DL 6

Pour mercredi 31 janvier

EXERCICE 1 Soit (u_n) une suite réelle croissante telle que : $\forall n \in \mathbb{N}^*, u_{2n} - u_n \leq \frac{1}{n}$. On pose $\forall p \in \mathbb{N}, v_p = u_{2^p}$.

- 1. Montrer que : $\forall p \in \mathbb{N}, v_p v_0 \leq \frac{2^p 1}{2^p 2^{p-1}}$.
- 2. En déduire que (u_n) converge.

EXERCICE 2

Soit $\frac{a}{a}$ un réel supérieur à $\frac{1}{a}$ et l'entier naturel k tel que $k^2 \le a < (k+1)^2$.

Soit u la suite définie par : $u_0 = k$ et $\forall n \in \mathbb{N}, u_{n+1} = \frac{1}{2} \left(u_n + \frac{a}{u_n} \right)$.

- Montrer que $\forall n \in \mathbb{N}, u_n$ existe.
- Montrer que la suite u est décroissante à partir du rang 1. 2.
- Justifier l'existence et la valeur de la limite de la suite u.
- 4. Montrer que $\forall n \in \mathbb{N}^*, \left|u_{n+1} \sqrt{a}\right| \leq \frac{\left|u_n \sqrt{a}\right|^2}{2\sqrt{a}}.$ 5. En déduire que $\forall n \in \mathbb{N}, \left|u_n \sqrt{2}\right| \leq \left(\frac{1}{2\sqrt{a}}\right)^{2^n-1} \left|u_0 \sqrt{a}\right|^{2^n}.$
- Désormais on suppose que $k \neq 0$. Montrer que $\forall n \in \mathbb{N}, \left|u_n \sqrt{a}\right| \leq \left(\frac{1}{2}\right)^{2^n 1}$
- 7. Ecrire un programme en python permettant d'obtenir une valeur approchée rationnelle de \sqrt{a} à 10^{-4} près.

EXERCICE 3

On définit la suite (x_n) par : pour tout entier naturel n, x_n est l'unique solution dans \mathbb{R}^{*+} de l'équation : $t + \ln(t) = n$ d^1 inconnue $t \in \mathbb{R}^{*+}$.

- a. Justifier que $\forall n, x_n$ est bien défini. Représenter (illustrer) la suite (x_n) .
- b. Etudier la monotonie et la limite de la suite (x_n) .
- c. Montrer que $x_n = n \ln(n) + \frac{\ln(n)}{n} + o\left(\frac{\ln(n)}{n}\right)$.
- d. Montrer que φ : $(t\mapsto t+\ln(t))$ est bijective de \mathbb{R}^{*+} sur \mathbb{R} .
- e. Montrer que $\varphi^{-1}(t) = t \ln(t) + \frac{\ln(t)}{t} + o_{+\infty} \left(\frac{\ln(t)}{t}\right)$.
- Retrouver alors le développement asymptotique la suite (x_n) obtenue à la question c.

DI 7

Pour mercredi 7 février

PROBLEME Une équation fonctionnelle

On rappelle que $C^0(\mathbb{R},\mathbb{R})$ est l'ensemble des fonctions réelles continues sur \mathbb{R}

On note $E = \{ f \in C^0(\mathbb{R}, \mathbb{R}) / \forall (x, y) \in \mathbb{R}^2, f(x + y) + f(x - y) = 2f(x)f(y) \}.$

On note F I' ensemble des éléments $f \in E$ tels que f ne soit pas la fonction nulle et f s' annule au moins une fois sur \mathbb{R} .

PARTIE 1 Exemples et premières propriétés des éléments de E.

- 1. Quelles sont les fonctions constantes éléments de E ?
- Déterminer une fonction élément de F.
- 3. Démontrer que ch est élément de $E \setminus F$.
- 4. Montrer que si f est un élément de E et $\alpha \in \mathbb{R}$, alors $(x \mapsto f(\alpha x))$ est élément de E.
- 5. Soit f un élément de E.
 - a. Montrer que f(0) = 0 ou 1.
 - b. Montrer que si f(0) = 0 alors f est identiquement nulle.

c. Montrer que si f(0) = 1 alors f est paire.

PARTIE 2 Description complète de E et F.

Soit f un élément de E tel que : f(0) = 1.

- 6. Justifier qu'il existe un réel r > 0 tel que : $\forall x \in [0, r], f(x) > \frac{1}{2}$. En déduire que $\int_0^r f(x) dx > 0$.
- 7. Montrer que $\forall x \in \mathbb{R}$, $\int_0^r f(x+y)dy = \int_x^{x+r} f(u)du$.
- 8. Montrer que $\forall x \in \mathbb{R}, 2f(x) \int_0^r f(y) dy = \int_x^{x+r} f(u) du + \int_{x-r}^x f(v) dv$.
- 9. En déduire que f est de classe C^1 sur \mathbb{R} .
- 10. Montrer que f est de classe C^{∞} sur \mathbb{R} .
- 11. Montrer qu'il existe un réel c > 0 tel que : $\forall x \in \mathbb{R}, cf'(x) = f(x+r) f(x-r)$.
- 12. Montrer qu'il existe un réel λ tel que : $\forall x \in \mathbb{R}, f''(x) = \lambda f(x)$.
- 13. En déduire tous les éléments de E qui vérifient f(0) = 1.
- 14. Quels sont les éléments de E et ceux de F?

PARTIE 3 On se propose de décrire F par une autre méthode.

Soit f un élément de F. On note $U = \{x \in \mathbb{R}^{+*}/f(x) = 0\}$.

15. **PRELIMINAIRE**: Soit a > 0, on note $D_a = \{a \frac{p}{2^q} / p \in \mathbb{Z} \text{ et } q \in \mathbb{N}\}$.

Nous allons montrer, dans cette question, que tout réel est la limite d'une suite d'éléments de D_a . Soit x un réel.

- a. Soit $n \in \mathbb{N}^*$. Montrer qu'il existe $q_n \in \mathbb{N}$ tel que : $1 \leq \frac{1}{q_n} 2^{q_n}$.
- b. Montrer qu'il existe $p_n \in \mathbb{Z}$ tel que : $0 \le x a \frac{p_n}{2^{q_n}} \le \frac{1}{n}$.
- c. En déduire que x est la limite d'une suite d'éléments de D_a .

16. BORNE SUP DE U

- a. Montrer que U admet une borne inférieure finie notée a.
- b. Montrer que f(a) = 0. En déduire que a > 0.
- c. Montrer que $\forall x \in [0, \alpha[, f(x) > 0]$.

17. **QUI EST** *f* **?**

On pose $\omega = \frac{\pi}{2a} \ et \ g: (x \mapsto \cos(\omega x)).$

- a. Soit $q \in \mathbb{N}$. Montrer que , $f\left(\frac{a}{2^q}\right) + 1 = 2\left[f\left(\frac{a}{2^{q+1}}\right)\right]^2$.
- b. Montrer que : $\forall q \in \mathbb{N}, \ f\left(\frac{a}{2^q}\right) = g\left(\frac{a}{2^q}\right)$.
- c. Soit $q \in \mathbb{N}$. Démontrer que : $\forall p \in \mathbb{N}, \ f\left(a\frac{p}{2q}\right) = g\left(a\frac{p}{2q}\right)$.
- d. En déduire que $\forall x \in D_a, f(x) = g(x)$.
- e. En déduire que f = g.
- f. Retrouver alors tous les éléments de F.