Sup PCSI 2023-2024 Mathématiques

PROGRAMME DE COLLE SEMAINE 2

CHAPITRE 0 : Langage mathématiques-Raisonnements-Sous-ensembles de R.

I. Notation

- Notations et vocabulaire ensemblistes : \in , \cup , \cap , \subset , $\{...\}$.
- Quantificateurs: ∀,∃,∃!
- Proposition et sa négation
- o Implication, sa contraposée et sa réciproque.
- O Equivalence.

II. <u>Sous -ensemble remarquable de</u> ℝ

- o Définition de \mathbb{N} , \mathbb{Z} , D, \mathbb{Q} , $\mathbb{R} \setminus \mathbb{Q}$.
- o **Calculs dans** \mathbb{Z} : multiple, diviseur, pair, impair, *PPCM* et *PGCD*.
- Calculs dans Q: représentant irréductible, somme, produit et quotient.
- Calculs dans $\mathbb{R}:\sqrt{2}$ est irrationnel, la somme d'un rationnel et d'un irrationnel est irrationnel , le produit d'un irrationnel et d'un rationnel non nul est irrationnel.

III. Raisonnements

- o Démonstration par disjonction de cas
- o Démonstration par l'absurde
- o Démonstration par contraposée
- Démonstration par double implication
- Démonstration par équivalence
- o Démonstration par récurrence : Théorème de récurrence Simple Double Forte .

CHAPITRE 1 : Sommes et Produits finis-Suites particulières-Systèmes linéaires simples.

I. Sommes et produits finis

- Sommes et produits finies
 - O Notation d'une somme finie et d'un produit fini.
 - o Propriétés: découpage, séparation, mise en facteur.
 - Changement d'indices.
 - \circ Ecriture de u_n en fonction de $S_n = \sum_{k=0}^n u_k$ et S_{n-1} OU en fonction de $P_n = \prod_{k=0}^n u_k$ et P_{n-1} .
 - $\qquad \text{Somme t\'elescopique } \textstyle \sum_{k=0}^n (u_{k+1}-u_k) \text{ et plus g\'en\'eralement, } \sum_{k=p}^N (u_k-u_{k+1}). \text{ Produit t\'elescopique } \prod_{k=0}^n \frac{u_{k+1}}{u_k}.$
- Sommes doubles
 - Notation d'une somme double et finie.
 - o Théorème d'interversion de deux sommes finies.
 - o Produit de deux sommes simples et finies.

II. Formules sommatoires

- Somme
 - \circ des entiers compris entre 1 et n
 - o de ces mêmes « entiers au carré »
- Somme géométrique.
 - o Factorisation de $1 x^n$ par (1 x)
 - Factorisation de $a^n b^n$ par a b.
 - o Formules des sommes géométriques : $\sum_{k=0}^{n} x^k et \sum_{k=n}^{n} x^k$.
- Formule du binôme de Newton
 - o Définition d'une factorielle, d'un coefficient binomial.
 - o Propriétés des factorielles et des coefficients binomiaux. Valeurs particulières.
 - o Formule de Pascal. Triangle de pascal.
 - o Formule du binôme de Newton.
- Application à quelques suites particulières : expression explicite et sommes des n+1 premiers termes d'une suite arithmétique, géométrique ou arithmético-géométrique.

III. Systèmes linéaires

- Méthode de résolution d'un système linéaire de 2 équations à 2 inconnues par OPERATIONS les lignes.
- Opération élémentaire, système échelonné.
- Méthode de résolution d'un système linéaire de 2 équations à 3 inconnues et d'un système linéaire de 3 équations à 3 inconnues

CHAPITRE 2 : Inégalités et premières fonctions réelles.

I Relation d'ordre dans ℝ.

- Règles de calcul sur les inégalités dans $\mathbb R$. Extension aux Σ et Π
- Somme nulle de réels positifs.
- Règles de calcul dans $\overline{\mathbb{R}}$. Formes indéterminées.

II Fonctions polynomiales réelles.

- Fonction polynomiale de degré 2.
 - o Factorisation dans \mathbb{R} , racine(s) réelle(s) et signe. Allure de la courbe.
 - o Somme et produit des racines réelles.
 - O Résolution d'un système NON linéaire de la forme $\begin{cases} x + y = \alpha \\ xy = \beta \end{cases}$
 - Méthodes de factorisation
- Fonction polynomiale de degré *n*
 - O Définition (forme développée), coefficients, degré, racines
 - o Théorème de division euclidienne
 - Théorème de factorisation connaissant une racine.

III Valeur absolue

- Définition de la valeur absolue d'un réel .
 - Tracé de la fonction valeur absolue.
 - o Règles de calcul sur les valeurs absolues.
 - Inégalités triangulaires

IV Racine carrée et racine nième.

- Définition de la racine carrée d'un réel positif.
 - o Règles de calcul sur les racines carrées.
 - o Inégalités classiques : $\sqrt{a+b} \le \sqrt{a} + \sqrt{b}$ et $\sqrt{ab} \le \frac{a+b}{2}$.
 - O Croissance, dérivabilité et tracé de la fonction racine carrée.
 - O Quantité conjuguée d'une expression de la forme $\sqrt{a} \sqrt{b}$ (ou $A \sqrt{b}$).
- Définition de la racine *n*ième d'un réel positif. Extension à la racine *n*ième d'un réel négatif lorsque *n* est impair.

V Partie entière

- Définition de la partie entière d'un réel.
- Caractérisation par $p = [X] \Leftrightarrow \begin{cases} p \in \mathbb{Z} \\ p \le X < p+1 \end{cases}$
- Croissance et tracé de la fonction partie entière.
- Règles de calcul :
 - \circ Si $n \in \mathbb{Z}$ alors |n| = n
 - Si $n \in \mathbb{Z}$ alors pour tout réel X, $(n \le X \implies x \le [X])$ et $(n > X \implies x \ge [X] + 1)$
 - $Si \ n \in \mathbb{Z} \ alors \ pour \ tout \ r\'eel \ X, [X + n] = [X] + n.$

Tous les énoncés des définitions, propriétés et théorèmes doivent être connus. Les démonstrations des résultats suivants sont aussi à connaître :

- 1) Enoncer et démontrer les formules donnant $\sum_{k=0}^{n} k$ et $\sum_{k=0}^{n} k^2$.
- 2) Enoncer et démontrer la formule de factorisation de $1-x^n$ par (1-x) et celle des sommes géométriques $\sum_{k=0}^n x^k et (\sum_{k=p}^n x^k)$.
- 3) Enoncer et démontrer la formule de Pascal.
- 4) Enoncer et démontrer le théorème de résolution de $\begin{cases} x+y=\alpha\\ xy=\beta \end{cases}$
- 5) Enoncer et démontrer les deux inégalités triangulaires.
- 6) Enoncer et démontrer que $Si \ n \in \mathbb{Z} \ et \ X \in \mathbb{R}, \ alors \ [X+n] = [X] + n$

Rappeler soigneusement le résultat avant de le démontrer