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1 Cardinal d’un ensemble fini

1.1 Définition et premières propriétés

Définition 1.1 (Cardinal)

Soit 𝐴 un ensemble fini. On appelle cardinal le nombre de ses éléments, et on le note Card(𝐴) ou |𝐴|.

Exemple. Card(∅) = 0. Si (𝑎, 𝑏) ∈ ℤ2 avec 𝑎 ⩽ 𝑏, Card([[𝑎, 𝑏]]) = 𝑏 − 𝑎 + 1.

Proposition 1.2 (Partie d’un ensemble)

Soit 𝐸 un ensemble fini et 𝐴 un sous-ensemble de 𝐸. Alors 𝐴 est fini, et Card(𝐴) ⩽ Card(𝐸). De plus,

𝐴 = 𝐸 ⟺ Card(𝐴) = Card(𝐸).

Démonstration. Admis. ∎

Remarque. Pour montrer que deux ensembles finis sont égaux, on peut donc au choix raisonner par double 
inclusion ou montrer une inclusion et l’égalité des cardinaux.

Proposition 1.3 (Formule de somme)

Soit 𝐸 un ensemble fini et 𝐴 et 𝐵 deux sous-ensembles de 𝐸. Si 𝐴 et 𝐵 sont disjoints, alors

Card(𝐴 ∪ 𝐵) = Card(𝐴) + Card(𝐵).

Démonstration. Admis. ∎

Remarque. Pour rappel, deux ensembles 𝐴 et 𝐵 sont dits disjoints quand 𝐴 ∩ 𝐵 = ∅.

Proposition 1.4 (Formule de partition)

Soit 𝑛 ∈ ℕ∗. Soit 𝐸 un ensemble fini et (𝐴𝑖)𝑖∈[[1,𝑛]] une partition de 𝐸. Alors Card(𝐸) =
𝑛

∑
𝑖=1

Card(𝐴𝑖).

Démonstration. Soit 𝑛 ∈ ℕ∗, on pose 𝐻(𝑛) ∶ « Pour toute partition (𝐴𝑖)𝑖∈[[1,𝑛]] de 𝐸, Card(𝐸) =
𝑛

∑
𝑖=1

Card(𝐴𝑖) ».

• Pour 𝑛 = 1, si 𝐴1 = 𝐸, Card(𝐸) = Card(𝐴1) donc 𝐻(1) est vraie.

• Soit 𝑛 ∈ ℕ∗, on suppose que 𝐻(𝑛) est vraie. Soit une partition (𝐴𝑖)𝑖∈[[1,𝑛+1]] ∈ 𝒫(𝐸)𝑛+1 de 𝐸. Alors 
(𝐴1, … , 𝐴𝑛−1, (𝐴𝑛 ∪ 𝐴𝑛+1)) est aussi une partition de 𝐸 : il est immédiat que l’union vaut toujours 𝐸, et 
∀𝑖 ∈ [[1, 𝑛 − 1]], 𝐴𝑖 ∩ (𝐴𝑛 ∪ 𝐴𝑛+1) = (𝐴𝑖 ∩ 𝐴𝑛) ∪ (𝐴𝑖 ∩ 𝐴𝑛+1) = ∅ ∪ ∅ = ∅. 𝐻(𝑛) donne donc :

Card(𝐸) =
𝑛−1
∑
𝑖=1

Card(𝐴𝑖) + Card(𝐴𝑛 ∪ 𝐴𝑛+1).

Or 𝐴𝑛 ∩ 𝐴𝑛+1 = ∅, donc Card(𝐴𝑛 ∪ 𝐴𝑛+1) = Card(𝐴𝑛) + Card(𝐴𝑛+1). Donc 𝐻(𝑛 + 1) est vraie.

D’où le résultat annoncé. ∎

Proposition 1.5 (Formule de différence)

Soit 𝐸 un ensemble fini et 𝐴 et 𝐵 deux sous-ensembles de 𝐸. Alors Card(𝐴 ∖ 𝐵) = Card(𝐴) − Card(𝐴 ∩ 𝐵).
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Démonstration. (𝐴∖𝐵)∪(𝐴∩𝐵) = (𝐴∩𝐵)∪(𝐴∩𝐵) = 𝐴∩(𝐵∪𝐵) = 𝐴. De plus, (𝐴∖𝐵)∩(𝐴∩𝐵) = 𝐴∩𝐵∩𝐵 = ∅
donc 𝐴 ∖ 𝐵 et 𝐴 ∩ 𝐵 sont disjoints. On peut donc appliquer la formule de somme :

Card(𝐴 ∖ 𝐵) + Card(𝐴 ∩ 𝐵) = Card(𝐴).

∎

Remarque. En particulier, si 𝐵 ⊂ 𝐴, on a Card(𝐴 ∖ 𝐵) = Card(𝐴) − Card(𝐵).

Proposition 1.6 (Formule du complémentaire)

Soit 𝐸 un ensemble fini et 𝐴 un sous-ensemble de 𝐸. Alors Card(𝐴) = Card(𝐸) − Card(𝐴).

Démonstration. Découle directement de la formule précédente puisque 𝐴 = 𝐸 ∖ 𝐴 et que 𝐴 ⊂ 𝐸. ∎

Proposition 1.7 (Formule de somme, cas général)

Soit 𝐸 un ensemble fini et 𝐴 et 𝐵 deux sous-ensembles de 𝐸. Alors

Card(𝐴 ∪ 𝐵) = Card(𝐴) + Card(𝐵) − Card(𝐴 ∩ 𝐵).

Démonstration. On a 𝐴∪𝐵 = 𝐴∪(𝐵 ∖𝐴) et cette deuxième union est disjointe. La formule de somme (cas disjoint) 
et la formule de différence donnent alors :

Card(𝐴 ∪ 𝐵) = Card(𝐴 ∪ (𝐵 ∖ 𝐴)) = Card(𝐴) + Card(𝐵 ∖ 𝐴) = Card(𝐴) + Card(𝐵) − Card(𝐴 ∩ 𝐵).

∎

Proposition 1.8 (Formule du produit)

Soit 𝐴 et 𝐵 deux ensembles finis. Alors Card(𝐴 × 𝐵) = Card(𝐴) × Card(𝐵).

Démonstration. Pour construire un élément de 𝐴 × 𝐵, il faut :

• Choisir un élément de 𝐴 : Card(𝐴) possibilités.

• Choisir un élément de 𝐵 : Card(𝐵) possibilités.

Il y a donc Card(𝐴) × Card(𝐵) manières différentes de choisir un élément de 𝐴 × 𝐵.
Donc Card(𝐴 × 𝐵) = Card(𝐴) × Card(𝐵). ∎

Remarque. Cette formule se généralise facilement : si 𝐴1, …, 𝐴𝑝 sont des ensembles finis, alors 𝐴1 × ⋯ × 𝐴𝑝 est 

fini et Card(𝐴1 × ⋯ × 𝐴𝑝) =
𝑝

∏
𝑘=1

Card(𝐴𝑘).

1.2 Cardinaux et applications

Proposition 1.9 (Principe des tiroirs)

Soit 𝐸 et 𝐹 deux ensembles finis et 𝑓 une application de 𝐸 dans 𝐹. Si Card(𝐸) > Card(𝐹), alors 𝑓 ne peut 
pas être injective.

Démonstration. Supposons que 𝑓 soit injective. Des éléments distincts de 𝐸 ont des images distinctes dans 𝐹, 
donc 𝑓 atteint Card(𝐸) éléments distincts dans 𝐹. C’est impossible puisque Card(𝐸) > Card(𝐹). Donc 𝑓 n’est pas 
injective. ∎
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Exemple. Si on cherche à ranger 𝑛 + 1 objets dans 𝑛 tiroirs, au moins un tiroir contiendra deux objets.

Proposition 1.10 (Applications bijectives en cas d’égalité de cardinal)

Soit 𝐸 et 𝐹 deux ensembles finis de même cardinal et 𝑓 une application de 𝐸 dans 𝐹. Alors :

𝑓 est injective ⟺ 𝑓 est surjective ⟺ 𝑓 est bijective.

Démonstration. On raisonne en deux temps :
• Supposons 𝑓 injective. Des éléments distincts de 𝐸 ont des images distinctes dans 𝐹, donc 𝑓 atteint Card(𝐸)

éléments distincts dans 𝐹, donc Card(𝑓(𝐸)) = Card(𝐸). Or on sait que 𝑓(𝐸) ⊂ 𝐹. Comme on vient de 
montrer que Card(𝑓(𝐸)) = Card(𝐹) (puisque 𝐸 et 𝐹 ont même cardinal), on en déduit 𝑓(𝐸) = 𝐹. Donc 𝑓
est surjective (et donc bijective).

• Supposons 𝑓 surjective. Alors 𝑓(𝐸) = 𝐹. Donc Card(𝑓(𝐸)) = Card(𝐹) = Card(𝐸). Puisque 𝑓(𝐸) contient 
autant d’éléments que 𝐸, cela signifie que tous les éléments de 𝐸 ont des images distinctes. Donc 𝑓 est 
injective (et donc bijective).

Le reste des implications est immédiat. ∎

Exemple. Soit 𝑛 ∈ ℕ∗, on suppose qu’on a 𝑛 objets à ranger dans 𝑛 tiroirs. Alors « chaque tiroir contient au 
moins un objet » équivaut à « aucun tiroir ne contient plus d’un objet » et à « chaque tiroir contient exactement 
un objet ».

Proposition 1.11 (Nombre d’applications de 𝐸 dans 𝐹)

Soit 𝐸 et 𝐹 deux ensembles finis. Le nombre d’applications de 𝐸 dans 𝐹 vaut Card(𝐹 𝐸) = Card(𝐹)Card(𝐸).

Démonstration. On note 𝑝 = Card(𝐸) et 𝑒1, …, 𝑒𝑝 les éléments de 𝐸.
Pour construire une application 𝑓 de 𝐸 dans 𝐹, il faut :

• choisir la valeur de 𝑓(𝑒1) : Card(𝐹) possibilités.

• choisir la valeur de 𝑓(𝑒2) : Card(𝐹) possibilités.

• …

• choisir la valeur de 𝑓(𝑒𝑝) : Card(𝐹) possibilités.

On a donc au total Card(𝐹)𝑝 possibilités. Donc Card(𝐹 𝐸) = Card(𝐹)Card(𝐸). ∎

1.3 Parties d’un ensemble à 𝑛 éléments

Proposition 1.12 (Parties d’un ensemble à 𝑛 éléments)

Soit 𝑛 ∈ ℕ et 𝐸 un ensemble fini de cardinal 𝑛. Le nombre de parties de 𝐸 est Card (𝒫(𝐸)) = 2𝑛.

Démonstration. On note 𝑒1, …, 𝑒𝑛 les éléments de 𝐸.
Pour construire une partie 𝐹 de 𝐸, il faut :

• choisir si 𝐹 contient 𝑒1 : 2 possibilités.

• choisir si 𝐹 contient 𝑒2 : 2 possibilités.

• …

• choisir si 𝐹 contient 𝑒𝑛 : 2 possibilités.
On a donc au total 2𝑛 possibilités. Donc Card (𝒫(𝐸)) = 2𝑛. ∎

Exemple. Soit 𝐸 = {1, 2, 3, 4}. On avait déterminé 𝒫(𝐸) dans le chapitre sur les ensembles en constatant que 
Card(𝒫(𝐸)) = 16. On retrouve bien ce résultat avec 16 = 24 = 2Card(𝐸).
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2 Listes et combinaisons

2.1 𝑝-listes d’un ensemble à 𝑛 éléments

Définition 2.1 (𝑝-liste)

Soit (𝑝, 𝑛) ∈ (ℕ∗)2. Soit 𝐸 un ensemble fini de cardinal 𝑛. On appelle 𝑝-liste (ou 𝑝-uplet) de 𝐸 tout élément 
de 𝐸𝑝.

Remarque. L’ordre des éléments dans la 𝑝-liste est important.

Exemple. (1, 2, 1) et (1, 1, 2) sont deux exemples différents de 3-listes d’éléments de [[1, 6]].

Proposition 2.2 (Nombre de 𝑝-listes)

Soit (𝑝, 𝑛) ∈ (ℕ∗)2. Le nombre de 𝑝-listes d’un ensemble 𝐸 à 𝑛 éléments est Card (𝐸𝑝) = 𝑛𝑝.

Démonstration. La formule du produit donne directement Card (𝐸𝑝) = Card(𝐸)𝑝 = 𝑛𝑝. ∎

Exercice 1. On tire trois cartes avec remise dans un jeu de 32 cartes. Combien de tirages différents peut-on 
rencontrer ?
Solution : Un tirage de trois cartes avec remise est une 3-liste d’un ensemble à 32 éléments : il y a donc 323 = 32768
possibilités.

Définition 2.3 (𝑝-liste d’éléments distincts)

Soit 𝐸 un ensemble fini de cardinal 𝑛 ∈ ℕ∗ et soit 𝑝 ∈ [[1, 𝑛]]. On appelle 𝑝-liste (ou 𝑝-uplet) d’éléments 
distincts de 𝐸 tout élément (𝑥1, … , 𝑥𝑝) ∈ 𝐸𝑝 tel que : ∀(𝑖, 𝑗) ∈ [[1, 𝑝]]2tels que 𝑖 ≠ 𝑗, 𝑥𝑖 ≠ 𝑥𝑗.

Exemple. (1, 2, 5) est une 3-liste d’éléments distincts de [[1, 6]], mais pas (1, 2, 1).

Proposition 2.4 (Nombre de 𝑝-listes d’éléments distincts)

Soit 𝑛 ∈ ℕ∗ et 𝑝 ∈ [[1, 𝑛]]. Le nombre de 𝑝-listes d’éléments distincts d’un ensemble à 𝑛 éléments est 𝑛!
(𝑛 − 𝑝)!

.

Démonstration. Pour choisir une 𝑝-liste d’éléments distincts d’un ensemble à 𝑛 éléments, il faut :

• choisir le premier élément de la liste : 𝑛 possibilités.

• choisir le deuxième élément de la liste, distinct du premier : 𝑛 − 1 possibilités.

• …

• choisir le 𝑝-ième élément de la liste, distinct de ceux déjà choisis : 𝑛 − (𝑝 − 1) = 𝑛 − 𝑝 + 1 possibilités.

Il y a donc au total 𝑛(𝑛 − 1)…(𝑛 − 𝑝 + 1) = 𝑛!
(𝑛−𝑝)!  possibilités. Cela montre le résultat annoncé. ∎

Exercice 2. On tire trois cartes sans remise dans un jeu de 32 cartes. Combien de tirages différents peut-on 
rencontrer ?
Solution : Un tirage de trois cartes sans remise est une 3-liste d’éléments distincts d’un ensemble à 32 éléments : il 
y a donc 32!

(32 − 3)!
= 32 × 31 × 30 = 29760 possibilités. On peut vérifier que ce résultat est cohérent : il est bien 

plus petit que dans le cas avec remise.

Exercice 3. Soit 𝐸 et 𝐹 deux ensembles finis. On pose 𝑝 = Card(𝐸) et 𝑛 = Card(𝐹). Si 𝑝 ⩽ 𝑛 (c’est-à-dire s’il 
existe des applications injectives de 𝐸 dans 𝐹), montrer que l’ensemble des applications injectives de 𝐸 dans 𝐹 est 
de cardinal 𝑛!

(𝑛−𝑝)! .
Solution : Une application injective de 𝐸 dans 𝐹 est une 𝑝-liste d’éléments distincts de 𝐹 (à chaque élément de 𝐸, 
on associe un élément distinct de 𝐹). Or 𝐹 est de cardinal 𝑛. D’où le résultat annoncé.
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2.2 Permutations d’un ensemble à 𝑛 éléments

Définition 2.5 (Permutation)

Soit 𝐸 un ensemble fini de cardinal 𝑛 ∈ ℕ∗. On appelle permutation de 𝐸 toute 𝑛-liste d’éléments distincts 
de 𝐸.

Remarque. Une permutation de 𝑛 objets distincts rangés dans un certain ordre correspond à un changement de 
l’ordre de succession de ces 𝑛 objets.

Exemple. Si 𝐸 = [[1, 5]], (1, 2, 3, 4, 5), (5, 4, 3, 2, 1) et (2, 4, 1, 3, 5) sont des permutations de 𝐸.

Proposition 2.6 (Nombre de permutations)

Soit 𝑛 ∈ ℕ∗. Le nombre de permutations d’un ensemble à 𝑛 éléments est 𝑛!.

Démonstration. Si 𝐸 est un ensemble à 𝑛 éléments, une permutation de 𝐸 est une 𝑛-liste d’éléments distincts de 𝐸. 
Il y en a donc 𝑛!

(𝑛−𝑛)! = 𝑛!
0! = 𝑛!. ∎

Exercice 4. De combien de manières différentes peut-on mélanger un jeu de 32 cartes ?
Solution : Le nombre de mélanges correspond au nombre de permutations sur les 32 cartes : il y en a 32! (de l’ordre 
de 1035...)

Exercice 5. Combien PERLE a-t-il d’anagrammes ?
Solution : Il y a 5! permutations possibles pour 5 lettres différentes. Ici, la lettre 𝐸 figure deux fois, donc intervertir 
les 𝐸 (ce qu’on peut faire de 2! manières) ne modifie rien. Il y a donc 5!

2! = 60 anagrammes.

2.3 Parties à 𝑝-éléments d’un ensemble à 𝑛 éléments

Définition 2.7 (Parties à 𝑝 éléments d’un ensemble à 𝑛 éléments)

Soit 𝐸 un ensemble fini de cardinal 𝑛 ∈ ℕ et soit 𝑝 ∈ [[0, 𝑛]]. On appelle partie à 𝑝 éléments de 𝐸 (ou 
𝑝-combinaison de 𝐸) tout sous-ensemble de 𝐸 à 𝑝 éléments.

Exemple. {1, 2, 5} est une partie à 3 éléments de [[1, 6]].

Remarque. L’ordre des éléments d’un ensemble n’a pas d’importance (contrairement au cas des listes).

Proposition 2.8 (Nombre de parties à 𝑝 éléments d’un ensemble à 𝑛 éléments)

Soit 𝑛 ∈ ℕ et 𝑝 ∈ [[0, 𝑛]]. Soit 𝐸 un ensemble fini de cardinal 𝑛. Le nombre de parties à 𝑝 éléments de 𝐸 est

(𝑛
𝑝
) = 𝑛!

𝑝! (𝑛 − 𝑝)!
.

Démonstration. Il suffit de remarquer qu’une partie à 𝑝 éléments de 𝐸 est une 𝑝-liste d’éléments distincts de 𝐸 à 
laquelle on a retiré la notion d’ordre. Or :

• Il y a 𝑛!
(𝑛−𝑝)! 𝑝-listes d’éléments distincts de 𝐸.

• Il y a 𝑝! manières d’ordonner une 𝑝-liste d’éléments distincts donnée (propriété des permutations).

Il y a donc 𝑛!
𝑝!(𝑛−𝑝)! = (𝑛

𝑝) parties à 𝑝 éléments de 𝐸. ∎
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Exercice 6. On tire simultanément trois cartes dans un jeu de 32 cartes. Combien de tirages différents peut-on 
rencontrer ?
Solution : Un tirage simultané de trois cartes est une partie à 3 éléments d’un ensemble à 32 éléments : il y a 
donc (32

3 ) = 32×31×30
3! = 4960 possibilités. C’est beaucoup moins que le nombre de 3-listes d’éléments distincts, car 

l’ordre dans lequel on pioche les cartes ne compte pas.

Proposition 2.9 (Formule de Pascal, rappel)

∀(𝑛, 𝑝) ∈ ℤ2 ∖ {(0, 0)}, (𝑛
𝑝
) = (𝑛 − 1

𝑝
) + (𝑛 − 1

𝑝 − 1
).

Démonstration. On effectue une preuve alternative dans le cas où 𝑛 ∈ ℕ∗ et 𝑝 ∈ [[1, 𝑛 − 1]] (c’est-à-dire quand tous 
les coefficients binomiaux sont non nuls).
Soit 𝐸 un ensemble fini de cardinal 𝑛. Il y a donc (𝑛

𝑝) possibilités d’obtenir une partie à 𝑝 éléments de 𝐸.
Procédons maintenant autrement. Soit 𝑥 ∈ 𝐸 (𝑥 existe puisque 𝑛 > 0). On peut alors écrire 𝐸 = 𝐸′ ∪ {𝑥} avec 𝐸′

un ensemble fini de cardinal 𝑛 − 1. Pour construire une partie à 𝑝 éléments de 𝐸, on peut :

• ne pas choisir 𝑥 et donc choisir 𝑝 éléments parmi les 𝑛 − 1 de 𝐸′ : (𝑛−1
𝑝 ) possibilités.

• choisir 𝑥 et compléter avec 𝑝 − 1 éléments parmi les 𝑛 − 1 de 𝐸′ : (𝑛−1
𝑝−1) possibilités.

Ces deux cas sont disjoints, on peut donc sommer les dénombrements associés, pour un total de (𝑛−1
𝑝 ) + (𝑛−1

𝑝−1)
possibilités.
On a dénombré le même objet de deux manière différentes, les deux résultats obtenus sont donc égaux. D’où 
(𝑛

𝑝) = (𝑛−1
𝑝 ) + (𝑛−1

𝑝−1). ∎

Proposition 2.10 (Formule du binôme de Newton, rappel)

∀(𝑎, 𝑏) ∈ ℝ2, ∀𝑛 ∈ ℕ, (𝑎 + 𝑏)𝑛 =
𝑛

∑
𝑘=0

(𝑛
𝑘
)𝑎𝑘𝑏𝑛−𝑘.

Démonstration. Développons (𝑎 + 𝑏)𝑛 = (𝑎 + 𝑏)(𝑎 + 𝑏)…(𝑎 + 𝑏) (produit à 𝑛 termes). On obtient une somme de 
termes de la forme 𝑎𝑘𝑏𝑛−𝑘 où 𝑘 représente le nombre de fois où on a choisi 𝑎 en développant (comme le produit 
comporte 𝑛 termes, on a alors nécessairement choisi 𝑛 − 𝑘 fois 𝑏).
Soit 𝑘 ∈ [[0, 𝑛]] fixé, on cherche maintenant à compter le nombre de fois où le terme 𝑎𝑘𝑏𝑛−𝑘 apparaît dans la somme 
développée. Pour obtenir un tel terme, il faut choisir les positions des 𝑘 facteurs (𝑎 + 𝑏) où on choisit la valeur 𝑎. 
Les facteurs (𝑎 + 𝑏) peuvent être numérotés du premier au 𝑛-ième. Un tel choix de positions est donc une partie à 
𝑘 éléments de [[1, 𝑛]]. Il y en a donc (𝑛

𝑘).
Ainsi, pour tout 𝑘 ∈ [[0, 𝑛]], la somme obtenue en développant contient (𝑛

𝑘) fois le terme 𝑎𝑘𝑏𝑛−𝑘. On en déduit 
(𝑎 + 𝑏)𝑛 = ∑𝑛

𝑘=0 (𝑛
𝑘)𝑎

𝑘𝑏𝑛−𝑘. ∎

Exercice 7. Soit 𝑛 ∈ ℕ. En utilisant un dénombrement, montrer que 2𝑛 =
𝑛

∑
𝑘=0

(𝑛
𝑘
).

Solution : La formule du binôme de Newton donne directement cette égalité, mais il faut ici procéder par 
dénombrement. Soit 𝐸 un ensemble fini à 𝑛 éléments, alors Card(𝒫(𝐸)) = 2𝑛. Mais pour choisir une partie 𝐴 de 
𝒫(𝐸), on peut aussi :

• choisir le cardinal 𝑘 ∈ [[0, 𝑛]] de l’ensemble 𝐴.

• puis, 𝑘 étant fixé, choisir 𝐴 parmi les parties à 𝑘 éléments de 𝐸 : (𝑛
𝑘
) possibilités.

Les valeurs de 𝑘 différentes correspondent à des cas disjoints, on peut donc sommer, ce qui donne 
𝑛

∑
𝑘=0

(𝑛
𝑘
)

possibilités. D’où l’égalité annoncée.
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