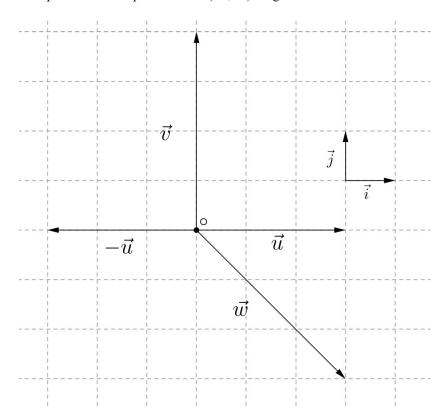
Mesure des angles

Un angle géométrique est compris entre 0° et 180° (ou entre 0 et π radians). Il est défini par trois points ou deux droites. Un <u>angle orienté</u> entre deux vecteurs non nuls en revanche a une valeur réelle quelconque et donc un signe. Cette valeur en <u>radians</u> est définie à un multiple entier de 2π près. On note $(\overrightarrow{u}, \overrightarrow{v})$ l'angle entre les vecteurs \overrightarrow{u} et \overrightarrow{v} .



Sur le dessin, $(\overrightarrow{u}, \overrightarrow{v}) = \pi/2$ (on tourne de 90° dans le sens trigonométrique pour passer de \overrightarrow{u} à \overrightarrow{v}).

Mais on a aussi $(\overrightarrow{u}, \overrightarrow{v}) = 5\pi/2$ (on fait un tour complet et on rajoute un quart de tour), ou encore $(\overrightarrow{u}, \overrightarrow{v}) = -3\pi/2$ (on tourne de 270° dans le sens horaire).

De même, $(\overrightarrow{w}, \overrightarrow{v}) = 3\pi/4$ (on tourne de 135° dans le sens trigonométrique) ou bien $(\overrightarrow{w}, \overrightarrow{v}) = -5\pi/4$ (un demi-tour et encore 45° dans le sens horaire).

Enfin,
$$-(\overrightarrow{u}, \overrightarrow{v}) = -\pi/2$$
 ou encore $-(\overrightarrow{u}, \overrightarrow{v}) = 3\pi/2$...

Un vecteur \overrightarrow{F} peut-être repéré par ses coordonnées cartésiennes dans une base orthonormée. Sur l'exemple : $\overrightarrow{u} = 3\overrightarrow{i}$, $\overrightarrow{v} = 4\overrightarrow{j}$, $\overrightarrow{w} = 3\sqrt{2}$ ($\overrightarrow{i} - \overrightarrow{j}$)

$$\overrightarrow{u} = 3\overrightarrow{i}$$
, $\overrightarrow{v} = 4\overrightarrow{j}$, $\overrightarrow{w} = 3\sqrt{2} (\overrightarrow{i} - \overrightarrow{j})$

ou bien par sa longueur F (on parle de norme d'un vecteur et on note alors $\|\overrightarrow{F}\|$) et l'angle orienté entre \overrightarrow{i} et \overrightarrow{F} . Cet angle s'appelle l'angle polaire du vecteur \overrightarrow{F} . Sur l'exemple,

pour
$$\overrightarrow{u}$$
: $\|\overrightarrow{u}\| = 3$, $\theta = 0$
pour \overrightarrow{v} : $\|\overrightarrow{v}\| = 4$, $\theta = \pi/2$
pour \overrightarrow{w} : $\|\overrightarrow{w}\| = 3\sqrt{2}$, $\theta = -\pi/4$

Le lien entre les deux modes de repérage est donné par la formule

$$\overrightarrow{F} = F \cos(\theta) \overrightarrow{i} + F \sin(\theta) \overrightarrow{j}$$

On peut remplacer la base $(\overrightarrow{i}, \overrightarrow{j})$ par n'importe quelle base orthonormée $(\overrightarrow{e_1}, \overrightarrow{e_2})$, l'angle polaire θ étant alors $(\overrightarrow{e_1}, \overrightarrow{F})$.

Quand on détermine les composantes d'un vecteur \overrightarrow{F} (une force par exemple) dans la base $(\overrightarrow{e_1}, \overrightarrow{e_2})$, on dit qu'on a **projeté le vecteur** \overrightarrow{F} sur les axes portés par $\overrightarrow{e_1}$ et $\overrightarrow{e_2}$ respectivement. Cela se fait couramment en physique.

La composante $F\cos(\theta)$ \overrightarrow{i} est la projection de \overrightarrow{F} sur \overrightarrow{i} et le coefficient $F\cos(\theta)$ est égal au produit scalaire de \overrightarrow{F} avec \overrightarrow{i} :

$$F\cos(\theta) = \overrightarrow{F}.\overrightarrow{i}$$

De même,

$$F\sin(\theta) = \overrightarrow{F}.\overrightarrow{j}$$

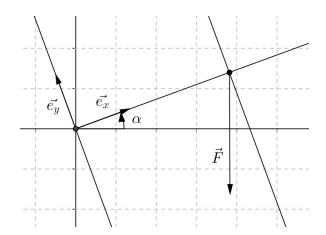
Rappel : le **produit scalaire** de deux vecteurs \overrightarrow{u} et \overrightarrow{v} est le réel $\|\overrightarrow{u}\| \|\overrightarrow{v}\| \cos(\overrightarrow{u}, \overrightarrow{v})$

$$\|\overrightarrow{u}\| \|\overrightarrow{v}\| \cos(\overrightarrow{u}, \overrightarrow{v})$$

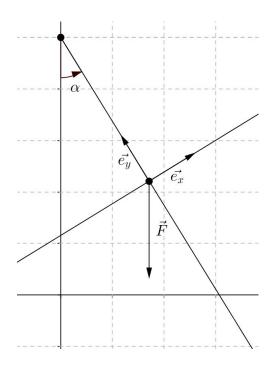
$$(\operatorname{donc} \overrightarrow{F}.\overrightarrow{j} = F \cos(\overrightarrow{F}, \overrightarrow{j}) = F \cos(\pi/2 - \theta) = F \sin(\theta)).$$

Calculer en fonction de α les angles $(\overrightarrow{e_x}, \overrightarrow{F})$ et $(\overrightarrow{e_y}, \overrightarrow{F})$.

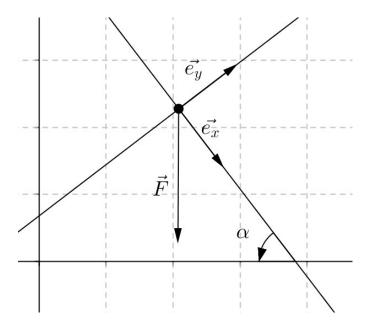
Décomposer alors le vecteur \overrightarrow{F} dans la base orthonormée $(\overrightarrow{e_x}, \overrightarrow{e_y})$ (on notera F la norme du vecteur \overrightarrow{F}). 1)



2) Même question



3) Même question



Calculs d'angles dans le triangle

Rappels

La somme des angles dans un triangle est égale à 180°.

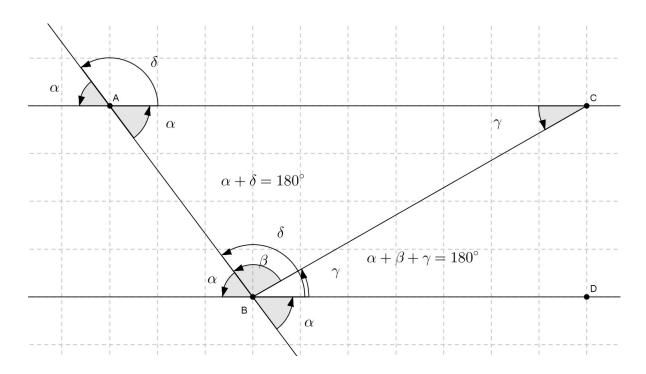
Une droite intercepte deux droites parallèles selon le même angle (angles alternes-internes)

Deux angles opposés par le sommet sont égaux.

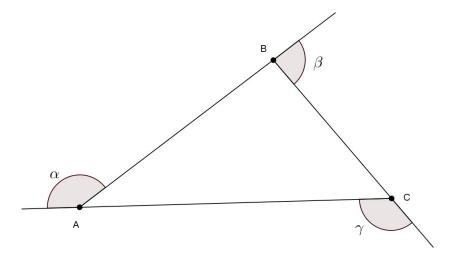
Tout est sur la figure : (AC) // (BD)

noter l'angle α présent quatre fois : deux fois en A (angles opposés par le sommet) et deux fois en B

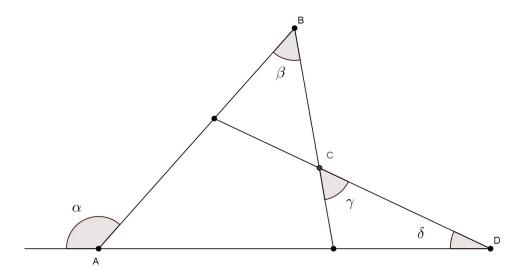
$$\gamma = \widehat{ACB} = \widehat{DBC}$$
 (angles alternes-internes)



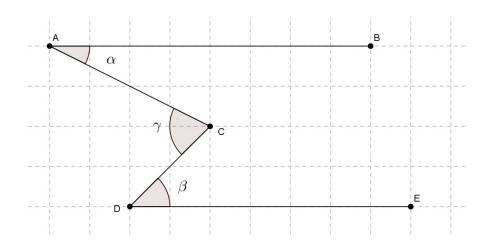
1) Sur la figure ci-dessous, prouver que les angles géométriques α , β et γ vérifient $\alpha + \beta + \gamma = 360^{\circ}$.



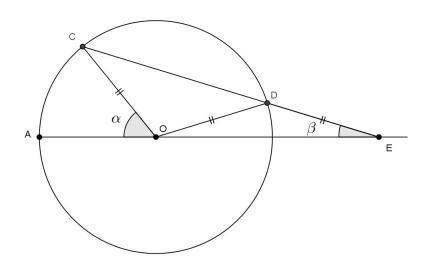
2) Sur la figure ci-dessous, prouver que les angles géométriques α , β , γ et δ vérifient $\alpha = \beta + \gamma + \delta$.



3) Sur la figure ci-dessous à gauche , (AB) et (DE) étant parallèles. Prouver que $\gamma = \alpha + \beta$.

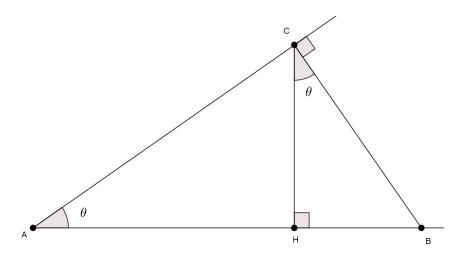


Sur la figure ci-dessous, O est le centre du cercle, les points A, O, E sont alignés et DE est égal au rayon du cercle. Prouver que $\alpha = 3\beta$.



Calculs de longueurs

Relations dans le triangle rectangle



Prouver que $\theta = \widehat{BAC} = \widehat{HCB}$. Cet angle est noté θ .

La formule de Pythagore dans ABC donne la relation fondamentale de la trigonométrie :

$$\cos^{2}(\theta) + \sin^{2}(\theta) = 1$$
$$\cos(\theta) = \frac{AH}{AC} \text{ et } \sin(\theta) = \frac{CH}{AC}$$

La pente (par rapport à l'horizontale) de la droite (AC) est le réel

$$p = \frac{CH}{AH} = \frac{\sin(\theta)}{\cos(\theta)}$$

Le réel $\frac{\sin(\theta)}{\cos(\theta)}$ s'appelle la <u>tangente</u> de l'angle θ et se note $\tan(\theta)$. C'est aussi le coefficient directeur de la droite (AC).

On a
$$cos(\theta) = \frac{AC}{AB} = \frac{AH}{AC}$$
, d'où

$$AH = \frac{AC^2}{AB}$$

Avec le produit scalaire, on peut aussi écrire

$$AC^2 = \overrightarrow{AC} \cdot \overrightarrow{AC} = \overrightarrow{AC} \cdot (\overrightarrow{AB} + \overrightarrow{BC}) = \overrightarrow{AC} \cdot \overrightarrow{AB} = (\overrightarrow{AH} + \overrightarrow{HC}) \cdot \overrightarrow{AB} = \overrightarrow{AH} \cdot \overrightarrow{AB} = AH \times AB$$

De même $BH = \frac{BC^2}{AB}$

Exprimer $cos(\theta)$ dans les triangles ABC et BHC et $tan(\theta)$ dans les triangles AHC et BHC et en déduire que

On a aussi $cos(\theta) = \frac{AC}{AB} = \frac{\tilde{CH}}{BC}$, d'où

$$CH = \frac{AC \times BC}{AB}$$

et
$$tan(\theta) = \frac{CH}{AH} = \frac{BH}{CH}$$
, d'où

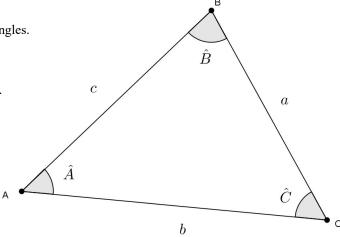
$$CH^2 = BH \times AH$$

Résolution du triangle

Résoudre un triangle, c'est calculer ses trois côtés et ses trois angles.

On considère un triangle ABC.

On note a = BC, b = AC, c = AB et \widehat{A} , \widehat{B} , \widehat{C} les angles géométriques (entre 0 et 180° donc) en A, B, C respectivement.



Il y a trois cas où on sait résoudre le triangle sans ambiguïté :

- les trois côtés sont connus
- On connaît deux côtés et l'angle déterminé par ces deux côtés (par exemple, b, c et \widehat{A} connus)
- On connaît un côté et les deux angles adjacents (par exemple, $a, \widehat{B}, \widehat{C}$ connus).

Le cas où on connaît deux côtés et un angle qui n'est pas celui déterminé par les deux côtés connus, conduit en général à deux possibilités.

Pour résoudre le triangle, on dispose de la formule de Al Kashi et de la loi des sinus.

Formule de Al Kashi $\begin{cases} a^2 = b^2 + c^2 - 2bc \cos \widehat{A} \\ b^2 = a^2 + c^2 - 2ac \cos \widehat{B} \\ c^2 = a^2 + b^2 - 2ab \cos \widehat{C} \end{cases}$

L'aire S d'un triangle ABC se calcule par $\frac{1}{2}b \times c \sin \widehat{A} = \frac{1}{2}a \times b \sin \widehat{C} = \frac{1}{2}c \times a \sin \widehat{B}$, d'où la loi des sinus :

$$\frac{\sin \widehat{A}}{a} = \frac{\sin \widehat{C}}{c} = \frac{\sin \widehat{B}}{b}$$

Applications des formules

- Les 3 longueurs a, b, c sont connues : par la formule d'Al-Kashi, on en déduit $\cos \widehat{A}$, $\cos \widehat{B}$ et $\cos \widehat{C}$. On en déduit \widehat{A} , \widehat{B} et \widehat{C}
- On connaît un angle et les deux côtés adjacents, par exemple a, b connus ainsi que C: on en déduit c par Al-Kashi puis les deux autres angles toujours par Al-Kashi (on préfère utiliser Al-Kashi car la loi des sinus ne donne que le sinus des angles, d'où une ambiguïté pour l'angle).
- On connaît un côté et les deux angles adjacents : par exemple a ainsi que \widehat{B} et \widehat{C} connus. On en déduit \widehat{A} puis

$$b = a \frac{\sin \widehat{B}}{\sin \widehat{A}} \text{ et } c = a \frac{\sin \widehat{C}}{\sin \widehat{A}}$$

• Si on connaît a, b et \widehat{A} , la loi des sinus permet de calculer $\sin\widehat{B}$ ce qui laisse deux possibilités a priori pour \widehat{B} . Quant

à Al-Kashi, il permet de voir *c* comme solution d'une équation du second degré, d'où également deux possibilités a priori. D'où l'ambiguïté mentionnée plus haut.

Exemples

Pour les applications numériques, faire attention aux unités d'angles quand on applique une des fonctions sin, cos ou tan : l'angle doit être exprimé en degrés ou en radians selon le mode sélectionné sur la calculatrice.

Utiliser également les touches cos ⁻¹, sin⁻¹ de votre calculatrice (elle peuvent se noter aussi arccos, arcsin) pour calculer un angle. Le résultat sera en degrés ou radians selon le mode sélectionné.

- 1) On donne a=12, b=7, c=9.

 Par Al-Kashi, on trouve $\cos(\widehat{A})=\frac{b^2+c^2-a^2}{2bc}\approx -0.11$, d'où $\widehat{A}\approx 1,68$ rad ou 96.4° De même, $\cos(\widehat{B})=\frac{a^2+c^2-b^2}{2ac}\approx 0.82$, d'où $\widehat{B}\approx 35.4^\circ$ $\widehat{C}=180-\widehat{A}-\widehat{B}\approx 48.2^\circ$
- 2) On donne a = 20, $\widehat{B} = 45^{\circ}$, $\widehat{C} = 72^{\circ}$. Le troisième angle est $\widehat{A} = 180 - 45 - 72 = 63^{\circ}$ La loi des sinus donne $b = a \sin(\widehat{B})/\sin(\widehat{A}) \approx 15.87$

La longueur c se calcule alors soit par Al-Kashi, soit par la loi des sinus :

$$c = a\sin(\widehat{C})/\sin(\widehat{A}) \approx 21,34$$

$$c^2 = a^2 + b^2 - 2ab\cos(\widehat{C}) \approx 455,69 \text{ puis } c \approx 21,34$$

On donne $a=12, b=9, \widehat{A}=60^{\circ}$ La loi des sinus donne $\sin(\widehat{B})=b\sin(\widehat{A})/a\approx0.65$. D'où $\widehat{B}\approx40.50^{\circ}$ ou $\widehat{B}\approx180-40.50=139.50$. Ce dernier cas est impossible car il y a déjà un angle de 60° et que la somme des trois angles doit faire 180° . On a donc $\widehat{B}\approx40.50^{\circ}$ et $\widehat{C}\approx180-60-40.50\approx79.5^{\circ}$

On calcule enfin c soit par Al-Kashi, soit par la loi des sinus :

$$c = a\sin(\widehat{C})/\sin(\widehat{A}) \approx 13,62$$

$$c^2 = a^2 + b^2 - 2ab\cos(\widehat{C}) \approx 185,64 \text{ puis } c \approx 13,62$$

On aurait pu aussi débuter les calculs par Al-Kashi :

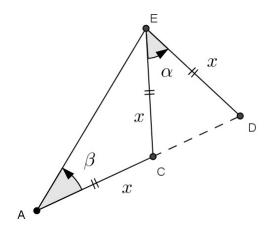
$$a^2 = b^2 + c^2 - 2bc \cos(\widehat{A})$$

d'où c qui est solution du trinôme $c^2 - 9c - 63 = 0$. Les deux racines sont $(9 \pm \sqrt{333})/2 = 13,62$ ou -4,62. Le trinôme ayant une racine positive et une racine négative, seule la racine positive va conduire à une solution acceptable.

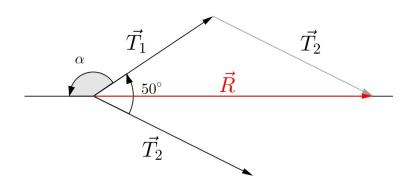
4) On donne a=9, b=10, $\widehat{A}=60^\circ$ La loi des sinus donne $\sin(\widehat{B})=b\sin(\widehat{A})/a\approx 0.96$. D'où $\widehat{B}\approx 74.21^\circ$ ou $\widehat{B}\approx 180-74.21=105.79$. Cette fois, les deux valeurs sont possibles. Pour $\widehat{B}\approx 74.21^\circ$, on a $\widehat{C}\approx 180-60-74.21\approx 45.79^\circ$ et $c=a\sin(\widehat{C})/\sin(\widehat{A})\approx 7.45$

Pour $\widehat{B} \approx 105,79^{\circ}$, on a $\widehat{C} \approx 180 - 60 - 105,79 \approx 14,21^{\circ}$ et $c = a \sin(\widehat{C})/\sin(\widehat{A}) \approx 2,55$

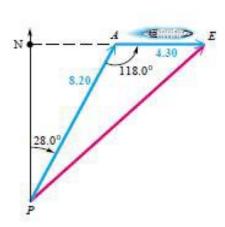
On donne a = 7, b = 9, $\widehat{A} = 60^{\circ}$ Al-Kashi donne $a^2 = b^2 + c^2 - 2bc \cos(\widehat{A})$, soit $c^2 - 9c + 32 = 0$. Il n'y a pas de racine réelle, donc aucun triangle solution. Ici, le cercle centré en C et de rayon 7 ne peut pas couper la droite (AB). 1) Sur la figure ci-dessus à droite, calculer β en fonction de α . Calculer x/CD en fonction de α .



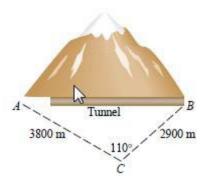
2) Sur la figure ci-dessous, on connaît les longueurs $T_1 = 48$, $T_2 = 60$ calculer la résultante R et l'angle α .



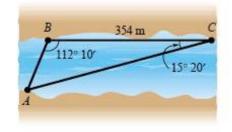
3) Un navire quitte le port P sous une trajectoire rectiligne formant un angle de 28° par rapport au Nord. Au bout de 8,2 km, il change de direction comme indiqué sur le dessin et parcourt encore 4,3 km. Quelle est alors sa distance au port ? Quel est l'angle entre (PE) et le Nord ?



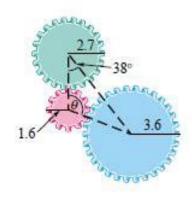
4) Pour mesurer la longueur d'un tunnel, on observe l'entrée et la sortie depuis un troisième point C. On mesure AC = 3800 m, BC = 2900 m, et $\widehat{C} = 110^{\circ}$. En déduire la longueur du tunnel.



5) Calculer la distance AB entre les deux rives avec les données du dessin.



6) Trois engrenages sont représentés ci-contre. On note A le centre du cercle de rayon 2.7, B le centre de celui de rayon 1.6, C celui de rayon 3.6. Calculer d'abord AC en utilisant la formule d'Al Kashi puis calculer l'angle θ exprimé en radians et en degrés.



- 7) Pour prédire les éruptions du volcan Mauna Loa situé sur l'île d'Hawai, les scientifiques étudient le mouvement de ce volcan en effectuant des mesures à partir de deux autres volcans (figure cicontre).
 - a) On donne $AB=36,16916~{\rm km}$, $AC=45,28170~{\rm km}$, $\widehat{A}=58,56989~{\rm c.}$ Calculer BC.
 - b) On donne $AB=36,16916~{\rm km}$, $BC=40.62698~{\rm km}$, $\widehat{A}=58,56989~{\rm c.}$ Calculer \widehat{B} .

