Programme de colle semaine 10

Chapitre 8 Calcul intégral et recherche de primitive

Cf programme précédent.

Chapitre 9 Equations différentielles linéaires

I Généralités

- Définition générale d'une équation différentielle linéaire d'ordre n (\mathscr{Aln}), de l'équation homogène associée, d'une solution sur un intervalle J sur lequel les fonctions coefficients et le second membre sont continues, d'une courbe intégrale.
- Propriétés :
 - \checkmark solution d'une $\mathcal{A}n$ homogène : solution nulle et combinaison linéaire de deux solutions.
 - ✓ Principe de superposition
 - ✓ Passage en complexe
 - ✓ Classe C^n d'une solution d'une ell sur un intervalle $I \subset J$ sur lequel le coefficient de $y^{(n)}$ ne s'annule pas
- Théorème fondamental de résolution d'une $\mathcal{Aln}(E)$: si (E) admet une solution particulière alors les solutions de (E) sont toutes les fonctions sommes de cette solution particulière et d'une solution de (EH).

II Résolution d'une edl 1 de la forme (E): y'(x) + a(x)y(x) = d(x) tq a et d fonctions continues sur un intervalle I

- Théorème de résolution de (*EdlH*₁)
- Résolution de (EH) lorsque l'on connait une solution non nulle de (EH).
- Recherche d'une solution particulière de (E) :
 - ✓ Solution évidente
 - ✓ Solution de la forme de d ou de a.
 - Méthode de variation de la constante : méthode qui permet toujours de trouver une SP de (E) sur I et même toutes les solutions de (E) sur I.
- Problème de Cauchy .

III Résolution d'une edl 2 de la forme (E): ay''(x) + by'(x) + cy(x) = d(x) tq $a, b \ et \ c$ constantes tq $a \ne 0 \ et \ d$ fonctions continues sur un intervalle I

- Théorème de résolution de $(EdlH_2)$. Solutions complexes et solutions réelles.
- Recherche d'une solution particulière de (E) dans les cas suivants :
 - \checkmark $d(x) = P(x)e^{Mx}$ où P polynomiale et M constante (réelles ou complexes).
 - $\checkmark d(x) = P(x)\cos(qx)e^{mx}$ où P polynomiale à coefficients réels et q et m constantes réelles.

Questions de cours : CONNAITRE TOUS LES ENONCES DES DEFINTIONS, PROPRIETES ET THEOREMES DU COURS. SAVOIR ENONCER et DEMONTRER :

- Théorème fondamental du calcul intégral TFCI (lien entre primitive et intégrale)
- Théorème d'intégration par parties.
- Théorème de changement de variables.
- Théorème fondamental de résolution d'une ell n (E): Soit J un intervalle sur lequel les fonctions coefficients et le second membre sont continues. Si f_0 est une solution particulière de (E) sur J alors les solutions de (E) sont toutes les fonctions de la forme $f_0 + \varphi$ où φ solution de (EH) sur J.
- Théorème de résolution de (EH): y'(x) + a(x)y(x) = 0 sur un intervalle I sur lequel a est continue.