est un sous-espace vectoriel de C3. Une base de H est ((− 4

3 , 1, 0), (−
5i
3 , 0, 1)) et un

supplémentaire de H est Vect((1, 0, 0)) (par exemple).

Exercice 15 (⋆⋆). Soit m ∈ R et e1 = (1, 1, 0). On pose Fm = {(x, y, z) ∈ R3, x−2y+z = m} et G = Vect(e1).
1. Déterminer les valeurs de m telles que Fm soit un sous-espace vectoriel de R3 et en donner une base.
2. Prouver qu’alors R3 = Fm ⊕G.

Résultat attendu :
1. On montre par analyse-synthèse que seul m = 0 convient. Une base de F0 est ((1, 0,−1), (0, 1, 2)).
2. N’importe laquelle des caractérisations convient.

Exercice 16 (⋆). On se place dans E = R3, avec F =
{
(x, y, z) ∈ R3 | x+ y + z = 0

}
et G = Vect ((1, 1, 1)).

Montrer que F est un sous-espace vectoriel de E et que E = F ⊕G. Expliciter une base adaptée à cette somme
directe.
Résultat attendu : On utilise la caractérisation pour montrer que F est un sous-espace vectoriel de E, puis
on cherche des bases : ((1, 1, 1)) est une base de G et ((1, 0,−1), (0, 1,−1)) est une base de F . Les juxtaposer et
montrer qu’on trouve une base de E permet de conclure.

Exercice 17 (⋆⋆). Soit E = R2[X]. On pose F = Vect(X2−X,X2+1) et G = {P ∈ E|P (−1) = P ′(−1) = 0}.
1. Montrer que G est un sous-espace vectoriel de E.
2. Montrer que E = F ⊕G et déterminer une base de E adaptée à cette somme directe.
3. Déterminer la décomposition dans F ⊕G de R(X) = 4X2 − 4X + 2.

Résultat attendu :
1. On utilise la caractérisation des sous-espaces vectoriels.
2. (X2−X,X2+1) est une base de F et ((X +1)2) est une base de G. On utilise ensuite la caractérisation

des supplémentaires par juxtaposition des bases.

3. R(X) =
(
2(X2 −X) + 3(X2 + 1)

)
− (X + 1)2
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Exercice 18 (⋆⋆⋆). Soit E un K-espace vectoriel et F un sous-espace vectoriel de E. On suppose que
F ̸= {0E} et F ̸= E. Soit G un supplémentaire de F dans E et (e1, . . . , er) une base de G.

1. Montrer que si f ∈ F , la famille (e1 + f, e2 + f, . . . , er + f) est de rang r.
2. Soit f ∈ F , on note Gf = Vect(e1 + f, e2 + f, . . . , er + f). Montrer que Gf est un supplémentaire de F

dans E.
3. Soit f et f ′ deux éléments distincts de F . Montrer que Gf ̸= Gf ′ .
4. En déduire que F admet une infinité de supplémentaires.

Résultat attendu :
1. On montre que c’est une famille libre.
2. On revient à la définition du supplémentaire (attention : E n’est pas de dimension finie, donc on ne peut

pas utiliser les caractérisations classiques des supplémentaires).
3. On raisonne par l’absurde ou par contraposée.
4. Découle directement des questions précédentes pour différentes valeurs de f .
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Exercice 19 (Type DS). Soient a1, . . ., an+1 des réels deux à deux distincts. Pour tout i ∈ [[1, n+1]], on pose :

Li(X) =

n+1∏
k=1
k ̸=i

X − ak
ai − ak

.

1. Pour cette question uniquement, on pose n = 1, a1 = 1 et a2 = 2. Calculer L1(X) et L2(X).
On n’hésitera pas à se servir de cet exemple pour conjecturer les réponses des questions suivantes. . .

2. (a) Soit i ∈ [[1, n+ 1]]. Calculer Li(ai).
(b) Soit (i, j) ∈ [[1, n+ 1]]2, avec i ̸= j. Calculer Li(aj).

3. On se place dans l’espace vectoriel Rn[X] des polynômes de degré inférieur ou égal à n.
(a) Quel est le degré des polynômes Li(X) ?
(b) Montrer que la famille (Li(X))i∈[[1,n+1]] est une famille libre de Rn[X].
(c) En déduire que c’est une base de Rn[X].

4. Soient b1, . . ., bn+1 des réels fixés. On pose : P (X) =

n+1∑
i=1

biLi(X). Ce polynôme s’appelle polynôme

d’interpolation de Lagrange associé aux n+ 1 couples de scalaires (ai, bi).
(a) Déterminer le polynôme d’interpolation de Lagrange associé aux 2 couples (1, 1) et (2, 1).
(b) On se place de nouveau dans le cadre général de n + 1 couples de scalaires (ai, bi). Montrer que le

polynôme d’interpolation de Lagrange P est de degré inférieur à n et vérifie ∀j ∈ [[1, n+1]], P (aj) = bj .
(c) Montrer que P est l’unique polynôme de Rn[X] qui vérifie ∀j ∈ [[1, n+ 1]], P (aj) = bj .

Résultat attendu :

1. L1(X) =
X − 2

1− 2
= −X + 2 et L2(X) =

X − 1

2− 1
= X − 1.

2. (a) Soit i ∈ [[1, n+ 1]]. Li(ai) =

n+1∏
k=1,k ̸=i

1 = 1.

(b) Soit (i, j) ∈ [[1, n+ 1]]2, avec i ̸= j. Li(aj) = 0 car le terme k = j du produit est nul.

3. (a) Soit i ∈ [[1, n+ 1]], deg(Li(X)) =

n+1∑
k=1,k ̸=i

deg

(
X − ak
ai − ak

)
=

n+1∑
k=1,k ̸=i

1 = (n+ 1)− 1 = n.

(b) La question précédente garantit que les Li(X) sont bien dans Rn[X]. Soit (λ1, . . . , λn+1) ∈ Rn+1,

on suppose que
n+1∑
i=1

λiLi(X) = 0. Pour i ∈ [[1, n + 1]], on évalue ce polynôme en ai, ce qui donne

0 + λi1 + 0 = 0 (d’après la question 2), et donc λi = 0. Ceci étant vrai pour tout i ∈ [[1, n + 1]],
λ1 = λ2 = · · · = λn+1 = 0. La famille est donc bien une famille libre de Rn[X].

(c) La famille (Li(X))i∈[[1,n+1]] est une famille libre de Rn[X] par la question précédente. Comme de plus
elle contient n+ 1 = dim(Rn[X]) éléments, c’est une base de Rn[X].

4. (a) P (X) = L1(X) + L2(X) = −X + 2 +X − 1 = 1 d’après la question 1.
(b) On a montré en 3.a. que les Li(X) sont dans Rn[X], donc P l’est aussi par combinaison linéaire. De

plus, ∀j ∈ [[1, n+ 1]], P (aj) =

n+1∑
i=1

biLi(aj) = 0 + bjLj(aj) + 0 = bj par la question 2.

(c) On suppose que P et Q sont deux polynômes qui conviennent. Alors P −Q ∈ Rn[X].
De plus, ∀i ∈ [[1, n + 1]], (P − Q)(ai) = P (ai) − Q(ai) = bi − bi = 0. Or les ai sont deux à deux
distincts, donc P −Q admet au moins n+ 1 racines distinctes.
Donc P −Q est le polynôme nul, et P = Q. D’où l’unicité.
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