Sup PCSI 2023-2024 Mathématiques Chapitre 10

Suites réelles et suites complexes

L'axe réel est orienté et gradué, la plan complexe est le plan muni d'un repère orthonormé direct.

Des définitions de base I.

- Une suite réelle (resp. complexe) u est une relation qui associe un réel (resp. complexe) u_n à chaque entier naturel $n \ge n_0$ où $n_0 \in \mathbb{N}$ fixé. C'est donc une application de $A = \{n_0, n_0 + 1, n_0 + 2, \dots\}$ dans \mathbb{R} (resp. \mathbb{C}). Comme A est totalement discret, une suite ne peut pas être continue ou dérivable, n'a pas de limite en un réel mais pourra avoir une limite en +∞. u est encore notée $(u_n)_{n\geq n_0}$. Parfois il est assez visuel de la noter $u=(u_0,u_1,u_2,\ldots\ldots)$. On note $\mathbb{R}^{\mathbb{N}}$ (resp. $\mathbb{C}^{\mathbb{N}}$) l'ensemble des suites réelles (resp. complexes)
- Une suite u est bien définie à partir de n_0 lorsque $\forall n \geq n_0, u_n$ existe.
- Une suite réelle est représentée sur l'axe réel par le « nuage » rectiligne formé des points d'abscisse u_n tels que $n \ge n_0$.
- Une suite complexe est représentée dans le plan complexe par les points de coordonnées $(Re(u_n), Im(u_n))$ tels que $n \ge n_0$.
- **Deux suites u et v sont égales lorsque : u et v sont définies à partir du même rang n_0 et $\forall n \geq n_0, u_n = v_n$.
- **A partir des suites u et v, on définit les suites : $\alpha u = (\alpha u_n)_{n \ge n_0}$ où α constante, $u + v = (u_n + v_n)_{n \ge n_0}$, et $uv = (u_n v_n)_{n \ge n_0}$
- **La suite u complexe ou réelle est bornée lorsqu'il existe M réel $|\forall n \geq n_0, |u_n| \leq M$
- La suite réelle u est majorée lorsque : $\exists m \in \mathbb{R}/\forall n \geq n_0, u_n \leq m$. On dit que m est un majorant de u. m ne dépend pas de n.
- La suite réelle u est minorée lorsque $\exists m' \in \mathbb{R}/\forall n \geq n_0, u_n \geq m'$. On dit que m' est un minorant de u. m' ne dépend pas de n.
- La suite réelle est croissante lorsque : $\forall n \geq n_0, u_n \leq u_{n+1}$.
- La suite réelle u est décroissante lorsque : $\forall n \geq n_0, u_n \geq u_{n+1}$.

Indépendant de *n*

- La suite réelle u est strictement croissante lorsque : $\forall n \geq n_0, u_n < u_{n+1}$.
- La suite réelle u est strictement décroissante lorsque : $\forall n \geq n_0, u_n > u_{n+1}$.
- **La suite réelle u est constante lorsque $\forall n \geq n_0, u_n = u_{n+1}$ ie. lorsque $\forall n \geq n_0, u_n = u_{n_0}$.
- **u vérifie une propriété P à partir d'un certain rang lorsqu'il existe $n_1 \in \mathbb{N}$ tq $\forall n \geq n_1, u_n$ vérifie P.
- **La suite réelle u est stationnaire lorsque u est constante à partir d'un certain rang.

```
Exemple: Montrer que la suite u définie par : : u_0 = 1 et \forall n \in \mathbb{N}, u_{n+1} = \frac{n}{2n+2}u_n + \frac{3n+6}{2n+2} est stationnaire.
```

 $u_3=u_2=u_1=3$. Conjecture $\forall n\in\mathbb{N}^*, u_n=3$. Prouvons cette conjecture par récurrence sur n.

Propage : Soit $n \in \mathbb{N}^*$. Je suppose que $u_n = 3$. Alors $u_{n+1} = \frac{n}{2n+2}u_n + \frac{3n+6}{2n+2} = \frac{n}{2n+2}3 + \frac{3n+6}{2n+2} = \frac{6n+6}{2n+2} = 3$ OK!

<u>CCL</u>: le théorème de récurrence assure que : $\forall n \in \mathbb{N}^*, u_n = 3$. Il en découle que $\frac{u}{u}$ est stationnaire.

Prop: Une suite réelle bornée est une suite majorée et minorée.

- ** Une suite est bornée (resp. minorée ou majorée) à partir d'un certain rang est bornée (resp. minorée ou majorée).
- **Un produit fini et une combinaison linéaire de suites bornées sont des suites bornées.

→ Démo

Les définitions des limites finies ou infinies.

```
**Def: La suite réelle (resp. complexe) (u_n) tend vers le réel (resp. complexe) L quand n \to +\infty lorsque:
```

 $\forall \varepsilon \in \mathbb{R}^{+*}, \exists n_0 \in \mathbb{N}/\forall n \in \mathbb{N}, (n \ge n_0 \Longrightarrow |u_n - L| \le \varepsilon).$

On note alors $\lim_{n\to +\infty} u_n = L$ ou encore $u_n \xrightarrow[n\to +\infty]{} L$.

Cela signifie que les réels u_n sont aussi proches que je le veux de L dès que n est suffisamment grand. Dans le cas d'une suite réelle , on peut remplacer $|u_n - L| \le \varepsilon$ par $u_n \in [L - \varepsilon, L + \varepsilon]$

```
Def: La suite réelle (u_n) tend vers +\infty quand n \to +\infty lorsque \forall A \in \mathbb{R}^{+*}, \exists n_0 \in \mathbb{N} / \forall n \in \mathbb{N}, (n \ge n_0 \Longrightarrow u_n \ge A).
On note alors \lim_{n\to +\infty}u_n=+\infty ou encore u_n\xrightarrow[n\to +\infty]{}+\infty.
```

Cela signifie que les réels u_n sont aussi grands que je le souhaite à condition de prendre n suffisamment grand . Attention, une suite qui tend vers +∞, n'est par forcément croissante.

Def :La suite réelle (u_n) tend vers $-\infty$ quand $n \to +\infty$ lorsque : $\forall B \in \mathbb{R}^{-*}$, $\exists n_0 \in \mathbb{N} / \forall n \in \mathbb{N}$, $(n \ge n_0 \Longrightarrow u_n \le B)$. On note alors $\lim_{n\to+\infty} u_n = -\infty$ ou encore $u_n \xrightarrow[n\to+\infty]{}$

- **Def: Une suite convergente est une suite ayant une limite finie.
- Une suite divergente est une suite non convergente i.e. une suite de limite infinie ou sans limite .

NB : Trois cas possibles pour une suite réelle u : u a une limite finie ou bien u a une limite infinie ou bien u n'a pas de limite. Deux cas possibles pour une suite complexe u:u a une limite finie ou bien u n'a pas de limite.

Application soit $a \in]1, +\infty[$ $et \ b \in \mathbb{C}/$ |b| < 1. Montrer grâce aux définitions que $\lim_{n \to +\infty} a^n = +\infty$ $et \lim_{n \to +\infty} b^n = 0$.

Montrons que $\forall A \in \mathbb{R}^{+*}, \exists n_0 \in \mathbb{N} / \forall n \geq n_0, a^n \geq A$. $\ln(a^n) \ge \ln(A) \Leftrightarrow n\ln(a) \ge \ln(A) \quad \underset{cara>1}{\Longleftrightarrow} \quad n \ge \frac{\ln(A)}{\ln(a)}$ Soit $A \in \mathbb{R}^{+*}$. Soit n un entier naturel. $a^n \ge A$ $car \ a^n > 0 \ et \ A > 0$ et ln strictement croissante Posons $n_0 = \left|\frac{\ln(A)}{\ln(a)}\right| + 1$. Alors $\forall n \geq n_0, n \geq \frac{\ln(A)}{\ln(a)} \ donc \ a^n \geq A$. J'en conclus que $\lim_{n \to +\infty} a^n = +\infty$. Montrons que $\forall \varepsilon \in \mathbb{R}^{+*}, \exists n_0 \in \mathbb{N} / \forall n \geq n_0, |b^n| \leq \varepsilon$. $\underset{car|b|<1}{\Longleftrightarrow} \quad n \ge \frac{\ln(\varepsilon)}{\ln(|b|)}$ Soit $\varepsilon \in \mathbb{R}^{+*}$. Soit $n \in \mathbb{N}$. $|b^n| \le \varepsilon \Leftrightarrow |b|^n \le \varepsilon$ $ln(|b|^n) \le ln(\varepsilon) \Leftrightarrow nln(|b|) \le ln(\varepsilon)$ $et \ln strictement \, croissante$ Posons $n_0 = \left\lfloor \frac{\ln(\varepsilon)}{\ln(|b|)} \right\rfloor + 1$. Alors $\forall n \geq n_0, n \geq \frac{\ln(\varepsilon)}{\ln(|b|)}$ donc $|b^n| \leq \varepsilon$. J'en conclus que $\lim_{n \to +\infty} b^n = 0$.

Exemple: Montrons que: une suite de nombres entiers est convergente sietssi elle est stationnaire

évident

 \implies Soit u une suite de nombres entiers convergente de limite finie L. Montrons que u est stationnaire.

Posons $\varepsilon = \frac{1}{4} \in \mathbb{R}^{+*}$. Il existe un entier N tel que $\forall n \geq N, |u_n - L| \leq \frac{1}{4}$.

 $\forall n \geq N, |u_{n+1} - u_n| = |(u_{n+1} - L) - (u_n - L)| \leq |(u_{n+1} - L)| + |(u_n - L)| \leq \frac{1}{2}$. Comme u_n et u_{n+1} sont entiers et leur distance est strictement inférieure à 1 dès que $n \ge N$, nécessairement $\forall n \ge N$, $u_n = u_{n+1}$. Ainsi, la suite (u_n) est staionnaire, constante à partir du rang N. J'en déduis que $\forall n \geq N, u_n = u_N = L.$

Premières propriétés fondamentales

- **CARACTERE BORNÉ:**
- **Toute suite convergente est bornée.
- Soit $u = (u_n)$ une suite réelle qui tend vers un réel L. Soit $a \in \mathbb{R}$. si a < L < b alors $\exists n_1 \in \mathbb{R} / \forall n \ge n_1, a \le u_n \le b$.
- Toute suite réelle de limite strictement positive (resp. négative) est strictement positive (resp. négative) à partir d'un certain rang.
- Toute suite qui tend vers $+\infty$ (resp. $-\infty$) n'est pas majorée (resp. minorée), mais est minorée (resp. majorée).
- **UNICITE DE LA LIMITE : La limite d'une suite, si elle existe, est unique.
- *sietssi* il existe une suite réelle (ε_n) telle que $\lim_{n \to \infty} \varepsilon_n = 0$ et $\forall n, |u_n - L| \le \varepsilon_n$.
- LIMITE PAR ENCADREMENT (Théorème de gendarmes) Toute suite réelle encadrée par deux suites de même limite finie tend aussi vers cette limite. Toute suite réelle supérieure à une suite de limite $+\infty$ tend vers $+\infty$. Toute suite réelle inférieure à une suite de limite $-\infty$ tend vers $-\infty$.

⇔Démo

Exemples: 1.Montrer qu'il existe un entier naturel N tel que : $\forall n \ge N, \left(1 + \frac{1}{n}\right)^n \in \left[\frac{5}{2}, 3\right]$

 $\text{Posons } u_n = \left(1 + \frac{1}{n}\right)^n \text{.Calculons } \lim_{n \to +\infty} u_n : u_n = \left(1 + \frac{1}{n}\right)^n \overset{car}{=} e^{\frac{ln\left(1 + \frac{1}{n}\right)}{\frac{1}{n}}} \text{.Or, } \lim_{t \to 0} \frac{\ln\left(1 + t\right)}{t} = 1 \text{donc par composition, } \lim_{n \to +\infty} \frac{\ln\left(1 + \frac{1}{n}\right)}{\frac{1}{n}} = 1.$

Ainsi, $\lim_{n \to +\infty} u_n = e \in \left[\frac{5}{2}, 3\right]$. Alors, comme $e \in \left[\frac{5}{2}, 3\right]$, il existe un entier naturel N tel que : $\forall n \geq N, u_n \in \left[\frac{5}{2}, 3\right]$.

2. $\forall n \in \mathbb{N}^*, u_n = \sum_{k=n^2}^{n^2+n} \frac{1}{\sqrt{n^2+k}}$. Montrer que u converge et déterminer sa limite.

 $\text{Soit } n \in \mathbb{N}^*. \ \forall k \in [\![n^2, n^2 + n]\!], \frac{1}{\sqrt{n^2 + n^2 + n}} \leq \frac{1}{\sqrt{n^2 + n^2}} \leq \frac{1}{\sqrt{n^2 + n^2}}. \ \text{Donc, } \sum_{k=n^2}^{n^2 + n} \frac{1}{\sqrt{n^2 + n^2 + n}} \leq \sum_{k=n^2}^{n^2 + n} \frac{1}{\sqrt{n^2 + k}} \leq \sum_{k=n^2}^{n^2 + n} \frac{1}{\sqrt{n^2 + n^2}}.$

Donc, $\frac{n^2 + n - n^2 + 1}{\sqrt{n^2 + n^2 + n}} \le \sum_{k=n^2}^{n^2 + n} \frac{1}{\sqrt{n^2 + k}} \le \frac{n^2 + n - n^2 + 1}{\sqrt{n^2 + n^2}} \quad puis \quad \frac{n+1}{\sqrt{2n^2 + n}} \le u_n \le \frac{n+1}{\sqrt{2n^2}}.$ Or, $\frac{n+1}{\sqrt{2n^2 + n}} \sim \frac{n}{\sqrt{2n^2}} = \frac{1}{\sqrt{2}} \quad et \quad \frac{n+1}{\sqrt{2n^2}} \sim +\infty \quad \frac{n}{\sqrt{2n^2}} = \frac{1}{\sqrt{2}}.$ Donc les deux suites qui encadrent (u_n) , ont la même limite $\frac{1}{\sqrt{2}}$. J'en déduis que (u_n) converge

3) Soit u et v deux suites réelles que : $\forall n, 0 \le u_n \le a$ et $0 \le v_n \le b$ et $\lim_{n \to +\infty} u_n + v_n = a + b$. Montrer, par encadrement que : $\lim_{n \to +\infty} u_n = a + b$.

 $\forall n, 0 \leq a = a - u_n = a + b - (u_n + v_n)$. Alors la suite $(a - u_n)$ étant encadrée par deux suites de limite nulle, le

théorème de limite par encadrement assure que $\lim_{n\to +\infty} a - u_n = 0$ i. e. $\lim_{n\to +\infty} u_n = a$.

Alors comme $\forall n, v_n = a + b - u_n$, $\lim_{n \to +\infty} v_n = a + b - a = \frac{b}{n}$.

III. Bornes sup/inf : définition et caractérisation séquentielle

Rappel : Définition d'un maximum et d'un minimum d'une partie. Soit A une partie de \mathbb{R} . m est appelé le plus petit élément ou **minimum** de A lorsque m minore A et m est élément de A . m' est appelé le **plus grand élément** ou **maximum** de A lorsque m' majore A et m' est élément de A . On note, le cas échéant, $m = \min(A)$ et $m' = \max(A)$.

Si A est un ensemble de réels minoré (resp. majoré) alors A n'a pas forcément de minimum (resp. de maximum), ex : $A = (1, +\infty)$ [est minoré par -3 mais aucun minorant de A n'appartient à A. Donc A n'a pas de minimum. Par contre, on constate que parmi tous les minorants de A, l'un d'entre eux est plus près de A que les autres : il s'agit de 1. 1 est le plus grand minorant de A . 1 est appelé la borne inférieure de A .

Théorème(admis)-Définition:

- Si A est un sous-ensemble de $\mathbb R$, non vide et majorée alors l'ensemble des majorants de A admet un plus petit élément appelé la borne supérieure de A et noté sup (A).
- Si A est un sous-ensemble de \mathbb{R} , non vide et minorée alors l'ensemble des minorants de A admet un plus grand élément appelé 2) la borne inférieure de A et noté inf (A).

Par définition, si A est une partie de \mathbb{R} non vide et majorée alors $\sup(A)$ est le plus petit réel qui majore A.

Par convention: Si A est une partie de \mathbb{R} non vide et non majorée, on dira que sup $(A) = +\infty$.

Par définition. si A est une partie de \mathbb{R} non vide et minorée alors $\inf(A)$ est le plus grand réel qui minore A.

Par convention: Si A est une partie de \mathbb{R} non vide et non minorée, on dira que $\inf(A) = -\infty$.

Prop : 1. Si A a un plus grand élément alors A a une borne supérieure finie et $\sup(A) = \max(A)$.

- **2.** Si A admet une borne supérieure finie et $\sup(A) \notin A$ alors A n' admet pas de maximum.
- **3.** Si A a un plus petit élément alors A a une borne inférieure finie et $\inf(A) = \min(A)$.
- **4.** Si A admet une borne inférieure finie et inf $(A) \notin A$ alors A n' admet pas de minimum.

Théorème de caractérisation de la borne supérieure avec des epsilon :

Soit M un réel et A une partie non vide et majorée de \mathbb{R} . M=supA si et ssi $\begin{cases} \forall \varepsilon \in \mathbb{R}^{+*} , \exists a_{\varepsilon} \in A \ / \ M - \varepsilon < a_{\varepsilon}. \\ \forall a \in A, a \geq m \end{cases}$ Soit m un réel et A une partie non vide et minorée de \mathbb{R} . m=infA si et ssi $\forall \varepsilon \in \mathbb{R}^{+*}$, $\exists a_{\varepsilon} \in A / m + \varepsilon > a_{\varepsilon}$

→ Démo

Théorème : Soit A une partie non vide de \mathbb{R} .

Soit $M \in \mathbb{R} \cup \{+\infty\}$. $M = \sup(A)$ sietssi $\{$ il existe une suite d'éléments de A de limite M. Soit $m \in \mathbb{R} \cup \{-\infty\}$. $m = \inf(A)$ sietssi $\{$ il existe une suite d'éléments de A de limite m

→ Démo

Exercices:

1) Soit $A = \left\{ 1 - \frac{1}{n} / n \in \mathbb{N}^* \right\}$.

 $\forall n \in \mathbb{N}^*, 0 \le 1 - \frac{1}{n} < 1$. Donc A est bornée, 0 est un minorant de A et 1 est un majorant de A. De plus, $0 = 1 - \frac{1}{n} \in A$. Donc $0 = \min(A)$. Enfin, la suite $\left(1-\frac{1}{n}\right)_{n\in\mathbb{N}^*}$ est une suite d'éléments de A qui converge vers 1. J'en déduis que $1=\sup(A)$. Comme $1\notin A$, A n'a pas de maximum.

Déterminons les bornes sup et inf de $A = \left\{ (-1)^n + \frac{1}{n+n}/(p,n) \in \mathbb{N}^{*2} \right\}$

A est une partie non vide de \mathbb{R} . Et $\forall n \in \mathbb{N}^*, \forall p \in \mathbb{N}^*, -1 \le (-1)^n \le 1$ et $0 < \frac{1}{p+n} \le \frac{1}{2}$ donc, $-1 < (-1)^n + \frac{1}{p+n} \le \frac{3}{2}$. Donc A est bornée. Ainsi, Aadmet une bornée sup. et une borne inf. finies.

. (-1) minore A . Posons $v_n=(-1)^{2n+1}+\frac{1}{n+(2n+1)}$. Alors (v_n) est une suite d'éléments de A telle que : $\lim_{n\to+\infty}v_n=-1$. Donc, le théorème de caractérisation séquentielle de la borne sup permet d'affirmer que $\inf(A) = -1$.

Si n impair alors $(-1)^n + \frac{1}{p+n} = -1 + \frac{1}{p+n} < 0$. Si n pair alors $n \ge 2$ donc $\forall p \in \mathbb{N}^*, 1 + \frac{1}{3} \ge 1 + \frac{1}{p+2} \ge (-1)^n + \frac{1}{p+n} > 0$. Donc, $\frac{4}{3}$ majore A et $\frac{4}{3} = -1$ $(-1)^2 + \frac{1}{1+2} \in A$. Ainsi, $\sup(A) = \max(A) = \frac{4}{3}$.

3) Soit A une partie de $\mathbb R$ non vide et bornée et λ un réel non nul. On définit $\lambda A = \{\lambda a/a \in A\}$. Justifier que A et λA admettent des bornes supérieures et inférieures finies et trouver une relation entre leurs bornes sup et inf.

A une partie de \mathbb{R} non vide et bornée donc $\sup(A)$ et $\inf(A)$ existent et sont finis et $\forall a \in A$, $\inf(A) \le a \le \sup(A)$.

Alors si $\lambda > 0$, $\forall \alpha \in A$, $\lambda \inf(A) \le \lambda \alpha \le \lambda \sup(A)$; et si $\lambda < 0$, $\forall \alpha \in A$, $\lambda \inf(A) \ge \lambda \alpha \ge \lambda \sup(A)$. Donc, λA est bornée. De plus, A étant non vide, A contient au moins un élément a_0 , alors λa_0 est un élément de λA qui est donc non vide. J'en déduis que $\sup(\lambda A)$ et $\inf(\lambda A)$ existent et sont finies.

suites d'éléments de λA qui tendent vers $\lambda \sup(A)$ et $\lambda \inf(A)$. Alors, la caractérisation séquentielle des bornes permet de conclure que $\frac{\lambda}{\lambda} \inf(A)$ = $\sup(\lambda A)$ et $\lambda \sup(A) = \inf(\lambda A)$.

De même on montre le cas $\lambda < 0$.

4) Soit $A = \left\{ \frac{x+2y}{x+y+1} / (x,y) \in [0,1]^2 \right\}$. Déterminer $\sup(A)$ et $\inf(A)$.

Tout d'abord, A est non vide car $0 = \frac{0+2\times 0}{0+0+1} \in A$.

De plus, $\forall (x,y) \in [0,1]^{-2}, 0 < 1 \le x + y + 1 \le 3$ donc $\frac{1}{3} \le \frac{1}{x+y+1} \le 1$ et $0 \le x + 2y \le 3$ et par suite, $0 \le \frac{x+2y}{x+y+1} \le 3$. J'en déduis que A est

J'en conclus que Sup(A) et inf (A) existent et sont finis. De plus, 0 minore A et $0 \in A$. Donc $0 = \min(A) = \inf(A)$. Soit $x \in [0,1]$. Soit f_x : $(y \mapsto \frac{x+2y}{x+y+1})$. f_x est dérivable sur [0,1] et $\forall y \in [0,1], f_x'(y) = \frac{2(x+y+1)-(x+2y)}{(x+y+1)^2} = \frac{x+2}{(x+y+1)^2} > 0$. Donc f_x est strictement croissante sur [0,1]. Alors $f_x(1) = \max_{[0,1]} f_x$; autrement dit, $\forall x \in [0,1]$, $f_x(1) = \frac{x+2}{x+2} = 1 = \max_{[0,1]} f_x = \max\left\{\frac{x+2y}{x+y+1}/y \in [0,1]\right\}$. J'en déduis que 1 mjore A et $1 \in A$. J'en conclus que $1 = \max A = \max \left\{ \frac{x+2y}{x+y+1} / x \in [0,1] \text{ et } y \in [0,1] \right\}$.

IV. Autres propriétés essentielles.

**OPERATION SUR LES LIMITES:

- Le produit d'une suite de limite nulle et d'une suite bornée est une suite de limite nulle.
- Soit u et v deux suites telles que $\lim_{n \to +\infty} u_n = L$ et $\lim_{n \to +\infty} v_n = L'$. Alors,
- $\lim_{n\to+\infty}|u_n|=|L|.$
- pour tout scalaire λ non nul , $\lim_{n\to +\infty} \lambda u_n = \lambda L$
- si L + L' n'est pas une FI alors $\lim_{n \to \infty} u_n + v_n = L + L'$.
- si LL' n'est pas une FI alors $\lim_{n\to +\infty} u_n v_n = LL'$.
- si L/L' n'est pas une FI et v_n ne s'annule pas à partir d'un certain rang alors $\lim_{n \to +\infty} u_n/v_n = L/L'$.
- si L'=0 et $v_n>0$ (resp<0) à partir d'un certain rang $(v_n\ r\'{e}el)$ alors $\lim_{n\to +\infty} 1/v_n = +\infty \ (resp.-\infty)$
- **LIMITE D'UNE SUITE MONOTONE**: Toute suite réelle monotone a toujours une limite. Une suite réelle u croissante a une limite qui est $sup\{u_n/n \in \mathbb{N}\}$, cette limite est finie si u est majorée et vaut $+\infty$ sinon. Une suite u décroissante a toujours une limite $inf\{u_n/n \in \mathbb{N}\}$ qui est finie si u minorée et vaut $-\infty$ sinon.
- **COMPOSITION**: Soit f est une fonction de \mathbb{R} dans \mathbb{R} telle que à partir d'un certain rang, $f(u_n)$ existe.
- Si $\lim_{t \to L} f(t) = m$ et $\lim_{n \to +\infty} u_n = L$ et alors $\lim_{n \to +\infty} f(u_n) = m$.
- Si $f(t) \sim_{t \to L} g(t)$ et $\lim_{n \to +\infty} u_n = L$ et alors $f(u_n) \sim_{n \to +\infty} g(u_n)$.
- Si $f(t) = \sum_{k=0}^{p} a_k t^k + o_0(t^p)$ et $\lim_{n \to +\infty} u_n = 0$ et alors $f(u_n) = \sum_{k=0}^{n} a_k (u_n)^k + (u_n)^p \underbrace{o_{+\infty}(1)}_{n \to +\infty}$.

NB:

- $\lim_{n \to +\infty} u_n = L \Longrightarrow \lim_{n \to +\infty} |u_n| = |L|$. La réciproque est fausse pour $L \neq 0$. (pour L = 0, on retrouve $\lim_{n \to +\infty} u_n = L \Leftrightarrow \lim_{n \to +\infty} |u_n L| = 0$)
- $\forall n, u_n^{v_n} = e^{v_n \ln(u_n)}$. Ces suites donnent les $FI: 1^{+\infty}, 0^0, +\infty^0$... pour lever ces indéterminées, il faut étudier $h_n = v_n \ln(u_n)$.

NB : dès que vous savez que votre suite u une limite, donnez un nom à cette limite. Pour trouver sa valeur, il suffit souvent de passer à la limite dans la relation (implicite ou récurrente) vérifiée par u.

Exemples:

1) Soient u et v deux suites réelles convergentes. On note $M_n = \max(u_n, v_n)$ et $m_n = \min(u_n, v_n)$. Justifier que : (M_n) et (m_n) sont convergentes et exprimer leur limite en fonction de celles de u et de v.

Notons L le limite de u et L' celle de v.

 $\forall n, \max(u_n, v_n) = \frac{u_n + v_n + |u_n - v_n|}{2} \ \text{et} \ \min(u_n, v_n) = \frac{u_n + v_n - |u_n - v_n|}{2}. \ \text{D'après le théorème d'opérations sur les limites, comme} \ \frac{L + L' + |L - L'|}{2} \ \text{et} \ \frac{L + L' - |L - L'|}{2} \ \text{et} \ \frac{L - L' - |L - L'|}{2} \ \text{et} \ \frac{L - L' - |L - L'|}{2} \ \text{et} \ \frac{L - L' - |L - L'|}{2} \ \text{et} \ \frac{L - L' - |L - L'|}{2} \ \text{et} \ \frac{L - L' - |L - L'|}{2} \ \text{et} \ \frac{L - L' - |L - L'|}{2} \ \text{et} \ \frac{L - L' - |L - L'|}{2} \ \text{et} \ \frac{L - L$ ne sont pas des formes indéterminées, (M_n) et (m_n) sont convergentes et $\lim_{n \to +\infty} M_n = \frac{L + L' + |L - L'|}{2}$ et $\lim_{n \to +\infty} m_n = \frac{L + L' - |L - L'|}{2}$.

2)Soit u une suite définie par : $u_0=3$, $u_1=1$ et $\forall n\in\mathbb{N}$, $u_{n+2}=nu_{n+1}+2u_n$. Montrer que u est monotone à partir d'un certain rang et qu'elle diverge.

On montre par récurrence double que $\forall n \in \mathbb{N}, u_n > 0: u_0 > 0, \ u_1 > 0 \ et \ \forall n, (u_{n+1} > 0, u_n > 0 \Longrightarrow u_{n+2} = nu_{n+1} + 2u_n > 0).$ Alors, $\forall n \in \mathbb{N}, u_n > 0 \Longrightarrow u_{n+2} = nu_{n+1} + 2u_n > 0$. \mathbb{N}^* , $u_{n+2} - u_{n+1} = \underbrace{(n-1)}_{\geq 0} \underbrace{u_{n+1}}_{> 0} + \underbrace{2u_n}_{> 0} > 0$. Donc, la suite u est strictement croissante à partir du 1. J'en déduis que la suite u admet une limite notée

 $L \text{ telle que } L \in \mathbb{R}^{+*} \cup \{+\infty\}. \text{ Alors } L = \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} u_{n+1} = \lim_{n \to +\infty} u_{n+2}.$ $\text{Imaginons un instant } L \in \mathbb{R}^{+*}. \ \forall n \in \mathbb{N}, \frac{1}{n} u_{n+2} = u_{n+1} + \frac{2}{n} u_n. \text{ Donc } 0 = \lim_{n \to +\infty} \frac{1}{n} u_{n+2} = \lim_{n \to +\infty} u_{n+1} + \frac{2}{n} u_n = L + 0. \text{ Donc } L = 0 \text{ ce qui est } 1 \text{ description}$

Théorème de Césaro (SAVOIR REFAIRE et connaître le résultat): Soit u une suite réelle, L un réel et v la suite définie par $v_n = \frac{1}{n} \sum_{k=0}^{n-1} u_k$.

- ** Montrer que : $\lim_{n \to +\infty} u_n = 0 \Rightarrow \lim_{n \to +\infty} v_n = 0$. En déduire que : $\lim_{n \to +\infty} u_n = L \Rightarrow \lim_{n \to +\infty} v_n = L$.
- Montrer que : $\lim_{n\to+\infty} u_n = +\infty \Longrightarrow \lim_{n\to+\infty} v_n = +\infty$.

a. •Je suppose que $\lim_{n \to +\infty} u_n = 0$. Soit $\varepsilon \in \mathbb{R}^{+*}$. $\forall n, |v_n| = \left|\frac{1}{n} \left(\sum_{k=0}^{n-1} u_k\right)\right| = \sum_{k=0}^{n-1} |u_k|$. (**)

 $\lim_{n \to +\infty} u_n = 0, \ \exists n_0 \in \mathbb{N} \ \text{tel que}: \forall n \geq n_0, \ |u_n| \leq \frac{\epsilon}{2}. \ \text{Donc} \ \forall n \geq n_0 + 1, \\ \sum_{k=n_0}^{n-1} |u_k| \leq \sum_{k=n_0}^{n-1} \frac{\epsilon}{2} = (n-n_0) \frac{\epsilon}{2} \leq n \frac{\epsilon}{2}.$

 $\text{Alors, Donc } \forall n \geq n_0+1 > 0, \ \ \sum_{k=0}^{n-1} |u_k| = \sum_{k=0}^{n_0-1} |u_k| + \sum_{k=n_0}^{n_0-1} |u_k| \leq \sum_{k=0}^{n_0-1} |u_k| + n\frac{\varepsilon}{2}. \ \text{Et, } \frac{1}{n} \sum_{k=0}^{n-1} |u_k| \leq \left(\frac{1}{n} \underbrace{\sum_{k=0}^{n_0-1} |u_k|}_{n \text{ otherwise}}\right) + \frac{\varepsilon}{2}.$

 $\alpha = \sum_{k=0}^{n_0-1} |u_k|$ est indépendant de n, est donc une constante. Par conséquent, $\lim_{n \to +\infty} \frac{1}{n} \alpha = 0$. Donc, $\exists n_1 \in \mathbb{N}$ tel que : $\forall n \geq n_1, \left| \frac{1}{n} \alpha \right| = \frac{1}{n} \alpha \leq \frac{\epsilon}{2}$.

Posons $N = \max(n_0, n_1)$. Alors $\forall n \geq N, \frac{1}{n} \sum_{k=0}^{n-1} |u_k| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. Donc d'après l'inégalité (**), je peux affirmer que $\forall n \geq N, \ |v_n| \leq \varepsilon$ J'en conclus que la suite (v_n) converge vers 0.

••Je suppose ici que $\lim_{n\to\infty}u_n=L$. $\in\mathbb{R}$ (ou \mathbb{C}). Posons $a_n=u_n-L$ et $b_n=v_n-L$.

Alors d'une part, $\lim_{n\to +\infty} a_n = 0$. D'autre part, $b_n = v_n - L = \frac{1}{n} \left(\sum_{k=0}^{n-1} u_k \right) - L = \frac{1}{n} \left(\sum_{k=0}^{n-1} u_k \right) - \frac{1}{n} \sum_{k=0}^{n-1} L = \frac{1}{n} \left(\sum_{k=0}^{n-1} (u_k - L) \right) = \frac{1}{n} \left(\sum_{k=0}^{n-1} a_k \right)$.

Donc, d'après ce qui précède, je peux affirmer que $\lim_{n \to +\infty} b_n = 0$. Cela signifie que $\lim_{n \to +\infty} v_n = L$

b) Je suppose ici que $\lim_{n \to +\infty} u_n = +\infty$. Montrons que $\lim_{n \to +\infty} v_n = +\infty$.

 $\text{Soit } A \in \mathbb{R}^{+*}. \text{ Comme} \lim_{n \to +\infty} u_n = +\infty, \exists n_0 \in \mathbb{N} \text{ tel que}: \forall n \geq n_0, u_n \geq 2A \text{ . Donc } \forall n \geq n_0 + 1, \sum_{k=n_0}^{n-1} u_n \geq \sum_{k=n_0}^{n-1} 2A = (n-n_0)2A.$

$$\operatorname{Et} \frac{1}{n} \sum_{k=n_0}^{n-1} u_n \geq \frac{(n-n_0)}{n} 2A. \text{ Alors, } v_n = \frac{1}{n} \sum_{k=0}^{n-1} u_k = \frac{1}{n} \sum_{k=0}^{n_0-1} u_k + \frac{1}{n} \sum_{k=n_0}^{n-1} u_k \geq \frac{1}{n} \underbrace{\sum_{k=0}^{n_0-1} u_k}_{=\alpha} + \frac{1}{n} (n-n_0) 2A.$$

 $\text{Comme} \ \frac{1}{n}(n-n_0) \sim_{+\infty} 1, \lim_{n \to +\infty} \frac{1}{n}(n-n_0) = 1 \ \text{et par cons\'equent, il existe} \ n_1 \in \mathbb{N} \ \text{tel que} : \forall n \geq n_1, \frac{1}{n}(n-n_0) \geq \frac{3}{4} \ \text{et par suite,} \ \frac{1}{n}(n-n_0) 2A \geq \frac{3}{2}A.$

De plus, $\alpha = \sum_{k=0}^{n_0-1} |u_k|$ est indépendant de n, est donc une constante. Par conséquent, $\lim_{n \to +\infty} \frac{1}{n} \alpha = 0$. Donc, $\exists n_2 \in \mathbb{N} \mid \forall n \geq n_2, \left| \frac{1}{n} \alpha \right| \leq \frac{A}{2}$ donc

 $\frac{1}{n}\alpha > -\frac{A}{2}$. Posons $N = \max(n_0, n_1, n_2)$. Alors $\forall n \geq N, v_n \geq -\frac{A}{2} + \frac{3}{2}A = A$. J'en conclus que la suite (v_n) diverge et tend vers $+\infty$.

PASSAGE A LA LIMITE DANS UNE INEGALITE : Si deux suites (réelles) u et v ont chacune une limite notée respectivement L et L' et qu' à partir d'un certain rang, $u_n \le v_n$ alors $L \le L'$.

Par contraposée, Si deux suites (réelles) u et v ont chacune une limite notée respectivement L et L' telles que L > L' alors à partir d'un certain rang, $u_n > v_n$.

MISES EN GARDE:

il ne faut pas confondre cette propriété et le théorème des gendarmes. Le théorème des gendarmes permet de prouver (sous hypothèse) qu'une suite converge (et de déterminer cette limite). La passage à la limite dans une inégalité permet de comparer des limites de suites dont on connait l'existence des limites.

Exemples: Soit u une suite définie par : $u_n = \sum_{k=1}^n \frac{1}{k}$

a. Montrer que u admet une limite.

b. Montrer que $\forall n, u_{2n} - u_n \ge \frac{1}{2}$. En déduire la limite de la suite u.

 $\forall n > 0$, $u_{n+1} - u_n = \frac{1}{n+1} > 0$. La suite u est donc croissante et par suite admet une limite $L \in \mathbb{R} \cup \{+\infty\}$.

$$\forall n > 0, \ u_{2n} - u_n = \sum_{k=1}^{2n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k} = \sum_{k=n+1}^{2n} \frac{1}{k} \ge \sum_{k=n+1}^{2n} \frac{1}{2n} = \frac{n}{2n} = \frac{1}{2}.$$

Imaginons un instant que $L \in \mathbb{R}$. Comme (u_{2n}) est extraite de u, $\lim_{n \to +\infty} u_{2n} = L$ et par suite $\lim_{n \to +\infty} u_n - u_{2n}$ L-L=0. Alors en passant à

la limite dans l'inégalité $u_{2n}-u_n\geq \frac{1}{2}$, j'aboutis à l'absurdité $0\geq \frac{1}{2}$. j'en conclus que L ne peut pas être réel et ainsi, $L=+\infty$.

V. Comparaison des suites

Comparer au sens (négligeable, dominée ou équivalent) deux suites, tout comme chercher la limite d'une suite, n'a de sens que pour $n \to +\infty$. On ne précise donc pas toujours que $n \to +\infty$.

1. <u>Définitions</u>

Définition Soit u et v deux suites réelles.

- **1.** On dit que u est négligeable devant v (au voisinage de $+\infty$) lorsqu'il existe une suite \mathcal{E} telle que : $\lim_{n \to +\infty} \varepsilon_n = 0$ et à partir d'un certain rang $u_n = v_n \times \varepsilon_n$. On note alors $u_n = o_{+\infty}(v_n)$ ou $u_n = o(v_n)$ ou u = o(v) ou $u_n \ll_{+\infty} v_n$.
- **2.** On dit que u est équivalente à v (au voisinage de $+\infty$) lorsqu'il existe une suite φ telle que : $\lim_{n \to \infty} \varphi_n = 1$ et à partir d'un certain rang, $u_n = v_n \times \varphi_n$. On note alors $u_n \sim_{+\infty} v_n$ ou $u_n \sim v_n$.
- **3.** On dit que u est dominée par v (au voisinage de $+\infty$) lorsqu'il existe une suite b telle que : à partir d'un certain rang , $u_n=0$ $v_n \times b_n$ et b est bornée , c'est-à-dire lorsqu'il existe un réel M tel que $\forall n, |u_n| \leq M|v_n|$. On note $u_n = O_{+\infty}(v_n)$ ou $u_n = O(v_n)$ ou u = O(v).

Exemple:
$$u_n = ln(n^2 - n + sin(n)) = 2ln(n)\left(1 + \frac{1}{2ln(n)}ln\left(1 - \frac{1}{n} + \frac{sin(n)}{n^2}\right)\right) \sim_{+\infty} 2ln(n)$$
.

Caractérisation: <u>si</u> v <u>ne s'annule pas à partir d'un certain rang</u>, alors : 1. $u_n = o(v_n) \Leftrightarrow \lim_{n \to +\infty} \frac{u_n}{v_n} = 0$.

2. $u_n \sim v_n \iff \lim_{n \to +\infty} \frac{u_n}{v_n} = 1$. ATTENTION: $u_n \sim v_n \iff \lim_{n \to +\infty} u_n - v_n = 0$.

3. $u_n = O(v_n) \Leftrightarrow \left(\frac{u_n}{v_n}\right)$ est bornée.

 $\begin{aligned} & \text{Exemples}: 1) \, \text{Soit} \, u_n = \sum_{k=0}^n k! \, \text{. Montrer par encadrement que}: u_n \sim_{+\infty} n! \, \, . \\ & \text{Soit} \, n \in \mathbb{N} \backslash \{0,1,2,3\}, \, \frac{u_n}{n!} = \sum_{k=0}^n \frac{k!}{n!} = \sum_{k=0}^{n-2} \frac{k!}{n!} + \frac{(n-1)!}{n!} + \frac{n!}{n!} = \sum_{k=0}^{n-2} \frac{k!}{n!} + \frac{1}{n} + 1. \\ & \text{Or,} \, \forall k \in [\![0,n-2]\!], 0 \leq \frac{k!}{n!} \leq \frac{1}{n(n-1)}. \, \, \text{Donc,} \, 0 \leq \sum_{k=0}^{n-2} \frac{k!}{n!} \leq \sum_{k=0}^{n-2} \frac{1}{n(n-1)} = \frac{n-1}{n(n-1)} = \frac{1}{n}. \, \, \text{II en découle que } \lim_{n \to +\infty} \sum_{k=0}^{n-2} \frac{k!}{n!} = 0 \, \, \text{et ainsi } \lim_{n \to +\infty} \frac{u_n}{n!} = 1. \, \, \text{J'en} \end{aligned}$ conclus que $u_n \sim +\infty 1$.

2)Soit u la suite définie par $\forall n, u_n = \begin{cases} \frac{1}{n} si \ n \ pair \\ -\frac{2}{n^2} si \ n \ impair \end{cases}$. Montrons que $u_{n+1} \ et \ u_n$ ne sont pas équivalentes. Déterminer $\lim_{n \to +\infty} u_n$.

$$\text{Posons } t_n = \frac{u_{n+1}}{u_n} = \begin{cases} \frac{-2n}{(n+1)^2} \sin n \ pair \\ \frac{-n^2}{2(n+1)} \sin n \ impair \end{cases} . \text{Alors, } t_{2n} = \frac{-4n}{(2n+1)^2} \sim_{+\infty} - \frac{1}{n} \ et \ t_{2n+1} = \frac{-(2n+1)^2}{2(2n+2)} \sim_{+\infty} - n. \ \text{Donc, } \lim_{n \to +\infty} t_{2n+1} = -\infty \ et \ \lim_{n \to +\infty} t_{2n} = 0,$$

Comme (t_{2n}) et (t_{2n+1}) ont des limites différentes, la suite (t_n) n'a pas de limite. Ainsi, les suites (u_{n+1}) et (u_n) ne sont pas équivalentes.

Par contre, $\forall n, u_{2n} = \frac{1}{2n}$ et $u_{2n+1} = \frac{-2}{(2n+1)^2}$. Comme $\lim_{n \to +\infty} u_{2n+1} = \lim_{n \to +\infty} u_{2n} = 0$, $\lim_{n \to +\infty} u_n = 0$. Et par conséquent, toute suite extraite de u tend aussi vers 0 . Ainsi, $\lim_{n \to \infty} u_n = 0$.

Exemples de référence et autres écritures.

1. $u_n = o(0) \Leftrightarrow u_n = o(0) \Leftrightarrow u_n \sim 0 \Leftrightarrow \text{à partir d'uncertain rang}, u_n = 0.$ CELA N'ARRIVE QUASIMENT JAMAIS Donc vous ne devez jamais écrire à $u_n \sim 0$.

- **2.** o(1) désigne une suite de limite nulle et O(1) désigne une suite bornée.
- **3.** Si $u_n \sim v_n$ alors $v_n \sim u_n$ et on dit que u et v sont équivalentes.
- 4. $o(u_n) = u_n o(1)$.
- $v_n{\sim}u_n \Leftrightarrow v_n=u_n+o(u_n)$ Donc, $u_n+o(u_n){\sim}u_n$

2. Comparaison de suites de référence

Prop : Soit u une suite réelle, strictement positive et telle que $\lim_{n\to+\infty}\frac{u_{n+1}}{u_n}=L$

Montrer que si $L\in]0,1[$ alors $u_n=O\left(\left(rac{L+1}{2}
ight)^n
ight)\,et\lim_{n o +\infty}u_n=0.$

Montrer que si $L\in]1,+\infty[$ alors $\left(rac{L+1}{2}
ight)^n={\it O}(u_n)$ $et\lim_{n o +\infty}u_n=+\infty.$

Exercice : redémontrer la propriété précédente en remplaçant la condition $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = L \ par \ \lim_{n \to +\infty} \sqrt[n]{u_n} = L$

Théorème: Pour tout $(\alpha, \beta) \in (\mathbb{R}^{+*})^2$ et tout $\alpha \in]1, +\infty[$, $(\ln(n))^{\beta} \ll_{+\infty} (n^{\alpha})) \ll_{+\infty} n^{\alpha} \ll_{+\infty} \underbrace{a^{n}}_{=e^{\ln(a)n}} \ll_{+\infty} n! \ll_{+\infty} n^{n}$

3. Propriétés

Autre écriture d'une fonction négligeable : $o(u_n) = u_n o(1)$

Autre écriture d'un équivalent : $u_n \sim v_n \Leftrightarrow u_n = v_n + o(v_n) = v_n(1 + o(1))$

Théorème : équivalent et limite /signe

- Si $u_n \sim v_n$ alors à partir d'un certain rang, u_n et v_n ont le même signe strict.
- Si $u_n \sim v_n$ et $\lim u_n = L$ (*L finie ou inifinie*) alors $\lim v_n = L$
- Si $\lim u_n = L$ tel que L réel non nul alors $u_n \sim L$.

Théorème de comparaison et d'OPERATIONS : Remplacer , dans la version « fonction », f par u_n , g par v_n , h par w_n et a par +∞ (sauf pour la composition à droite !!! car on ne compose pas les suites).

- Soit u, v, w, A et B des suites.
- $u_n \sim v_n$ ou $u_n = o(v_n) \Longrightarrow$
- $u_n = o(v_n)$ et $v_n = o(w_n) \Rightarrow$ En particulier, $u_n = o(v_n)$ et $(v_n \sim w_n \ ou \ v_n = o(w_n)) \Rightarrow$
- $u_n = O(v_n)$ et $v_n = o(w_n) \Rightarrow$ En particulier, $(u_n \sim v_n \text{ ou } u_n = o(v_n))$ et $v_n = o(w_n) \Rightarrow$
- $u_n \sim v_n$ et $v_n \sim w_n \implies \dots$
- $u_n \sim v_n$ et $A_n \sim B_n \implies \dots$

Dans la recherche d'équivalent : Produit , quotient , puissance indépendante de n , composition à droite sont autorisés

Dans la recherche d'équivalent :

il est **interdit** de sommer $u_n \sim v_n \implies u_n + w_n \sim v_n + w_n$

ni de mettre à une puissance qui « bouge » : $u_n \sim v_n \not\Rightarrow u_n{}^{w_n} \sim v_n{}^{w_n}$

Exemples: 1) Equivalent simple de $e^{\frac{\sin{(n)}}{n}} - 1$: $\lim_{n \to +\infty} \frac{\sin{(n)}}{n} = 0$; donc, $e^{\frac{\sin{(n)}}{n}} - 1 \sim \frac{\sin{(n)}}{n}$. Je ne peux pas aller plus loin!

2) Equivalent simple de $\ln \left(\cos \left(\frac{1}{n} \right) \right)$

 $\lim_{n \to +\infty} cos\left(\frac{1}{n}\right) = 1. \text{ Donc, } \ln\left(cos\left(\frac{1}{n}\right)\right) \sim cos\left(\frac{1}{n}\right) - 1. \text{ Et } \lim_{n \to +\infty} \frac{1}{n} = 0 \text{ ; Donc, } \cos\left(\frac{1}{n}\right) - 1 \sim -\frac{1}{2n^2}. \text{ Ainsi, } \ln\left(cos\left(\frac{1}{n}\right)\right) \sim -\frac{1}{2n^2}.$

3) Calcul de $\lim_{n\to+\infty} \left(\frac{n^2+n+1}{n^2-n+1}\right)^n$.

 $\left(\frac{n^2+n+1}{n^2-n+1}\right)^n = e^{n\ln\left[\frac{n^2+n+1}{n^2+n-1}\right]}. \text{ Comme } \frac{n^2+n+1}{n^2-n+1} \sim_{+\infty} \frac{n^2}{n^2} = 1, \\ \lim_{n \to +\infty} \frac{n^2+n+1}{n^2-n+1} = 1 \text{ . De plus, } \ln\left(X\right) \sim_1 (X-1) \text{ donc par composition à droite, } \\ \ln\left(\frac{n^2+n+1}{n^2-n+1}\right) \sim_{+\infty} \left(\frac{n^2+n+1}{n^2-n+1}-1\right) = \frac{2n}{n^2-n+1} \sim_{+\infty} \frac{2n}{n^2} = \frac{2}{n}. \text{ Donc, } n\ln\left(\frac{n^2+n+1}{n^2-n+1}\right) \sim_{+\infty} 2. \text{ Donc } \lim_{n \to +\infty} n\ln\left(\frac{n^2+n+1}{n^2-n+1}\right) = 2. \text{ Et ainsi, } \\ \lim_{n \to +\infty} \left(\frac{n^2+n+1}{n^2-n+1}\right)^n = e^2.$

4) Trouver un équivalent simple de $t_n = \left(\frac{n^2 + n + 1}{n^2 + n - 1}\right)^n - 1$.

 $\left(\frac{n^2+n+1}{n^2+n-1}\right)^n = e^{n\ln\left[\frac{n^2+n+1}{n^2+n-1}\right]}.$

 $\operatorname{Et} h_n = n \ln \left[\frac{n^2 + n + 1}{n^2 + n - 1} \right] = n \left[\ln [n^2 + n + 1] - \ln [n^2 + n - 1] \right] = n \left\{ \ln \left[n^2 \left(1 + \frac{1}{n} + \frac{1}{n^2} \right) \right] - \ln \left[n^2 \left(1 + \frac{1}{n} - \frac{1}{n^2} \right) \right] \right\}$

 $h_n = n \left\{ 2 \ln(n) + \ln\left(1 + \frac{1}{n} + \frac{1}{n^2}\right) - 2 \ln(n) - \ln\left(1 + \frac{1}{n} - \frac{1}{n^2}\right) \right\} = n \left\{ \ln\left(1 + \frac{1}{n} + \frac{1}{n^2}\right) - \ln\left(1 + \left(\frac{1}{n} - \frac{1}{n^2}\right)\right) \right\}.$

Comme $\lim_{n \to +\infty} u_n = 0 = \lim_{n \to +\infty} v_n$ et $\ln(1+t) = t - \frac{t^2}{2} + t^2 \varepsilon(t)$ $tq \lim_{t \to 0} \varepsilon(t) = 0$

 $\ln(1+u_n) = u_n - \frac{u_n^2}{2} + u_n^2 \varepsilon(u_n)$ et $\lim_{n \to +\infty} \varepsilon(u_n) = 0$ et $\ln(1+v_n) = v_n - \frac{v_n^2}{2} + v_n^2 \varepsilon(v_n)$ et $\lim_{n \to +\infty} \varepsilon(v_n) = 0$.

De plus, $u_n = \frac{1}{n} + \frac{1}{n^2}$ et $u_n^2 = \frac{1}{n^2} + o_{+\infty} \left(\frac{1}{n^2}\right)$ et $v_n = \frac{1}{n} - \frac{1}{n^2}$ et $v_n^2 = \frac{1}{n^2} + o_{+\infty} \left(\frac{1}{n^2}\right)$.

Donc, $h_n = n\left\{\frac{1}{n} + \frac{1}{n^2} - \frac{1}{2}\frac{1}{n^2} - \left(\frac{1}{n} - \frac{1}{n^2}\right) + \frac{1}{2}\frac{1}{n^2} + o\left(\frac{1}{n^2}\right)\right\} = \frac{2}{n} + o\left(\frac{1}{n}\right)$.

Donc, Comme $\lim_{n \to +\infty} \frac{2}{n} + o\left(\frac{1}{n}\right) = 0 = \lim_{n \to +\infty} h_n$ et $e^t = 1 + t + o_0(t)$, $e^{\frac{2}{n} + o\left(\frac{1}{n}\right)} = 1 + \frac{2}{n} + o\left(\frac{1}{n}\right)$. Et ainsi, $t_n \sim \frac{2}{n}$

5) Soit $a \in [0,1]$ et u la suite définie par : $u_0 = a$ et $\forall n \in \mathbb{N}$, $u_{n+1} = 1 + \frac{u_n}{n+1}$. Montrer que u tend vers 1 et $u_n - 1 \sim_{+\infty} \frac{1}{n}$.

Tout d'abord , on remarque que $\forall n \in \mathbb{N}, u_n \in [0,2]$. En effet, $(init) \ u_0 = a \in [0,1] \ et \ u_1 = 1 + a \in [1,2] \ . (Propag) \ Fixons \ n \in \mathbb{N}^*$; alors , $u_n \in [0,2] \Rightarrow u_{n+1} = 1 + \frac{u_n}{n+1} \in \left[1,1+\frac{2}{n+1}\right] \underset{car \ n \geq 1}{\subset} [1,2]$. Le théorème de récurrence simple permet alors de conclure.

La suite u est donc bornée ; comme $\lim_{n\to+\infty}\frac{1}{n+1}=0$, $\lim_{n\to+\infty}\frac{u_n}{n+1}=0$ et ainsi, $\lim_{n\to+\infty}u_{n+1}=1$ ce qui signifie aussi que $\lim_{n\to+\infty}u_n=1$.

Ensuite, $\forall n \in \mathbb{N}^*, u_n - 1 = \frac{u_{n-1}}{n}$. Or, $\lim_{n \to +\infty} u_{n-1} = 1$ i.e. $u_{n-1} \sim_{+\infty} 1$. Et par conséquent, $\frac{u_{n-1}}{n} \sim_{+\infty} \frac{1}{n}$ et ainsi, $u_n - 1 \sim_{+\infty} \frac{1}{n}$.

6) Déterminons un équivalent simple de $u_n = tan\left(\frac{\pi}{4} + \frac{1}{n}\right) - 1$.

Soit $f(x) = tan(\frac{\pi}{4} + x)$. f est dérivable en 0 et $f'(0) = 1 + tan^2(\frac{\pi}{4}) = 2 \neq 0$. Donc, $f(x) - f(0) \sim_0 2(x - 0)$ i.e. $tan(\frac{\pi}{4} + x) - 1 \sim_0 2x$.

Comme $\lim_{n \to +\infty} \frac{1}{n} = 0$, $\tan\left(\frac{\pi}{4} + \frac{1}{n}\right) - 1 \sim_0 \frac{2}{n}$.

VI. **Suites de nombres complexes ou suites complexes.

**Def : La suite complexe (u_n) tend vers le nombre complexe L quand $n \to +\infty$ lorsque : $\forall \varepsilon \in \mathbb{R}^{+*}, \exists n_0 \in \mathbb{N}/\forall n \in \mathbb{N}, (n \geq n_0 \Longrightarrow |u_n - L| \leq \varepsilon). \text{On note alors } \lim_{n \to +\infty} u_n = L \text{ ou encore } u_n \xrightarrow[n \to +\infty]{} L.$

NB: Une suite complexe n'a pas de limite infinie.

**Prop: u_n tend vers le complexe L qd $n \to +\infty$ sietssi $\lim_{n \to +\infty} Re(u_n) = Re(L)$ $et \lim_{n \to +\infty} Im(u_n) = Im(L)$. Démo.

Prop: Toutes les définitions ou propriétés étoilées () sont valables pour des suites complexes. Toutes les propriétés nécessitant la monotonie ou caractère majoré ou minorée d'une suite réelle ne sont pas valables pour les suites complexes.

**SAVOIR REFAIRE Soit u une suite complexe, L un complexe et M un réel tel que $M \in [0,1[$ et $\forall n \in \mathbb{N}, |u_{n+1}-L| \leq M|u_n-L|$.

Montrer que $\lim_{n\to+\infty} u_n = L$.

Démo : On montre facilement par récurrence que $\forall n \in \mathbb{N}, |u_n - L| \leq \underbrace{M^n |u_0 - L|}$. Comme $\lim_{n \to +\infty} \varepsilon_n = 0$, le cours assure que $\lim_{n \to +\infty} u_n = L$

VII. **Suites extraites**

**Def: (v_n) est une suite extraite de la suite (u_n) lorsqu' il existe une application strictement croissante $\varphi \colon \mathbb{N} \to \mathbb{N}$ telle que:

NB: Nécessairement, une telle fonction φ vérifie : $\varphi(n) \ge n$.

Exemples: les suites (u_{n+1}) , (u_{2n}) , (u_{2n+1}) , (u_{n^2}) sont extraites de (u_n) .

****Théo:** Si la suite (u_n) tend vers L alors toute suite extraite de (u_n) tend aussi vers L.

Exemple: Etudier la convergence de $u_n = 2^n + (-2)^n \sin\left(n\frac{\pi}{2}\right)$.

$$u_{2n} = 2^{2n} + (-2)^{2n} \sin\left(2n\frac{\pi}{2}\right) = 4^n \xrightarrow[n \to +\infty]{} + \infty.$$

$$u_{4n+1} = 2^{4n+1} + (-2)^{4n+1} \sin\left((4n+1)\frac{\pi}{2}\right) = 2 \times 16^n - 2 \times 16^n = 0 \xrightarrow[n \to +\infty]{} 0.$$

Comme deux suites extraites de u n'ont pas la même limite, u n'a pas de limite.

La réciproque est vraie d'après le théorème suivant :

**Théo:
$$(\lim_{n\to+\infty}u_n=L)$$
 si etssi $(\lim_{n\to+\infty}u_{2n}=L$ et $\lim_{n\to+\infty}u_{2n+1}=L$).

De même, $\lim_{n\to +\infty} u_n = L$ si etssi $\lim_{n\to +\infty} u_{3n} = L = \lim_{n\to +\infty} u_{3n+1} = \lim_{n\to +\infty} u_{3n+2}$.

Exemples: 1) Montrer que si u est croissante telle que $\lim_{n\to\infty}u_{2n}=+\infty$ alors $\lim_{n\to\infty}u_n=+\infty$.

Soit u une suite réelle croissante telle que $\lim_{n \to +\infty} u_{2n} = +\infty$. Alors comme u est croissante, lors $\forall n, u_{2n} \le u_{2n+1}$. Or $\lim_{n \to +\infty} u_{2n} = +\infty$. Donc le théorème des gendarmes assurent que $\lim_{n \to +\infty} u_{2n+1} = +\infty$. Les suites extraites $(u_{2n+1})et$ (u_{2n}) ayant la même limite, u tend aussi vers cette limite commune i.e. $\lim_{n \to \infty} u_n = +\infty$.

2) Montrer que si (u_{2n}) , (u_{3n}) et (u_{2n+1}) convergent alors (u_n) converge.

Soit u une suite telle que : (u_{2n}) , (u_{3n}) et (u_{2n+1}) convergent.

Notons L_1 la limite de (u_{2n}) , L_2 la limite de (u_{3n}) et L_3 la limite de (u_{2n+1}) .

La suite (u_{6n}) étant extraite à la fois de (u_{2n}) mais aussi de (u_{3n}) tend à la fois vers L_1 et vers L_2 . Par unicité de la limite d'une suite, $L_1 = L_2$. La suite (u_{6n+3}) étant extraite à la fois de (u_{2n+1}) mais aussi de (u_{3n}) tend à la fois vers L_3 et vers L_2 . Par unicité de la limite d'une suite, $L_3 = L_2$. J'en déduis que $L_1=L_2$. Les suites extraites $(u_{2n+1})et$ (u_{2n}) ayant la même limite finie, u converge aussi vers cette limite commune i.e. $\lim_{n\to\infty} u_n = u$ $L_1 = L_2 = L_3$.

Suites adjacentes • •

Déf.: Deux suites réelles u et v sont adjacentes lorsque l'une est croissante, l'autre est décroissante et u-v tend vers 0.

Représentation:

Théorème:

- Deux suites adjacentes sont convergentes et de même limite.
- Si u et v sont adjacentes de même limite L telle que u croissante et v décroissante alors : $\forall n \in \mathbb{N}, 0 \le v_n L \le v_n u_n$ et $\forall (n,p) \in \mathbb{N}^2, \ u_0 \leq u_1 \leq \cdots \leq u_n \leq u_{n+1} \leq \cdots \leq L \leq \cdots v_{p+1} \leq v_p \leq \cdots \leq v_1 \leq v_0 \ .$

Exemples 1) Soit
$$\forall n, u_n = \sum_{k=n}^{2n} \frac{1}{k}$$
, $v_n = \sum_{k=1}^{n} \frac{1}{n+k}$. Montrer que u et v sont adjacentes .
$$u_n = \sum_{k=n}^{2n} \frac{1}{k} = \frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n} \ et \quad v_n = \frac{1}{n+1} + \dots + \frac{1}{2n} = u_n - \frac{1}{n} \le u_n. \ \text{Donc}, \ v_n - u_n = -\frac{1}{n} \xrightarrow[n \to +\infty]{} 0.$$
 Comme $\forall n, v_n \le 0$, montrons que u décroit et v croit.

$$v_{n+1} = \sum_{k=1}^{n+1} \frac{1}{(n+1)+k} = \sum_{k=1}^{n+1} \frac{1}{n+(k+1)} = \sum_{j=2}^{n+2} \frac{1}{n+j} = \sum_{j=1}^{n} \frac{1}{n+j} + \left(\frac{1}{2n+1} + \frac{1}{2n+2} - \frac{1}{n+1}\right) = v_n + \left(\underbrace{\frac{1}{2n+1} - \frac{1}{2n+2}}_{\geq 0 \ car}\right) \geq v_n. \text{ Donc } v \text{ est croissante.}$$

$$u_{n+1} - u_n = \left(v_{n+1} + \frac{1}{n+1}\right) - \left(v_n + \frac{1}{n}\right) = v_{n+1} - v_n - \frac{1}{n} + \frac{1}{n+1} = \frac{1}{2n+1} - \frac{1}{2n+2} - \frac{1}{n} + \frac{1}{n+1} = \frac{1}{2n+1} - \frac{1}{2(n+1)} - \frac{1}{n} + \frac{1}{n+1} = \frac{1}{2n+1} + \frac{1}{2(n+1)} - \frac{1}{n} + \frac{1}{n+1} = \frac{1}{2n+1} + \frac{1}{2(n+1)} - \frac{1}{n} = \frac{2(n+1)n+(2n+1)n-(2n+1)(2n+2)}{2(2n+1)n(n+1)} = \frac{-2}{2(2n+1)n(n+1)} < 0. \text{ Donc } u \text{ est décroissante.}$$
 J'en conclus que u et v sont adjacentes.

1) Soit
$$\forall n \in \mathbb{N}^*, u_n = \left(\sum_{k=1}^n \frac{1}{\sqrt{k}}\right) - 2\sqrt{n}$$
 et $v_n = \left(\sum_{k=1}^n \frac{1}{\sqrt{k}}\right) - 2\sqrt{n+1}$.

- a) Montrer que u et v sont adjacentes .
- b) Donner une valeur approchée de la limite commune à $10^{-1} pr$ ès par défaut.

```
c) Trouver un équivalent simple de S_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}.
a) \forall n \in \mathbb{N}, v_n - u_n = 2\sqrt{n} - 2\sqrt{n+1} = \frac{2}{\sqrt{n+1} + \sqrt{n}} donc \lim_{n \to +\infty} v_n - u_n = 0. De \ plus \ \forall n \in \mathbb{N}, u_n \geq v_n. Montrons que u décroit et v croit. Soit n \in \mathbb{N}.
u_{n+1} - u_n = \left(\sum_{k=1}^{n+1} \frac{1}{\sqrt{k}}\right) - 2\sqrt{n+1} - \left(\sum_{k=1}^{n} \frac{1}{\sqrt{k}}\right) + 2\sqrt{n} = \frac{1}{\sqrt{n+1}} - \frac{2}{\sqrt{n+1}+\sqrt{n}} = \frac{2}{\sqrt{n+1}+\sqrt{n+1}} - \frac{2}{\sqrt{n+1}+\sqrt{n}} < 0 \ .
v_{n+1} - v_n = \left(\sum_{k=1}^{n+1} \frac{1}{\sqrt{k}}\right) - 2\sqrt{n+2} - \left(\sum_{k=1}^{n} \frac{1}{\sqrt{k}}\right) + 2\sqrt{n+1} = \frac{1}{\sqrt{n+1}} - \frac{2}{\sqrt{n+2}+\sqrt{n+1}} = \frac{2}{\sqrt{n+1}+\sqrt{n+1}} - \frac{2}{\sqrt{n+2}+\sqrt{n+1}} > 0.
Donc, u décroit et v croit. Je peux donc conclure que u et v sont adjacentes et convergent donc vers une même limite finie notée L.

b) \forall n \in \mathbb{N}, v_n \leq L \leq u_n. Donc , 0 \leq L - v_n \leq u_n - v_n = \frac{2}{\sqrt{n+1}+\sqrt{n}} < \frac{1}{\sqrt{n}}. Donc v_n est une valeur approchée de L à 10^{-1} près par défaut dès 10^{-1} près par défaut des 10^{-1} près par
                             que n vérifie \frac{1}{\sqrt{n}} \le 10^{-1}. Or, \frac{1}{\sqrt{n}} \le 10^{-1} \Leftrightarrow \sqrt{n} \ge 10 \Leftrightarrow n \ge 100. Ainsi, v_{100} est une valeur approchée de L à 10^{-1} près par défaut. On
                             calcule \,v_{100}\, très facilement avec le programme en python ci-dessous :
     2 s=0
3 * for i in range (1,101):
                          s=s+(1/sqrt(i))
    5 print(s-2*sqrt(101)) Réponse:-1.51.
               c) \left(\sum_{k=1}^{n} \frac{1}{\sqrt{k}}\right) - 2\sqrt{n} = u_n = L + o_0(1). Donc, \left(\sum_{k=1}^{n} \frac{1}{\sqrt{k}}\right) = 2\sqrt{n} + L + o_{+\infty}(1)
                                                                                                                                                                                                                                                                       \lim_{n\to+\infty} L + o_{+\infty}(1) = L
                                                                                                                                                                                                                                                                       et \lim_{n \to +\infty} 2\sqrt{n} = +\infty
 3. Soit \forall n, S_n = \sum_{k=1}^n \frac{1}{k}, u_n = \sum_{k=1}^n \frac{1}{k} - \ln(n) et v_n = \sum_{k=1}^{n-1} \frac{1}{k} - \ln(n).
                             a) Montrer par encadrement que \lim_{n\to+\infty} S_n = +\infty. (on pourra montrer que \forall k \geq 1, \frac{1}{k+1} \leq \ln(k+1) - \ln(k) \leq \frac{1}{k})
                             b) Montrer en utilisant les suites u et v qu'il existe un réel \gamma (appelé constante d'Euler) tel que : S_n = \ln(n) + \gamma + o(1).
                             c) Déterminer une valeur approchée de \gamma à 10^{-2} près.
                             d) Calculer la limite de T_n = \sum_{k=1}^n \frac{1}{k(2k+1)}
a) Soit k \in \mathbb{N}^*. \forall x \in [k, k+1], \frac{1}{k+1} \le \frac{1}{x} \le \frac{1}{k}. Donc, \int_k^{k+1} \frac{1}{k+1} dx \le \int_k^{k+1} \frac{1}{x} dx \le \int_k^{k+1} \frac{1}{k} dx i.e. \frac{1}{k+1} \le [\ln(x)]_k^{k+1} \le \frac{1}{k}.
Ainsi, \forall k \in \mathbb{N}^* \frac{1}{k+1} \le \ln(k+1) - \ln(k) \le \frac{1}{k}.
Soit n \in \mathbb{N}^*. \forall k \in [1, n], \frac{1}{k+1} \le \ln(k+1) - \ln(k) \le \frac{1}{k} \operatorname{donc} \sum_{k=1}^{n} \frac{1}{k+1} \le \sum_{k=1}^{n} [\ln(k+1) - \ln(k)] \le \sum_{k=1}^{n} \frac{1}{k}. Donc,
\sum_{k=2}^{n+1} \frac{1}{k} \le \ln(n+1) - \ln(1) \le \sum_{k=1}^{n} \frac{1}{k} \text{ i.e. } S_n - 1 + \frac{1}{n+1} \le \ln(n+1) \le S_n. \text{ Comme } \lim_{n \to +\infty} \ln(n+1) = +\infty, \lim_{n \to +\infty} S_n = +\infty
b) Montrons que u et v sont adjacentes : \forall n \in \mathbb{N}^*, v_n \leq u_n. Donc prouvons que u est décroissante et v est croissante et \lim_{n \to +\infty} u_n - v_n = 0.
Soit n \in \mathbb{N} \setminus \{0,1\}.
u_n - v_n = \sum_{k=1}^n \frac{1}{k} - \ln(n) - \left[ \sum_{k=1}^{n-1} \frac{1}{k} - \ln(n) \right] = \frac{1}{n} \cdot \text{Donc}, \ \lim_{n \to +\infty} u_n - v_n = 0.
u_{n+1} - u_n = \sum_{k=1}^{n+1} \frac{1}{k} - \ln(n+1) - \left[\sum_{k=1}^{n} \frac{1}{k} - \ln(n)\right]
u_{n+1} - u_n = \frac{1}{n+1} - \ln(n+1) + \ln(n) = \frac{1}{n+1} - \ln\left(1 + \frac{1}{n}\right) \qquad \stackrel{\forall x \ge 0, \ln(1+x) \ge x - \frac{x^2}{2}}{\frac{1}{n+1} - \left(\frac{1}{n} - \frac{1}{2n^2}\right)} = \frac{1}{n+1} - \frac{1}{n} + \frac{1}{2n^2} = \frac{1-n}{2n^2(n+1)} \le 0. \text{ Donc, } (u_n) \text{ est } u_n = \frac{1}{n+1} - \frac{1}{n} + \frac{1}{2n^2} = \frac{1-n}{2n^2(n+1)} \le 0. \text{ Donc, } (u_n) = \frac{1}{n+1} - \frac{1}{n} + \frac{1}{2n^2} = \frac{1-n}{2n^2(n+1)} \le 0. \text{ Donc, } (u_n) = \frac{1}{n+1} - \frac{1}{n} + \frac{1}{2n^2} = \frac{1-n}{2n^2(n+1)} \le 0. \text{ Donc, } (u_n) = \frac{1}{n+1} - \frac{1}{n} + \frac{1}{2n^2} = \frac{1-n}{2n^2(n+1)} \le 0. \text{ Donc, } (u_n) = \frac{1}{n+1} - \frac{1}{n} + \frac{1}{2n^2} = \frac{1-n}{2n^2(n+1)} \le 0. \text{ Donc, } (u_n) = \frac{1}{n+1} - \frac{1}{n} + \frac{1}{2n^2} = \frac{1-n}{2n^2(n+1)} \le 0. \text{ Donc, } (u_n) = \frac{1}{n+1} - \frac{1}{n} + \frac{1}{2n^2} = \frac{1-n}{2n^2(n+1)} \le 0. \text{ Donc, } (u_n) = \frac{1}{n+1} - \frac{1}{n} + \frac{1}{2n^2} = \frac{1-n}{2n^2(n+1)} \le 0. \text{ Donc, } (u_n) = \frac{1}{n+1} - \frac{1}{n} + \frac{1}{2n^2} = \frac{1-n}{2n^2(n+1)} \le 0. \text{ Donc, } (u_n) = \frac{1}{n+1} - \frac{1}{n} + \frac{1}{2n^2} = \frac{1-n}{2n^2(n+1)} \le 0. \text{ Donc, } (u_n) = \frac{1}{n+1} - \frac{1}{n} + \frac{1}{2n^2} = \frac{1-n}{2n^2(n+1)} \le 0. \text{ Donc, } (u_n) = \frac{1}{n+1} - \frac{1}{n} + \frac{1}{2n^2} = \frac{1-n}{2n^2(n+1)} \le 0. \text{ Donc, } (u_n) = \frac{1}{n+1} - \frac{1}{n} + \frac{1}{2n^2} = \frac{1-n}{2n^2(n+1)} \le 0. \text{ Donc, } (u_n) = \frac{1}{n+1} - \frac{1}{n} + \frac{1}{2n^2} = \frac{1-n}{2n^2(n+1)} \le 0. \text{ Donc, } (u_n) = \frac{1}{n+1} - \frac{1}{n} + \frac{1}{2n^2} = \frac{1-n}{2n^2(n+1)} = \frac{1-n}{2n^2
décroissante.
v_{n+1} - v_n = \sum_{k=1}^n \frac{1}{k} - \ln(n+1) - \left[\sum_{k=1}^{n-1} \frac{1}{k} - \ln(n)\right] = \frac{1}{n} - \ln(n+1) + \ln(n) = \frac{1}{n} - \ln\left(1 + \frac{1}{n}\right)
                                                                                                                                                                                                                                                                                                                                             0. Donc, (v_n) est croissante. J'en
déduis que \frac{u}{v} et v sont adjacentes. Par conséquent, u et v sont convergentes vers une limite commune \gamma.
Alors, u_n = \gamma + o_{+\infty}(1) i.e. S_n - \ln(n) = \gamma + o_{+\infty}(1). Et ainsi, S_n = \ln(n) + \gamma + o_{+\infty}(1).
c) \forall n \in \mathbb{N}^*, v_n \le \gamma \le u_n \operatorname{donc} 0 \le \gamma - v_n \le u_n - v_n = \frac{1}{n}. Ainsi, \gamma - v_n \le 10^{-2} \operatorname{dès} \operatorname{que} \frac{1}{n} \le 10^{-2}. Or, \frac{1}{n} \le 10^{-2} \Leftrightarrow n \ge 100.
Donc, v_{100} est une valeur approchée de \gamma par défaut à 10^{-2} près. Calculons numériquement v_{100}:
                                                                                                                                                                                                                                                                                          0.572207331651529
         1 from math import*
d) T_n = \sum_{k=1}^n \frac{1}{k(2k+1)} = \sum_{k=1}^n -\frac{2}{(2k+1)} + \frac{1}{k} = \sum_{k=1}^n \frac{1}{k} - 2\sum_{k=1}^n \frac{1}{(2k+1)} = S_n - 2\left(S_{2n+1} - \sum_{k=1}^n \frac{1}{2k} - 1\right)
T_n = S_n + 2 - 2\left(S_{2n+1} - \frac{1}{2}\sum_{k=1}^n \frac{1}{k}\right) = S_n + 2 - 2\left(S_{2n+1} - \frac{1}{2}S_n\right) = 2 + 2(S_n - S_{2n+1})
T_n = 2 + 2(\ln(n) + \gamma + \varepsilon_n - \ln(2n+1) - \gamma - \varepsilon_{2n+1}) = 2 - 2\ln\left(2 + \frac{1}{n}\right) + 2(\varepsilon_n - \varepsilon_{2n+1})
                                                                                                                                                                                                                                                                                               otent petit.
Comme \lim_{n\to+\infty} \varepsilon_n = 0, \lim_{n\to+\infty} \varepsilon_{2n+1} = 0. Donc, \lim_{n\to+\infty} T_n = 2 - 2\ln(2)
Vérifions numériquement ce résultat :
```

Théo. Soit x un réel. $\forall n \in \mathbb{N}$, on pose : $u_n = 10^{-n} \lfloor 10^n x \rfloor$ et $v_n = 10^{-n} \lfloor 10^n x \rfloor + 10^{-n}$. Alors, $\forall n$, $x - 10^{-n} \le u_n \le x < v_n \le x + 10^{-n}$. Les suites u et v sont adjacentes de limite commune x. u_n est appelée la valeur décimale approchée de x à 10^{-n} près par défaut.

```
Démo : \forall n \in \mathbb{N}, v_n - u_n = \left(\frac{1}{10}\right)^n. Comme \left|\frac{1}{10}\right| < 1, \lim_{n \to +\infty} v_n - u_n = 0. De plus \forall n \in \mathbb{N}, u_n \le v_n. Montrons que u croit et v décroit.
Soit n \in \mathbb{N}. u_{n+1} - u_n = 10^{-(n+1)} |10^{(n+1)}x| - 10^{-n} |10^n x| = 10^{-(n+1)} (|10^{(n+1)}x| - 10|10^n x|).
Or, \lfloor 10^n x \rfloor \le 10^n x < \lfloor 10^n x \rfloor + 1 donc, 10\lfloor 10^n x \rfloor \le 10^{n+1} x < 10\lfloor 10^n x \rfloor + 10. L'entier 10\lfloor 10^n x \rfloor étant inférieur à 10^{n+1} x, je peux affirmer que
10[10^n x] \le |10^{(n+1)}x| puisque |10^{(n+1)}x| est le plus grand entier inférieur à 10^{n+1}x. J'en déduis que u_{n+1} - u_n \ge 0. Ainsi, u croit.
Soit n \in \mathbb{N}. v_{n+1} - v_n = 10^{-(n+1)} \left| 10^{(n+1)} x \right| + 10^{-(n+1)} - 10^{-n} \left[ 10^n x \right] - 10^{-n} = 10^{-(n+1)} \left( \left| 10^{(n+1)} x \right| + 1 - 10 \left[ 10^n x \right] - 10 \right) = 10^{-(n+1)} \left( \left| 10^{(n+1)} x \right| + 1 - 10 \left[ 10^n x \right] - 10 \right) = 10^{-(n+1)} \left( \left| 10^{(n+1)} x \right| + 1 - 10 \left[ 10^n x \right] - 10 \right) = 10^{-(n+1)} \left( \left| 10^{(n+1)} x \right| + 1 - 10 \left[ 10^n x \right] - 10 \right) = 10^{-(n+1)} \left( \left| 10^{(n+1)} x \right| + 1 - 10 \left[ 10^n x \right] - 10 \right) = 10^{-(n+1)} \left( \left| 10^{(n+1)} x \right| + 1 - 10 \left[ 10^n x \right] - 10 \right) = 10^{-(n+1)} \left( \left| 10^{(n+1)} x \right| + 1 - 10 \left[ 10^n x \right] - 10 \right) = 10^{-(n+1)} \left( \left| 10^{(n+1)} x \right| + 1 - 10 \left[ 10^n x \right] - 10 \right) = 10^{-(n+1)} \left( \left| 10^{(n+1)} x \right| + 1 - 10 \left[ 10^n x \right] - 10 \right) = 10^{-(n+1)} \left( \left| 10^{(n+1)} x \right| + 1 - 10 \left[ 10^n x \right] - 10 \right) = 10^{-(n+1)} \left( \left| 10^{(n+1)} x \right| + 1 - 10 \left[ 10^n x \right] - 10 \right) = 10^{-(n+1)} \left( \left| 10^{(n+1)} x \right| + 1 - 10 \left[ 10^n x \right] - 10 \right) = 10^{-(n+1)} \left( \left| 10^{(n+1)} x \right| + 1 - 10 \left[ 10^n x \right] - 10 \right) = 10^{-(n+1)} \left( \left| 10^{(n+1)} x \right| + 1 - 10 \left[ 10^n x \right] - 10 \right] = 10^{-(n+1)} \left( \left| 10^{(n+1)} x \right| + 1 - 10 \left[ 10^n x \right] - 10 \right] = 10^{-(n+1)} \left( \left| 10^{(n+1)} x \right| + 1 - 10 \left[ 10^n x \right] - 10 \right] = 10^{-(n+1)} \left( \left| 10^{(n+1)} x \right| + 1 - 10 \left[ 10^n x \right] - 10 \right] = 10^{-(n+1)} \left( \left| 10^{(n+1)} x \right| + 1 - 10 \left[ 10^n x \right] - 10 \right] = 10^{-(n+1)} \left( \left| 10^n x \right| + 1 - 10 \left[ 10^n x \right] - 10 \right] = 10^{-(n+1)} \left( \left| 10^n x \right| + 1 - 10 \left[ 10^n x \right] - 10 \right] = 10^{-(n+1)} \left( \left| 10^n x \right| + 1 - 10 \left[ 10^n x \right] - 10 \right] = 10^{-(n+1)} \left( \left| 10^n x \right| + 1 - 10 \left[ 10^n x \right] - 10 \right] = 10^{-(n+1)} \left( \left| 10^n x \right| + 1 - 10 \left[ 10^n x \right] - 10 \right] = 10^{-(n+1)} \left( \left| 10^n x \right| + 1 - 10 \left[ 10^n x \right] - 10 \right] = 10^{-(n+1)} \left( \left| 10^n x \right| + 1 - 10 \left[ 10^n x \right] - 10 \right] = 10^{-(n+1)} \left( \left| 10^n x \right| + 1 - 10 \left[ 10^n x \right] - 10 \right] = 10^{-(n+1)} \left( \left| 10^n x \right| + 1 - 10 \left[ 10^n x \right] - 10 \right] = 10^{-(n+1)} \left( \left| 10^n x \right| + 1 - 10 \left[ 10^n x \right] + 10 \left[ 1
10^{-(n+1)}(|10^{(n+1)}x|-10|10^nx|-9).
Or, 10[10^n x] \le 10^{n+1}x < 10[10^n x] + 10. L'entier 10[10^n x] + 10 étant strictement supérieur à 10^{n+1}x, je peux affirmer que |10^{(n+1)}x| + 1 \le 10^{n+1}x
10|10^nx| + 10 puisque |10^{(n+1)}x| + 1 est le plus petit strictement supérieur à 10^{n+1}x.
J'en déduis que |10^{(n+1)}x| \le 10[10^nx] + 9 et par suite que v_{n+1} - v_n \le 0 . Ainsi, v décroit.
                                                                                                                                                                                                                                                                                                                                                                                                                    dans une inégalité, l'inégalité stricte
                                                                                                                                                                                                                                                                                                                                                                                                                    entre les suites devient large sur les
Je peux donc conclure que u et v sont adjacentes et convergent donc vers une même limite finie notée L.
                                                                                                                                                                                                                                                                                                                                                                                                                        limites (le passage à la limite ne
Montrons que L = x:
```

conserve pas les inégalités strictes)

Les trois suites de cette inégalité ayant une limite, je peux passer à la limite dans cette inégalité et j'obtiens : $L \le x \le L$. Ainsi, L = x.

Conséquence . Tout réel est la limite d'une suite de nombres rationnels et d'une suite de nombres irrationnels.

 $\forall n \in \mathbb{N}, \lfloor 10^n x \rfloor \leq 10^n x < \lfloor 10^n x \rfloor + 1 \text{ donc } \forall n \in \mathbb{N}, 10^{-n} \lfloor 10^n x \rfloor \leq x < 10^{-n} \lfloor 10^n x \rfloor + 10^{-n} \text{ i.e. } u_n \leq x < v_n$

Théorème des segments emboîtés: Soit (I_n) une suite de segments telle que : $\forall n \in \mathbb{N}$, $I_{n+1} \subset I_n$ et la longueur de I_n tend vers 0. Alors il existe un unique point commun à tous les I_n .

Suites explicites IX.

Def: Une suite u est dite explicite lorsqu'on connait le terme général u_n en fonction de n i.e. on connait une expression de u_n .

Exemples: $u_n = (-1)^n n!$ ou $u_n = \frac{1}{n^3} \sum_{k=1}^n (2k-1)(2k)$

Parmi ces suites, on trouve les suites de la forme $u_n=f(n) \ o \grave{\mathrm{u}} \ f$ fonction de $\mathbb R$ dans $\mathbb R$.

Prop: Soit L un réel ou un infini et u telle que : $\forall n, u_n = f(n)$ où f fonction de \mathbb{R} dans \mathbb{R} .

- $\underline{\operatorname{Si}} L = \lim_{x \to +\infty} f(x) \text{ alors } L = \lim_{n \to +\infty} u_n.$
- Si f est monotone alors u est monotone de même monotonie que f.
- Si f est bornée alors u est bornée.

NB: pour l'étude de ces suites $u_n = f(n)$, on pourra donc étudier f. Lorsque vous définissez f, indiquer clairement que sa variable est réelle en l'appelant x et non n, de façon à être autoriser à dériver f.

Exemple: Soit $A = \{\left(1 + \frac{1}{n}\right)^n / n \in \mathbb{N}^*\}$. Déterminer supA et infA.

Posons
$$\forall n \in \mathbb{N}^*, u_n = \left(1 + \frac{1}{n}\right)^n \text{et } \forall x \in [1, +\infty[, f(x) = \left(1 + \frac{1}{x}\right)^x \stackrel{par \ def^\circ}{=} e^{xln\left(1 + \frac{1}{x}\right)} \text{ et } h(x) = xln\left(1 + \frac{1}{x}\right).$$

 $h \text{ est d\'erivable sur } [1,+\infty[\text{ et } \forall x \in [1,+\infty[,h'(x)=\ln\left(1+\frac{1}{x}\right)-\frac{x}{x^2}\frac{1}{1+\frac{1}{x}}=\ln\left(1+\frac{1}{x}\right)-\left(\frac{1}{1+x}\right).\text{Or, } \forall t \geq 0, \ln(1+t) \geq t-\frac{t^2}{2}.\text{ Donc, } \forall x \in [1,+\infty[,h'(x)=\ln\left(1+\frac{1}{x}\right)-\frac{x}{x^2}\frac{1}{1+\frac{1}{x}}]=\ln\left(1+\frac{1}{x}\right)-\left(\frac{1}{1+x}\right).\text{Or, } \forall t \geq 0, \ln(1+t) \geq t-\frac{t^2}{2}.\text{ Donc, } \forall x \in [1,+\infty[,h'(x)=\ln\left(1+\frac{1}{x}\right)-\frac{x}{x^2}\frac{1}{1+\frac{1}{x}}]=\ln\left(1+\frac{1}{x}\right)-\frac{x}{x^2}\frac{1}{1+x}$

 $[1, +\infty[, h'(x) \ge \frac{1}{x} - \frac{1}{2x^2} - \frac{1}{x+1} = \frac{x-1}{2x^2(x+1)} > 0$. Par conséquent, h est strictement croissante sur l'intervalle $[1, +\infty[$ donc $f = exp \circ h$ est strictement croissante sur l'intervalle $]-1,+\infty[$ (comme composée de fonctions strictement croissantes). J'en déduis que la suite u est aussi strictement croissante. Il en découle que $\inf(A) = \min(A) = u_1 = \frac{3}{2}$, $\sup(A) = \lim_{n \to +\infty} u_n$ et enfin A n'a pas de maximum. Calculons $\lim_{n \to +\infty} u_n$:

$$u_n = \left(1 + \frac{1}{n}\right)^n \stackrel{car \ 1 + \frac{1}{n} > 0}{=} e^{nln\left(1 + \frac{1}{n}\right)} = e^{\frac{ln\left(1 + \frac{1}{n}\right)}{\frac{1}{n}}} . \text{ Or, } \lim_{t \to 0} \frac{\ln\left(1 + t\right)}{t} = 1 \text{ donc par composition, } \lim_{n \to +\infty} \frac{\ln\left(1 + \frac{1}{n}\right)}{\frac{1}{n}} = 1. \text{ Ainsi, } \sup(A) = \lim_{n \to +\infty} u_n = e.$$

X. Suites récurrentes

Def : Une suite u est dite récurrente lorsqu'il existe $p \in \mathbb{N}^*$ tel que u vérifie une relation qui exprime u_{n+p} en fonction de $u_n, u_{n+1}, \dots, u_{n+p-1}$. Une telle suite est dite récurrente d'ordre p.

Dans ce cas, pour déterminer les valeurs de tous les termes u_n , il faut et il suffit de connaître les valeurs de $u_0, u_1, ..., u_{p-1}$.

NB: Une suite est récurrente d'ordre p et entièrement définie par la relation de récurrence et les valeurs de ses p premiers termes

Ex : Soit u la suite définie par : $\forall n \in \mathbb{N}^*, u_{n+3} - n^2 u_{n+1} + ln(n)u_n = \sqrt{n}$ et $u_1 = 0, u_2 = 1, u_3 = -1$. Calculons u_4 et u_5 . Déterminons une autre suite vérifiant la même relation de récurrence .

Parmi ces suites récurrentes, on retrouve les suites arithmétiques, géométriques, arithmético-géométriques, récurrentes linéaires d'ordre 2, périodiques, récurrentes d'ordre 1 de la forme $u_{n+1} = f(u_n)$... Cf ci-dessous !

XI. Suites arithmétiques, géométriques – arithmético-géométriques (Rappel)

 $\textbf{Def:}\ (u_n) \text{ est une suite arithmétique lorsqu'il existe un réel ou complexe } b \text{ tel que } : \forall n \in \mathbb{N} \text{ , } u_{n+1} = u_n + b \text{ . } b \text{ est sa raison .}$

 $\begin{aligned} & \text{Prop :} Soit \ (u_n) \text{ est une suite arithmétique de raison } b \text{ . Alors } \forall n \in \mathbb{N} \text{ , } \underbrace{u_n = u_0 + nb}_{expression \ explicite} \text{ .} \\ & \lim_{n \to +\infty} u_n = \begin{cases} -\infty \ si \ b \ r\'eel \ et \ b < 0 \\ u_0 \ si \ b = 0 \\ +\infty \ si \ b \ r\'eel \ et \ b > 0 \end{aligned} \end{aligned} et \sum_{k=0}^n u_k = (n+1)u_0 + \frac{n(n+1)}{2}b$

Def: (u_n) est une suite géométrique lorsqu'il existe un réel ou complexe a tel que $: \forall n \in \mathbb{N}$, $u_{n+1} = au_n$. a est sa raison

 $\begin{aligned} & \textbf{Prop}: Soit \ (u_n) \ \text{est une suite g\'eom\'etrique de raison} \ a \ . \ \text{Alors} \ \forall n \in \mathbb{N} \ , u_n = u_0 a^n \\ & \lim_{n \to +\infty} u_n = \begin{cases} 0 \ si \ |a| < 1 \\ u_0 \ si \ a = 1 \\ sgn(u_0) \infty \ si \ a \ r\'eel \ et \ a > 1et \ u_0 \neq 0 \\ n'existe \ pas \ si \ a \ r\'eel \ et \ a \leq -1 \end{aligned} \ et \ \sum_{k=0}^n u_k = \begin{cases} \frac{1-a^{n+1}}{1-a} u_0 \ si \ a \neq 1 \\ (n+1)u_0 si \ a = 1 \end{cases}$

Def: (u_n) est une suite arithmético-géométrique lorsqu' il existe deux réels ou cpxes a et b tel que : $\forall n \in \mathbb{N}$, $u_{n+1} = au_n + b$.

<u>Méthode</u>: On cherche alors LE réel L tel que : L = aL + b (i.e. la suite constante qui vérifie la même relation de récurrence) puis on montre que la suite $(u_n - L)$ est géométrique de raison a. On peut alors écrire que : $u_n - L = a^n(u_0 - L)$.

XII. Suites récurrentes linéaires d'ordre 2

Théo (admis pour l'instant):

On cherche toutes les suites $(h_n)_{n\in\mathbb{N}}\in\mathbb{C}^{\mathbb{N}}$ vérifiant $\forall n\in\mathbb{N}, h_{n+2}+ah_{n+1}+bh_n=0$ où a et b constantes.

Suite complexe :Soit a et b deux complexes fixés. Posons $(e,c): r^2 + ar + c = 0$ équation caractéristique

Si $\Delta_{e,c} \neq 0$ i.e. (e.c) a deux solutions complexes distinctes r_1 et r_2 alors les suites $(h_n)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}}$ vérifiant $\forall n \in \mathbb{N}, h_{n+2} + ah_{n+1} + bh_n = 0$ sont les suites de la forme $(\alpha r_1^n + \beta r_2^n)_{n \in \mathbb{N}}$ telles que α et β deux constantes complexes.

Si $\Delta_{e.c} = 0$ i. e.(e.c)a une solution complexe double r_0 alors les suites $(h_n)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}}$ vérifiant $\forall n \in \mathbb{N}, h_{n+2} + ah_{n+1} + bh_n = 0$ sont les suites de la forme $((\alpha + \beta n)r_0^n)_{n \in \mathbb{N}}$ telles que α et β deux constantes complexes.

Suite réelle : Soit a et b deux réels fixés . Posons (e.c): $r^2 + ar + c = 0$.

Si $\Delta_{e.c} > 0$ i.e. (e.c)a deux solutions réelles distinctes r_1 et r_2 alors les suites $(h_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ vérifiant $\forall n \in \mathbb{N}, h_{n+2} + ah_{n+1} + bh_n = 0$ sont les suites de la forme $(\alpha r_1^n + \beta r_2^n)_{n \in \mathbb{N}}$ telles que α et β deux constantes réelles.

Si $\Delta_{e,c}=0$ i.e. (e.c)a une solution réelle double r_0 alors les suites $(h_n)_{n\in\mathbb{N}}\in\mathbb{R}^\mathbb{N}$ vérifiant $\forall n\in\mathbb{N}, h_{n+2}+ah_{n+1}+bh_n=1$

0 sont les suites de la forme $((\alpha + \beta n)r_0^n)_{n \in \mathbb{N}}$ telles que α et β deux constantes réelles.

Si $\Delta_{e.c} < 0$ i.e. (e.c)a deux solutions complexes conjuguées $r = \rho e^{i\theta}$ et \bar{r} alors les suites $(h_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ vérifiant $\forall n \in \mathbb{N}, h_{n+2} + ah_{n+1} + bh_n = 0$ sont les suites de la forme $((\alpha\cos(n\theta) + \beta\sin(n\theta))\rho^n)_{n \in \mathbb{N}}$ telles que α et β deux constantes réelles.

Rque: les constantes α et β se déterminent grâce aux valeurs des deux premiers termes de la suite: h_0 et h_1 .

Def: (u_n) est une suite récurrente linéaire d'ordre 2 à coefficients constants lorsqu' il existe deux réels a et b et une suite v telle que : $\forall n \in \mathbb{N}$, $u_{n+2} + au_{n+1} + bu_n = v_n$.

NB: Une telle suite est entièrement définie par la relation de récurrence et ses deux premiers termes .

Prop: Soit deux réels a et b et une suite v. On note E l'ensemble des suites u vérifiant : $\forall n \in \mathbb{N}, u_{n+2} + au_{n+1} + bu_n = v_n$. S'il existe une suite t telle que : $\forall n \in \mathbb{N}, t_{n+2} + at_{n+1} + bt_n = v_n$ alors les suites éléments de E sont toutes les suites de la forme: $(t_n + h_n)$ où h est une suite vérifiant $\forall n \in \mathbb{N}, h_{n+2} + ah_{n+1} + bh_n = 0$.

Démo

 $\underline{\text{M\'ethode}} \text{ pour \'etudier } (u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \text{ } tq \text{ } \forall n \in \mathbb{N} \text{, } u_{n+2} + au_{n+1} + bu_n = v_n.$

- 1. **Limite**: si $L = \lim_{n \to +\infty} u_n$ et $L' = \lim_{n \to +\infty} v_n$ et L + aL + bL n'est pas une FI alors L + aL + bL = L'.
- 2. Expression explicite de u:
 - a. Je cherche une suite t particulière vérifiant $\forall n \in \mathbb{N}, t_{n+2} + at_{n+1} + bt_n = v_n$. Bien souvent t «ressemble» à v.
 - b. J'applique le théorème précédent pour donner toutes les suites h vérifiant : $\forall n \in \mathbb{N}, h_{n+2} + ah_{n+1} + bh_n = 0$
 - c. La suite u est alors de la forme : u = h + t. (Cf chapitre application linéaire § équations linéaires)

Exemples

- 1. Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^\mathbb{N}/u_0=1$ et $u_1=1$ $\forall n\in\mathbb{N}, u_{n+2}+2u_{n+1}+4u_n=0$. Déterminer u_n en fonction de n.
- 2. Trouver toutes les suites réelles vérifiant : $\forall n \in \mathbb{N}, u_{n+2} + 2u_{n+1} + u_n = e^n + n$.
- 3. Déterminer toutes les fonctions $f: \mathbb{R}^{+*} \to \mathbb{R}^{+*}$ telles que : $\forall x > 0, f(f(x)) = 6x f(x)$.

Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^\mathbb{N}/u_0=1$ et $u_1=1$ $\forall n\in\mathbb{N}, u_{n+2}+2u_{n+1}+4u_n=0$. Déterminer u_n en fonction de n .

Posons (e.c): $r^2+2r+4=0$. Alors $\Delta_{(e.c)}=4-16=-12=i^22^2\sqrt{3}^2=\left(2\sqrt{3}i\right)^2et$ les solutions de (e.c) sont $r_1=-1+i\sqrt{3}=2e^{i\frac{2\pi}{3}}et$ $r_2=-1-i\sqrt{3}$. Donc, il existe deux constantes réelles α et β telles que $\forall n\in\mathbb{N}, u_n=\left(\alpha\cos\left(\frac{2n\pi}{3}\right)+\beta\sin\left(\frac{2n\pi}{3}\right)\right)2^n$. De plus, $u_0=1=\alpha$ et $u_1=1=\left(\alpha\cos\left(\frac{2\pi}{3}\right)+\beta\sin\left(\frac{2\pi}{3}\right)\right)2=\left(-\frac{1}{2}+\beta\frac{\sqrt{3}}{2}\right)2$. Donc $\alpha=1$ et $\beta=\frac{2}{\sqrt{3}}$. Ainsi, $\forall n\in\mathbb{N}, u_n=\left(\cos\left(\frac{2n\pi}{3}\right)+\frac{2}{\sqrt{3}}\sin\left(\frac{2n\pi}{3}\right)\right)2^n$

La suite u est divergente car (u_{3n}) et (u_{3n+2}) tendent respectivement vers $+\infty$ et $-\infty$.

Trouver toutes les suites réelles vérifiant : $\forall n \in \mathbb{N}$, $u_{n+2} + 2u_{n+1} + u_n = e^n + n$.

- Cherchons d'abord Trouver toutes les suites réelles (h_n) vérifiant : $\forall n \in \mathbb{N}, h_{n+2} + 2h_{n+1} + h_n = 0$.
- Posons (e,c): $r^2 + 2r + 1 = (r+1)^2 = 0$. Alors les suites (h_n) recherchées sont les suites $((\alpha + \beta n)(-1)^n)_{n \in \mathbb{N}}$.
- une suite v vérifiant : $(*) \forall n \in \mathbb{N}, v_{n+2} + 2v_{n+1} + v_n = e^n$. Cherchons cette suite de la forme $v_n = ae^n$ tq a cste réelle. Alors $\forall n \in \mathbb{N}, v_{n+2} + 2v_{n+1} + v_n = ae^{n+2} + 2ae^{n+1} + ae^n = (ae^2 + 2ae + a)e^n$. Donc pour que v vérifie (*), il suffit de choisir a tel que $ae^2 + 2ae + a = 1$. Donc, $a = \frac{1}{e^2 + 2e + 1} = \frac{1}{(e+1)^2}$ convient.
- ■Cherchons une suite w vérifiant : $\forall n \in \mathbb{N}$, $u_{n+2} + 2u_{n+1} + u_n = n$. Cherchons cette suite de la forme $v_n = an + b$ tq a, b cstes réelles. Alors $\forall n \in \mathbb{N}$, $v_{n+2} + 2v_{n+1} + v_n = a(n+2) + b + 2a(n+1) + 2b + an + b = 4an + 3a + 4b$. Donc pour que v vérifie (*), il suffit de choisir a et b tels que $\begin{cases} 4a = 1 \\ 3a + 4b = 0 \end{cases}$ Donc, $\begin{cases} a = \frac{1}{4} \\ b = -\frac{3}{4} \end{cases}$ conviennent.
- ■CCL : les solutions de notre problème initial sont toutes les suites $((\alpha + \beta n)(-1)^n + \frac{e^n}{(e+1)^2} + \frac{1}{16}(4n-3))_{n \in \mathbb{N}}$.

Déterminer toutes les fonctions $f: \mathbb{R}^{+*} \to \mathbb{R}^{+*}$ telles que : $\forall x > 0, f(f(x)) = 6x - f(x)$.

Analyse: supposons qu'il existe une fonction $f: \mathbb{R}^{+*} \to \mathbb{R}^{+*}$ telles que : $\forall x > 0, f(f(x)) = 6x - f(x)$.

Soit x>0 et $u_0=x$ et $\forall n\in\mathbb{N}, u_{n+1}=f(u_n)$. On montre facilement par récurrence que $\forall n\in\mathbb{N}, u_n$ existe et $u_n>0$. Alors, $\forall n\in\mathbb{N}, f\big(f(u_n)\big)=6u_n-f(u_n)$ i. e. $u_{n+2}+u_{n+1}-6u_n=0$. Posons $(e.c):r^2+r-6=(r-2)(r+3)=0$. Donc, il existe deux constantes réelles α et β telles que $\forall n\in\mathbb{N}, u_n=\alpha 2^n+\beta (-3)^n$.

Montrons par l'absurde que $\beta=0$. Imaginons un instant que $\beta\neq0$. Alors comme |-3|>|2|, $2^n=o_{=\infty}((-3)^n)$ et par conséquent, puisque $\beta\neq0$, $u_n\sim_{+\infty}\beta(-3)^n$. Cela implique que u_n change sans cesse de signe quand $n\to+\infty$ puisque c'est le cas de son équivalent. Or c'est impossible puisque $\forall n\in\mathbb{N},u_n>0$. J'en déduis que $\beta=0$ et $\forall n\in\mathbb{N},u_n=\alpha 2^n$. De plus, $\alpha=u_0=x$ donc $\forall n\in\mathbb{N},u_n=x 2^n$. En particulier , $f(x)=u_1=x 2^1=2x$. CCL° de l'analyse : la seule candidate solution de notre problème est la fonction $(x\mapsto 2x)$.

Synthèse: Soit $f: \binom{\mathbb{R}^{+*} \to \mathbb{R}^{+*}}{x \mapsto 2x}$. Alors $\forall x > 0, f(f(x)) = f(2x) = 2(2x) = 6x - 2x = 6x - f(x)$ OK! Donc f est solution et d'après l'analyse f est

l'unique solution de notre problème.

Remarque : $\forall n \in \mathbb{N}^*, \underbrace{f \circ f \circ f \dots \circ f}_{n \ fois}$ existe et est une fonction de \mathbb{R}^{+*} dans \mathbb{R}^{+*} $et \ \forall n \in \mathbb{N}^*, u_n = \underbrace{f \circ f \circ f \dots \circ f}_{n \ fois}(x)$.

XIII. Suites périodiques

Def: (u_n) est une suite périodique lorsqu' il existe un entier naturel p non nul tel que : $\forall n \in \mathbb{N}, u_{n+p} = u_n. p$ est une période de u.

Ex : les suites 3-périodiques sont les suites de la forme $\forall n, u_n = \begin{cases} a & \text{si } n \equiv 0[3] \\ b & \text{si } n \equiv 1[3] \text{ i.e. de la forme} : \\ c & \text{si } n \equiv 2[3] \end{cases}$

 $u = (a, b, c, a, b, c, a, b, c, a, \dots) = au^{(0)} + bu^{(1)} + bu^{(2)}$

 $\begin{array}{l} \text{où} \ \forall n, \ \ u_n^{(0)} = \begin{cases} 1 \ si \ n \equiv 0[3] \\ 0 \ si \ n \equiv 1[3] \ , u_n^{(1)} = \begin{cases} 0 \ si \ n \equiv 0[3] \\ 1 \ si \ n \equiv 1[3] \ , u_n^{(2)} = \begin{cases} 0 \ si \ n \equiv 0[3] \\ 0 \ si \ n \equiv 1[3] \ , u_n^{(2)} = \begin{cases} 0 \ si \ n \equiv 0[3] \\ 0 \ si \ n \equiv 1[3] \ , u_n^{(2)} = \begin{cases} 0 \ si \ n \equiv 0[3] \\ 0 \ si \ n \equiv 1[3] \ , u_n^{(2)} = \begin{cases} 0 \ si \ n \equiv 0[3] \\ 0 \ si \ n \equiv 1[3] \ , u_n^{(2)} = \begin{cases} 0 \ si \ n \equiv 0[3] \\ 0 \ si \ n \equiv 1[3] \ , u_n^{(2)} = \begin{cases} 0 \ si \ n \equiv 0[3] \\ 0 \ si \ n \equiv 1[3] \ , u_n^{(2)} = \begin{cases} 0 \ si \ n \equiv 0[3] \\ 0 \ si \ n \equiv 1[3] \ , u_n^{(2)} = \begin{cases} 0 \ si \ n \equiv 0[3] \\ 0 \ si \ n \equiv 1[3] \ , u_n^{(2)} = \begin{cases} 0 \ si \ n \equiv 0[3] \\ 0 \ si \ n \equiv 1[3] \ , u_n^{(2)} = \begin{cases} 0 \ si \ n \equiv 0[3] \\ 0 \ si \ n \equiv 0[3] \\ 0 \ si \ n \equiv 0[3] \end{cases} \end{cases}$

Propriétés : Toute suite p —périodique prend au plus p valeurs distinctes, est bornée et ne tend jamais vers l'infini .

Une suite périodique est convergente sietssi elle est constante.

Démo

XIV. Suites récurrentes vérifiant une relation de la forme : $u_{n+1} = f(u_n)$

Soit f une fonction de $\mathbb R$ dans $\mathbb R$ définie sur D . Soit u une suite réelle telle que : $\forall n \in \mathbb N, u_{n+1} = f(u_n)$. On dit que u est une suite récurrente associée à f .

Alors $\forall n \in \mathbb{N}, u_{2n+3} = f \circ f(u_{2n+1})$ et $\forall n \in \mathbb{N}, u_{2n+2} = f \circ f(u_{2n})$ ie. (u_{2n}) et (u_{2n+1}) sont récurrentes associées à $f \circ f$.

1) Définition de u: pour que u soit bien défini il faut et il suffit que : $\forall n \in \mathbb{N}, u_n \in D$.

Prop: Si $f(D) \subset D$ et $u_0 \in D$ alors $\forall n \in \mathbb{N}, u_n \in D$ et u est bien définie.

Désormais, $f(D) \subset D$ et $u_0 \in D$ donc u est bien définie .

<u>Conséquence</u>: Si D est bornée ou f est bornée (resp. majorée, minorée) sur D alors u est bornée (resp. majorée, minorée).

2) Limites possibles de u :

Prop: Si $L = \lim_{n \to +\infty} u_n$ et $L' = \lim_{n \to +\infty} f(x)$ alors L = L'.

En particulier, Si $\lim_{n \to \infty} u_n = L$ réel et f est continue en L alors $\underline{L} = f(L)$ i.e. L est un point fixe de f.

Dámo

<u>Conséquence</u>: Si f est continue sur D et $\forall n \in \mathbb{N}, u_n \in D$ alors les limites possibles de u sont les points fixes de f dans D et les bords de D qui n'appartiennent pas à D.

3) Monotonie de u:

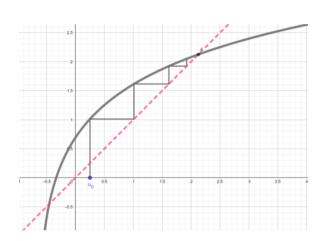
Prop : Si f est croissante alors u est monotone (croissante si $u_1 - u_0 = f(u_0) - u_0 \ge 0$ et décroissante si $u_1 - u_0 \le 0$ et lorsque u_0 n'est pas connu , on étudie le signe de g(x) = f(x) - x en fonction de x pour connaître le sens de monotonie suivant la valeur de u_0 .

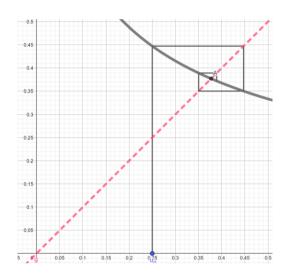
Démo

Prop : Si f est décroissante alors les suites extraites (u_{2n}) et (u_{2n+1}) sont monotones de monotonie contraire. Lorsque la valeur de u_0 n'est pas connue, on doit étudier le signe de $h(x) = f \circ f(x) - x$ pour connaître le sens de monotonie.

Démo

Illustration:





4) Cas où f est contractante i.e. lipschitzienne de rapport $M \in [0, 1]$.

Etapes et preuve à connaitre :

Def : f est lipschitzienne sur D lorsqu'il un réel M tel que pour tous a et b de D , $|f(b)-f(a)| \leq M|b-a|$. M est le rapport de Lipchitz de f. f est contractante sur D lorsqu'il un réel $M \in [0,1[$ tel que pour tous a et b de D , $|f(b)-f(a)| \leq M|b-a|$ i.e. lorsque f est lipschitzienne de rapport strictement inférieur à 1. NB : toute fonction lipschitzienne sur D est continue sur D.

A savoir démontrer : si f est contractante sur D, de rapport M et L est un point fixe de f dans D alors L est l'unique point fixe de f sur D et $\lim_{n \to +\infty} u_n = L$ et $\forall n, |u_n - L| \le M^n |u_0 - L|$. Démo

Exemples:

- 1) Soit u une suite définie par : u_0 réel et $\forall n, u_{n+1} = \sqrt{1 + u_n^2}$. Etudiez la convergence de u et trouvez-en un équivalent simple.
- 2) Etudier la convergence de u telle que : $\forall n,\; u_{n+1}=u_n^2+u_n\;$ et $u_0=\alpha$ réel . Illustrer ce résultat.
- 3) Soit u la suite définie par : $u_0 \in \left[0, \frac{\pi}{2}\right]$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \sin(u_n)$. Montrer que u converge vers 0.
- 4) Etudier la convergence de u telle que $u_0 \ge 0$ et $\forall n \in \mathbb{N}, u_{n+1} = ln(1+2u_n)$. Illustrer ce résultat.
- 5) Soit u la suite définie par $: u_0 \in \left[\frac{3}{4}, \frac{5}{4}\right]$ et $\forall n \in \mathbb{N}$, $u_{n+1} = 1 + \frac{1}{4} \sin \frac{1}{u_n}$.
 - a) Montrer que u est bien définie et que u n' a qu'une seule limite possible notée λ .
 - b) Montrer que (u_{2n}) et (u_{2n+1}) sont monotones et convergentes.
 - c) Prouver la convergence de la suite u.
 - d) Montrer que $|u_n \lambda| \le \left(\frac{1}{2}\right)^{n+1}$
 - e) Ecrire un programme en python qui prend en entrée un réel $\varepsilon>0$ et qui retourne une valeur approchée de λ à ε près.

Soit u une suite définie par : u_0 réel et $\forall n, u_{n+1} = \sqrt{1 + u_n^2}$. Etudiez la convergence de u et trouvez-en un équivalent simple.

On miontre facilement par un récurrence simple que $\forall n \geq 1, u_n \geq 1$. De plus, $u_{n+1}^2 - u_n^2 = 1 > 0$. Donc $u_{n+1} > u_n$ et la suite $\frac{u}{v}$ est strictement croissante. Donc u admet une limite u, réelle supérieure à u ou égale u +u.

Imaginons un instant que L soit réelle. Alors $L=\lim_{n\to+\infty}u_{n+1}=\lim_{n\to+\infty}\sqrt{1+u_n^{\ 2}}=\sqrt{1+L^2}$. Donc $L^2=1+L^2$ ce qui est impossible. Par conséquent,

 $\forall n \in \mathbb{N}, u_{n+1}^2 - u_n^2 = 1. \ \mathsf{Donc} \ , \forall n \in \mathbb{N}, \sum_{k=0}^{n-1} (u_{k+1}^2 - u_k^2) = \sum_{k=0}^{n-1} 1 \ \mathsf{Donc} \ , u_n^2 - u_0^2 = n. \ \mathsf{Ainsi} \ , u_n = \sqrt{n + u_0^2} \sim \sqrt{n}.$

Etudier la convergence de u telle que : $\forall n$, $u_{n+1} = u_n^2 + u_n$ et $u_0 = \alpha$ réel . Illustrer ce résultat.

 $\forall n, u_n \ existe \ et \ \forall n, \ u_{n+1} - u_n = u_n^2 \ge 0.$ Donc, (u_n) est croissante donc a une limite L réelle ou $L = +\infty$.

Si L est finie alors $L=\lim_{n\to+\infty}u_{n+1}=\lim_{n\to+\infty}u_n^2+u_n=L^2+L$ et par suite $L^2=0$ donc L=0. Ainsi, 0 et $+\infty$ sont les seules limites possibles de u.

 $\forall n, \ u_{n+1} = u_n(u_n + 1) = f(u_n) \text{ où } f: (x \mapsto x(x+1)).$

 $f(]-\infty,-1[\cup]0,+\infty[)\subset\mathbb{R}^{+*}.\ \ \text{Donc, si}\ u_0\in]-\infty,-1[\cup]0,+\infty[,u_1\in\mathbb{R}^{+*}\ et\ \text{par consequent}\ \lim_{n\to+\infty}u_n=+\infty.$

 $f(]-1,0[) \subset]-1,0[$. Donc, si $u_0 \in]-1,0[$, $\forall n,\ u_n \in]-1,0[$ et par conséquent, $\lim_{n \to +\infty} u_n = 0$.

x	-∞		- 1	$-\frac{1}{2}$	0		+∞
x + 1		_	0	+		+	
f(x)		+	0	$-\frac{1}{4}$	0	+	

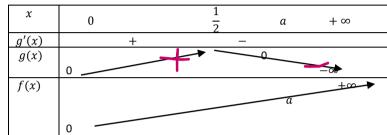
Soit u la suite définie par : $u_0 \in \left[0, \frac{\pi}{2}\right]$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \sin(u_n)$. Montrer que u converge vers 0 .

Etudier la convergence de u telle que $u_0 \ge 0$ et $\forall n \in \mathbb{N}$, $u_{n+1} = ln(1 + 2u_n)$. Illustrer ce résultat.

Soit $f:(x\mapsto \ln(1+2x))$. $f(\mathbb{R}^+)\subset \mathbb{R}^+et\ u_0\in \mathbb{R}^+$ donc $\forall n\in \mathbb{N}, u_n$ existe et $u_n\geq 0$. Donc u est minorée.

Limites possibles de u: comme f est continue sur \mathbb{R}^+ et $\lim_{t\to\infty} f(x) = +\infty$ et $\forall n\in\mathbb{N}, u_n\in\mathbb{R}^+$, les limites possibles de u sont les points fixes de f sur \mathbb{R}^+ , s'ils existent, et $+\infty$. Cherchons les points fixes de f sur \mathbb{R}^+ . Posons g: $(x\mapsto f(x)-x)$. Alors g est continue et dérivable sur \mathbb{R}^+ et $\forall x\geq 0, g'(x)=\frac{2}{1+2x}-1=\frac{1-2x}{1+2x}$.

g s'annule donc une et une seule fois en un réel a et a>1/2. Donc f admet un et un seul point fixe a.



f est strictement croissante (puisque $(x \mapsto 1 + 2x)$ et ln le sont). Par conséquent u est monotone.

De plus, $1^{\text{er}} \cos : u_0 \in]0, a[$. Alors $g(u_0) \ge 0$ $i.e. u_1 - u_0 \ge 0$ donc u est croissante. De plus, $f(]0, a[) \subset]0, a[$. Donc $\forall n \in \mathbb{N}, u_n \in]0, a[$. Donc u est majorée et par suite u converge vers u la seule limite possible de u.

Et si $u_0 \in]a, +\infty[$ alors $g(u_0) < 0$ i.e. $u_1 - u_0 < 0$ donc u est décroissante. De plus, $f(]a + \infty[) \subset]a + \infty[$. Donc $\forall n \in \mathbb{N}, u_n \in]a + \infty[$. Donc u est minorée et par suite u converge vers u la seule limite possible de u.

si $u_0 = 0$ alors u est constante nulle. si $u_0 = a$ alors u est constante égale à a.

Soit u la suite définie par $:u_0\in \left[\frac{3}{4},\frac{5}{4}\right]$ et $\forall n\!\in\!\mathbb{N}$, $u_{n+1}=1+\frac{1}{4}sin\frac{1}{u_n}$.

- a) Montrer que u est bien définie et que u n' a qu'une seule limite possible notée λ .
- b) Montrer que (u_{2n}) et (u_{2n+1}) sont monotones et convergentes.
- c) Prouver la convergence de la suite u.
- d) Montrer que $|u_n \lambda| \le \left(\frac{1}{2}\right)^{n+1}$.
- e) Ecrire un programme en python qui prend en entrée un réel $\varepsilon>0$ et qui retourne une valeur approchée de λ à ε près.

Soit $f:\left(x\mapsto 1+\frac{1}{4}sin\left(\frac{1}{x}\right)\right)$ $Df=\mathbb{R}^*$ et $f(\mathbb{R}^*)\subset\left[\frac{3}{4},\frac{5}{4}\right]$ donc $f\left(\frac{3}{4},\frac{5}{4}\right)\subset\left[\frac{3}{4},\frac{5}{4}\right]$. Comme de plus, $u_0\in\left[\frac{3}{4},\frac{5}{4}\right]$, $\forall n\in\mathbb{N}$, u_n existe et $u_n\in\left[\frac{3}{4},\frac{5}{4}\right]$. Donc u est bornée. Comme f est continue sur $\left[\frac{3}{4},\frac{5}{4}\right]$, les limites possibles de u sont donc les points fixes de f dans $\left[\frac{3}{4},\frac{5}{4}\right]$.

Posons $g: (x \mapsto f(x) - x)$. g est continue et dérivable sur $\left[\frac{3}{4}, \frac{5}{4}\right]$ et $\forall x \in \left[\frac{3}{4}, \frac{5}{4}\right]$, $g'(x) = f'(x) - 1 = -\frac{1}{4x^2}\cos\left(\frac{1}{x}\right) - 1 < 0$. Donc g est strictement décroissante sur $\left[\frac{3}{4}, \frac{5}{4}\right]$ tout comme f. De plus, $g\left(\frac{3}{4}\right) = 1 + \frac{1}{4}\sin\left(\frac{4}{3}\right) - \frac{3}{4} = \frac{1}{4}\left(1 + \sin\left(\frac{4}{3}\right)\right) > 0$ et $g\left(\frac{5}{4}\right) = 1 + \frac{1}{4}\sin\left(\frac{4}{5}\right) - \frac{5}{4} = \frac{1}{4}\left(\sin\left(\frac{4}{5}\right) - 1\right) < 0$. Donc g s'annule une et une seule fois sur $\left[\frac{3}{4}, \frac{5}{4}\right]$ en un réel λ .

Comme f est strictement décroissante sur $\left[\frac{3}{4}, \frac{5}{4}\right]$, (u_{2n}) et (u_{2n+1}) sont monotones de monotonie contraire. Comme elles sont extraites de u, elles sont bornées et par conséquent, elles sont convergentes.

Montrons que (u_{2n}) et (u_{2n+1}) convergent vers la même limite.

Comme (u_{2n}) et (u_{2n+1}) sont récurrentes associées à $f \circ f$,fonction continue sur $\left[\frac{3}{4},\frac{5}{4}\right]$, les limites possibles de (u_{2n}) et (u_{2n+1}) sont les limites possible de $f \circ f$. Posons $h: (x \mapsto f \circ f(x) - x)$. h est continue et dérivable sur $\left[\frac{3}{4},\frac{5}{4}\right]$ et $\forall x \in \left[\frac{3}{4},\frac{5}{4}\right]$, h'(x) = f'(x)f'(f(x)) - 1. Or, $\forall x \in \left[\frac{3}{4},\frac{5}{4}\right]$, $|f'(x)| = \left|-\frac{1}{4x^2}\cos\left(\frac{1}{x}\right)\right| \le \frac{1}{4x^2} \le \frac{1}{4x\left(\frac{3}{4}\right)^2} = \frac{4}{9}$. Donc, $|f'(x)f'(f(x))| \le \frac{16}{81}$ i.e. $-\frac{16}{81} \le f'(x)f'(f(x)) \le \frac{16}{81}$ et par conséquent, h'(x) < 0. Donc h est strictement

décroissante sur $\left[\frac{3}{4}, \frac{5}{4}\right]$. Donc h s'annule au plus une fois sur $\left[\frac{3}{4}, \frac{5}{4}\right]$. Or, $h(\lambda) = f(f(\lambda)) - \lambda = f(\lambda) - \lambda = 0$. Donc λ est l'unique point fixe de $f \circ f$ et donc l'unique limite possible de (u_{2n}) et de (u_{2n+1}) . Comme ces deux suites convergent, (u_{2n}) et (u_{2n+1}) convergent vers λ .

$$\begin{aligned} |u_{n+1}-\lambda| &= |f(u_n)-f(\lambda)| = \left|\frac{1}{4}\sin\left(\frac{1}{u_n}\right) - \frac{1}{4}\sin\left(\frac{1}{\lambda}\right)\right| = \frac{1}{4}\left|\sin\left(\frac{1}{u_n}\right) - \sin\left(\frac{1}{\lambda}\right)\right| = \frac{1}{4}\left|2\sin\left(\frac{1}{2u_n} - \frac{1}{2\lambda}\right)\cos\left(\frac{1}{2u_n} + \frac{1}{2\lambda}\right)\right| \\ |u_{n+1}-\lambda| &= \frac{1}{2}\left|\sin\left(\frac{1}{2u_n} - \frac{1}{2\lambda}\right)\right|\left|\cos\left(\frac{1}{2u_n} + \frac{1}{2\lambda}\right)\right| \leq \frac{1}{2}\left|\sin\left(\frac{1}{2u_n} - \frac{1}{2\lambda}\right)\right| = \frac{1}{2}\left|\sin\left(\frac{\lambda-u_n}{2\lambda u_n}\right)\right| \leq \frac{1}{2}\left|\frac{\lambda-u_n}{2\lambda u_n}\right| = \frac{1}{4\lambda}\frac{1}{|u_n|} \ |u_n-\lambda| \\ |u_{n+1}-\lambda| &\leq \frac{16}{4\times 9} \ |u_n-\lambda| \leq \frac{4}{9} \ |u_n-\lambda| \leq \frac{1}{2}|u_n-\lambda|. \end{aligned}$$

Alors, par récurrence, on montre alors $\forall n, |u_n - \lambda| \leq \underbrace{\frac{1}{2^n}|u_0 - \lambda|}_{\widehat{\varepsilon}_n} \leq \frac{1}{2^{n+1}}$. (Comme $\left|\frac{1}{2}\right| < 1$, $\lim_{n \to +\infty} \frac{1}{2^n} = 0$ donc, $\lim_{n \to +\infty} \varepsilon_n = 0$ et par conséquent, on

retrouve bien $\lim_{n\to+\infty}u_n=\lambda$).

```
from math import*
def approximation(e):
         s=1
         While 1/(2^i)>e:
                   s=1+sin(1/s)/4
                   i=i+1
         print(s,i)
```

XV. **Suites implicites**

Déf: Une suite implicite est une suite dont le terme de rang n, u_n , est la solution d'une équation $\varphi_n(x) = 0$ dans un intervalle I_n donné . u_n est alors entièrement défini par : $\left\{ egin{align*} & \varphi_n(u_n) = 0 \\ & u_n \in I_n \end{array} \right.$

Exemples:

- **1**. Soit $n \ge 2$ et (E_n) l'équation $\sum_{k=1}^n x^k = 1$ d'inconnue x réelle.
 - a. Justifier que : pour tout $n \ge 2$, l'équation (E_n) admet une unique solution positive. On note λ_n cette solution.
 - Montrer que la suite (λ_n) est monotone et convergente.
 - c. Déterminer la limite de la suite (λ_n) .
 - Soit $n \ge 2$. φ_n : $(x \mapsto (\sum_{k=1}^n x^k) 1)$ est polynomiale donc continue et même de classe C^{∞} sur \mathbb{R}^+ . De plus, φ_n est la somme de fonctions strictement croissantes : $(x \mapsto x - 1), (x \mapsto x^2), \dots, (x \mapsto x^n)$. Donc φ_n est strictement croissante sur l'intervalle \mathbb{R}^+ . Donc, le TBCSM assure que φ_n est bijective de \mathbb{R}^+ sur $f(\mathbb{R}^+) = [f(0), \lim_{n \to \infty} f = [-1, +\infty[$. Alors comme $0 \in [-1, +\infty[$, 0 admet un unique antécédent par φ_n . Ainsi, l'équation (E_n) admet une unique solution positive. Notons λ_n cette solution positive. De plus $\varphi_n(0) = -1$ et $\varphi_n(1) = n - 1 > 1$ 0. Donc $0 < \lambda_n < 1$.

Alors pour tout $n \ge 2$, $0 < \lambda_n < 1$ et $\sum_{k=1}^n (\lambda_n)^k = 1$ i. e. $\varphi_n(\lambda_n) = 0$. Ainsi, la suite (λ_n) existe et est bornée.

b. Soit $n \ge 2$. $\varphi_n(\lambda_n) = 0$ et $\varphi_{n+1}(\lambda_{n+1}) = 0$ i. $e \cdot \sum_{k=1}^{n+1} (\lambda_{n+1})^k = 1$.

 $\text{Alors, } \varphi_n(\lambda_{n+1}) = [\sum_{k=1}^n (\lambda_{n+1})^k] - 1 = [\sum_{k=1}^{n+1} (\lambda_{n+1})^k] - \lambda_{n+1}^{-n+1} - 1 = \varphi_{n+1}(\lambda_{n+1}) - \lambda_{n+1}^{-n+1} = -\lambda_{n+1}^{-n+1} < 0 \ car \ 0 \leq \lambda_{n+1} < 1.$ Donc, $\varphi_n(\lambda_{n+1}) < \varphi_n(\lambda_n)$. Comme φ_n est strictement croissante sur \mathbb{R}^+ , $\lambda_{n+1} < \lambda_n$. Ainsi, la suite (λ_n) est strictement décroissante et bornée donc convergente. Notons L la limite de la suite (λ_n) .

c. Soit $n \ge 2$. $\forall x \in [0,1[,\varphi_n(x)=(\sum_{k=1}^n x^k)-1=x\frac{1-x^n}{1-x}-1=\frac{-1+2x-x^{n+1}}{1-x}]$. Donc $\frac{-1+2\lambda_n-(\lambda_n)^{n+1}}{1-\lambda_n}=0$ et par suite, $comme\ \lambda_n>0$, $\frac{-1+2\lambda_n-e^{(n+1)\ln{(\lambda_n)}}}{1-\lambda_n}=0$ et par suite $2\lambda_n-1=e^{(n+1)\ln{(\lambda_n)}}$; j'en déduis que $1>\lambda_n>0$

1/2 et comme la suite suite (λ_n) est décroissante, $1 > L \ge \frac{1}{2}$.

Alors, $\lim_{n \to +\infty} (n+1) \ln(\lambda_n) = -\infty$ et ^par passage à la limite dans (**), $0 = \lim_{n \to +\infty} 2\lambda_n - 1e^{(n+1)\ln(\lambda_n)} = 2L - 1$ et ainsi, $L = \frac{1}{2}$.

- On définit la suite u par : pour tout entier naturel n, u_n est l'unique solution de l'équation $\tan(x) = x$ dans $\left| -\frac{\pi}{2} + n\pi, \frac{\pi}{2} + n\pi \right|$.
- Justifier que $\forall n, u_n$ est bien défini. Représenter la suite u.
- Etudier la monotonie et la limite de la suite u. b.
- Montrer que $u_n n\pi \sim_{+\infty} \frac{\pi}{2}$.
- Déterminer des réels a, b et c tels que : $u_n = an + b + \frac{c}{n} + o_{+\infty} \left(\frac{1}{n}\right)$.

a. Soit $\varphi(x) = \tan(x) - x$. φ est continue et dérivable sur chaque intervalle $I_n = \left[-\frac{\pi}{2} + n\pi, \frac{\pi}{2} + n\pi \right]$.

 $\forall x \in I_n, \varphi'(x) = 1 + tan^2(x) - 1 = tan^2(x) \ge 0$ et $\varphi'(x) = 0 \Leftrightarrow x = n\pi$. Donc φ' ne s'annule qu'au point isolé $n\pi$ de l'intervalle I_n . Donc $\varphi'(x) = 1 + tan^2(x) - 1 = tan^2(x) \ge 0$ et $\varphi'(x) = 1 + tan^2(x) - 1 = tan^2(x) \ge 0$ et $\varphi'(x) = 1 + tan^2(x) - 1 = tan^2(x) \ge 0$ et $\varphi'(x) = 1 + tan^2(x) - 1 = tan^2(x) \ge 0$ et $\varphi'(x) = 1 + tan^2(x) \ge 0$ et $\varphi'(x) = 0$ et $\varphi'(x) = 1 + tan^2(x) \ge 0$ et $\varphi'(x) = 0$ et $\varphi'($ est continue et strictement croissante sur chaque intervalle I_n .

Donc φ est bijective de $I_n = \left] - \frac{\pi}{2} + n\pi, \frac{\pi}{2} + n\pi \right[\sup \varphi(I_n) = \lim_{\left(-\frac{\pi}{2} + n\pi\right)^+} \varphi, \lim_{\left(\frac{\pi}{2} + n\pi\right)^-} \varphi \right] = \mathbb{R}$. Alors 0 a un unique antécédent u_n par φ dans caque intervalle I_n . Ainsi, $\forall n, u_n$ est défini par : $\begin{cases} \tan(u_n) = u_n \\ u_n \in \left] - \frac{\pi}{2} + n\pi, \frac{\pi}{2} + n\pi \right[\right).$

b. Soit $n \in \mathbb{N}$. $u_n \in \left] - \frac{\pi}{2} + n\pi, \frac{\pi}{2} + n\pi \right[\text{ et } u_{n+1} \in \left] - \frac{\pi}{2} + (n+1)\pi, \frac{\pi}{2} + (n+1)\pi \right[= \left] \frac{\pi}{2} + n\pi, \frac{3\pi}{2} + n\pi \right[\text{ Donc, } u_n < \frac{\pi}{2} + n\pi < u_{n+1}. \text{ Ainsi}, (u_n) \text{ est } u_{n+1} \in \left[-\frac{\pi}{2} + n\pi, \frac{\pi}{2} + n\pi,$ une suite strictement croissante. Et $\forall n, -\frac{\pi}{2} + n\pi < u_n$, comme $\lim_{n \to +\infty} -\frac{\pi}{2} + n\pi = +\infty$, $\lim_{n \to +\infty} u_n = +\infty$.

 $\textbf{c.}\ tan(u_n) = u_n\ et\ u_n \in \left] -\frac{\pi}{2} + n\pi, \frac{\pi}{2} + n\pi \right[\ donc\ .\ tan(u_n - n\pi) = u_n\ et\ u_n - n\pi \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[.\ \text{Par cons\'equent}, u_n - n\pi = Arctan(u_n).\ \text{Commercial Particles} \right]$ $\lim_{n\to+\infty}u_n\ = +\infty, \lim_{n\to+\infty} Arctan(u_n)\ = \frac{\pi}{2}\ \in\ \mathbb{R}^*. \ \text{J'en déduis que } \frac{u_n-n\pi\sim_{+\infty}\frac{\pi}{2}}{2}$

d. Alors $u_n - n\pi = \frac{\pi}{2} + o_{+\infty}(1)$ donc $u_n = n\pi + \frac{\pi}{2} + o_{+\infty}(1)$ i.e. $u_n = n\pi + \frac{\pi}{2} + \varepsilon_n$ et $\lim_{n \to +\infty} \varepsilon_n = 0$. Cherchons un équivalent de ε_n quand $n \to +\infty$.

 $u_n - n\pi = Arctan\left(n\pi + \frac{\pi}{2} + o_{+\infty}(1)\right) = \frac{\pi}{2} - Arctan\left(\frac{1}{n\pi + \frac{\pi}{2} + o_{+\infty}(1)}\right). \text{ Et } \frac{1}{n\pi + \frac{\pi}{2} + o_{+\infty}(1)} \sim +\infty \frac{1}{n\pi} \xrightarrow[n \to +\infty]{} 0 \text{ et } Arctan(t) \sim_{t \to 0} t \text{ donce} t$

 $Arctan\left(\frac{1}{n\pi+\frac{\pi}{2}+o_{+\infty}(1)}\right) \sim_{n\to+\infty} \frac{1}{n\pi+\frac{\pi}{2}+o_{+\infty}(1)} \sim_{+\infty} \frac{1}{n\pi}. \text{ Donc, } Arctan\left(\frac{1}{n\pi+\frac{\pi}{2}+o_{+\infty}(1)}\right) = \frac{1}{n\pi} + o_{n\to+\infty}\left(\frac{1}{n\pi}\right) =$

Ainsi, $u_n - n\pi = \frac{\pi}{2} - \frac{1}{n\pi} + o_{n \to +\infty} \left(\frac{1}{n}\right)$ i.e. $u_n = \underbrace{\pi}_{=a} n + \underbrace{\frac{\pi}{2}}_{=b} + \underbrace{\left(\frac{-1}{\pi}\right)\frac{1}{n}}_{=c} + o_{n \to +\infty} \left(\frac{1}{n}\right)$.

Méthode : Etude d'une telle suite :

- 1) **Définition**: on fixe n arbitrairement, on écrit l'équation donnée sous la forme $\varphi_n(x)=0$ et on vérifie que cette équation a bien une et une seule solution dans l'intervalle I_n : on étudie φ_n et on prouve que φ_n s'annule une et une seule fois sur I_n grâce au TVI et à la stricte monotonie ... (TBCSM). On justifie ainsi que la suite (u_n) est bien définie .
- NB: φ_n est parfois bijective sur I_n alors $0 = \varphi_n(u_n)$ s'écrit $u_n = \varphi_n^{-1}(0)$. Il suffit alors d'étudier φ_n^{-1} au voisinage de 0.
- 2) **Monotonie**: a) les intervalles I_n permettent parfois de conclure directement . Sinon. b) on cherche le signe de $\varphi_n(u_{n+1})$ (en utilisant $\varphi_{n+1}(u_{n+1})=0$) et on utilise la monotonie de φ_n pour conclure . Si par exemple $\varphi_n(u_{n+1})>0=\varphi_n(u_n)$ et φ_n décroissante alors $u_n>u_{n+1}$ et la suite (u_n) est décroissante .
- 3) **Bornée** : a) les intervalles I_n permettent parfois de conclure directement . Sinon.
 - b) Par le TVI appliqué à ϕ_n entre deux valeurs bien choisies, on peut encadrer la suite .
- 4) **Convergence:** a) les intervalles I_n permettent parfois de conclure directement . b)Si l'on sait que u a une limite (parce que u monotone par exemple), on passe à la limite dans la relation $\varphi_n(u_n)=0$, il est parfois utile de la transformer et d' utiliser les propriétés de la suite (u_n) et notamment son caractère borné.
- 5) **Développement asymptotique :** le plus souvent on l'obtient en plusieurs étapes :
 - a) On obtient un équivalent α_n de u_n pour n au voisinage de $+\infty$ en utilisant des développements limités et équivalents usuels dans la relation $\varphi_n(u_n)=0$. On pose alors : $u_n=\alpha_n+\varepsilon_n$ tel que $\varepsilon_n=\mathrm{o}_{+\infty}(\alpha_n)$.
 - b) On obtient un équivalent δ_n de ε_n pour n au voisinage de $+\infty$ en réinjectant dans $\varphi_n(\alpha_n+\varepsilon_n)=0$ utilisant des développements limités et équivalents usuels dans la relation $\varphi_n(u_n)=0$ On pose alors : $\varepsilon_n=\delta_n+\mu_n$ tel que $\mu_n=o_{+\infty}(\varepsilon_n)$...
 - c) Et on recommence !!!!
 - NB: D'autres méthodes sont parfois suggérées par l'énoncé. Laissez-vous guider.