Programme de colle 24

CHAPITRE 16: Espaces vectoriels.

Cf programme précédent

CHAPITRE 17: Espaces vectoriels de dimension finie.

I Dimension finie.

Définition d'un K-e-v de dimension finie (resp. infinie).

Un K-e-v E est de dimension finie lorsque E admet une famille génératrice finie.

Condition suffisante pour être un K-e-v de dimension infinie .

Si E contient une famille $(\overrightarrow{e_k})_{k \in \mathbb{N}}$ telle que $\forall n \in \mathbb{N}, (\overrightarrow{e_1}, \overrightarrow{e_2}, \dots, \overrightarrow{e_n})$ est libre alors E est de dimension infinie.

Comparaison du cardinal d'une famille libre et cardinal d'une famille génératrice

Dans un K-e-v E de dimension finie, le cardinal de n'importe quelle famille libre de vecteurs de E est inférieur ou égal au cardinal de toute famille génératrice de E.

Existence d'une base et définition de la dimension.

Tout K-e-v E de dimension finie et non réduit à $\{\overrightarrow{O_E}\}$ a une base de cardinal fini et toutes les bases de E ont le même cardinal. Ce cardinal commun à toutes les bases de E est la dimension de E.

Bases et dimension des K-e-v de référence.

Une droite vectorielle est un e-v de dimension 1. Un plan vectoriel est un e-v de dimension 2.

Si P est $le\ \mathbb{R}-e-v$ des vecteurs du plan, alors une base de P est formée de 2 vecteurs de P non colinéaires et $dim_\mathbb{R}P=2$

Si E est le $\mathbb{R}-e-v$ des vecteurs de l'espace géométrique alors une base de E est formée de trois vecteurs de E non coplanaires et $dim_{\mathbb{R}}E=3$.

 $dim_K K = 1$. Base de K: (1).

 $dim_K K^n = n$. Base canonique de K^n : ((1,0,...,0), (0,1,0,...,0),, (0,0,...,0,1)

 $dim_K M_{n,p}(K) = np$. Base canonique de $M_{n,p}(K) : (E_{ij})_{(i,j) \in [1,n] \times [1,p]}$

 $dim_K K_n[X] = n + 1$. Base canonique de $K_n[X]: (1, X, X^2, ..., X^n)$. Base de Taylor en α de $K_n[X]: (1, X - \alpha, (X - \alpha)^2, ..., (X - \alpha)^n)$.

 $dim_K K[X] = +\infty.$

 $\dim_K \mathscr{F}(I,K) = +\infty$, $\dim_K C^k(I,K) = +\infty$, $\dim_K D^k(I,K) = +\infty$, $\dim_K C^\infty(I,K) = +\infty$.

 $dim_K K^{\mathbb{N}} = +\infty.$

II Famille de vecteurs dans un K-e-v de dimension finie

Comparaison de la dimension avec le cardinal d'une famille libre et avec le cardinal d'une famille génératrice

Dans un K-e-v E de dimension finie, si G est une famille génératrice de E, G est une base de E et E une famille libre de vecteurs de E alors, $card(E) \leq card(G) \leq card(G)$.

Caractérisation d'une base : famille libre et maximale ou famille génératrice et minimale .

Soit E K-e-v de dimension finie et ${\mathcal F}$ une famille de vecteurs de E

 \mathcal{F} est une base de E sietssi \mathcal{F} est libre et card(\mathcal{F})=dim(E).

sietssi \mathcal{F} est génératroie et card (\mathcal{F}) =dim(E).

Théorème de complétion d'une famille libre pour obtenir une base

Dans un K-e-v E de dimension finie, toute famille libre \mathcal{L} peut être compléter par $dim(E) - card(\mathcal{L})$ vecteurs bien choisis parmi les vecteurs Tapez une équation ici.d'une base de E pour obtenir une nouvelle base de E.

Théorème d'extraction d'une base d'une famille génératrice.

Dans un K-e-v E de dimension finie, de toute famille génératrice G on peut ôter card(G)-dim(E) vecteurs bien choisis parmi les vecteurs d'une base de G pour obtenir une nouvelle base de E.

Matrice d'une famille de vecteurs dans une base finie.

Soit $\mathcal{B} = (\overrightarrow{e_1}, \overrightarrow{e_2}, \dots \overrightarrow{e_n})$ une base d'un K-e-v E de dimension finie n. Soit $\mathcal{V} = (\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_p})$ une famille de vecteurs de E. $\forall j \in \{1, \dots p\}$, notons $(\alpha_{1j}, \alpha_{2j}, \dots, \alpha_{nj})$ les composantes de $\overrightarrow{v_j}$ dans \mathcal{B} ie. $\overrightarrow{v_j} = \sum_{i=1}^n \alpha_{ij} \overrightarrow{e_i}$

$$mat_{\mathcal{B}}v = \begin{pmatrix} v_{1} & v_{2} & \cdots & v_{p} \\ \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1p} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2p} \\ \vdots & \vdots & & \vdots \\ \alpha_{n1} & \alpha_{n2} & \cdots & \alpha_{np} \end{pmatrix} \stackrel{e_{1}}{\underset{e_{n}}{\underbrace{e_{1}}}}$$

$$\Delta{:} \begin{pmatrix} E \to M_{n,1}(K) \\ \vec{x} \to mat_B \vec{x} \end{pmatrix} \text{est une bijection}.$$

Soit \vec{x} et \vec{y} deux vecteurs de \vec{E} , α , β deux scalaires. Alors $mat_{\mathcal{B}}(\alpha\vec{x} + \beta\vec{y}) = \alpha mat_{\mathcal{B}}\vec{x} + \beta mat_{\mathcal{B}}\vec{y}$.

 $\text{Soit } \overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_p} \text{ des vecteurs de } E \cdot \overrightarrow{x} = \alpha_1 \overrightarrow{v_1} + \alpha_2 \overrightarrow{v_2} + \dots + \alpha_p \overrightarrow{v_p} \text{ si et ssi } mat_{\mathcal{B}} \overrightarrow{x} = \alpha_1 mat_{\mathcal{B}} \overrightarrow{v_1} + \alpha_2 mat_{\mathcal{B}} \overrightarrow{v_2} + \dots + \alpha_p mat_{\mathcal{B}} \overrightarrow{v_p}.$

Caractérisation matricielle d »'une base

Soit $v = (\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_p})$. des vecteurs de E. v base de E si et ssi $mat_{\mathcal{B}}v$ est inversible. Et le cas échéant, $(mat_{\mathcal{B}}v)^{-1} = mat_{\mathcal{B}}$.

Matrice de passage entre deux bases

Si \mathcal{B}_1 et \mathcal{B}_2 sont deux bases de E alors $mat_{\mathcal{B}_1}\mathcal{B}_2$ est appelée la matrice de passage de \mathcal{B}_1 à \mathcal{B}_2 .

 $mat_{\mathcal{B}_1}\mathcal{B}_2$ est inversible et $(mat_{\mathcal{B}_1}\mathcal{B}_2)^{-1} = mat_{\mathcal{B}_2}\mathcal{B}_1$.

Formule de changement de bases pour les vecteurs

Soit \mathcal{B}_1 et \mathcal{B}_2 deux bases de E. Soit \vec{v} un vecteur de E. Alors, $mat_{\mathcal{B}_2}(\vec{v}) = mat_{\mathcal{B}_2}\mathcal{B}_2 \times mat_{\mathcal{B}_2}(\vec{v})$.

III Ss-e-v d' un K-e-v de dimension finie

Dimension d'un sous-e-v d'un K-e-v de dimension finie.

Si F est un ss-e-v d'un K-e-v E de dimension finie alors F est de dimension finie et $dim(F) \le dim(E)$ et $(F = E \Leftrightarrow dim(E) = dim(F))$.

Caractérisation de ss-e-v supplémentaires.

Soit F et G un ss-e-v d'un K-e-v E de dimension finie .

F et G sont supplémentaires dans $E \Leftrightarrow la$ concaténation d'une base de F et une base de G est une base de E.

Lorsque $F \oplus G = E$, dim(F) + dim(G) = dim(E).

Existence et construction d'un supplémentaire.

Si F est un ss-e-v d'un K-e-v E de dimension finie alors F admet un supplémentaire dans E et ce supplémentaire est engendré par les vecteurs qui complètent une base de F pour obtenir une base de E.

Formule de Grassmann.

Soit F et G un ss-e-v d'un K-e-v E de dimension finie . $dim(F) + dim(G) = dim(F+G) + dim(F\cap G)$.

IV Rang d'une famille de vecteurs

Si \mathscr{F} est une famille de vecteurs de E alors $rg\mathscr{F} = \dim(vect(\mathscr{F}))$. $rg\mathscr{F} \leq \min(\dim E, card\mathscr{F})$.

 \mathscr{F} est libre $\Leftrightarrow rg(\mathscr{F}) = \operatorname{card}(\mathscr{F})$

 \mathscr{F} est génératrice de $E \Leftrightarrow rg(\mathscr{F}) = \dim(E)$.

Si \mathscr{B} est une base de E alors $rg(\mathscr{F}) = rg(mat_{\mathscr{F}})$.

Chapitre 18: Applications linéaires.

I Généralités

1. Définition

 $f \in \mathscr{L}(E,F)$ dans F lorsque f est une application de E dans F et $\forall (\vec{x},\vec{y}) \in E^2, \forall (\alpha,\beta) \in K^2, f(\alpha\vec{x}+\beta\vec{y}) = \alpha f(\vec{x}) + \beta f(\vec{y}).$ Si $f \in \mathscr{L}(E,F)$ alors $f(\overrightarrow{O_E}) = \overrightarrow{O_F}$ et $\forall (\overrightarrow{u_1},\overrightarrow{u_2},...,\overrightarrow{u_n}) \in E^n, \forall (\alpha_1,\alpha_2,...,\alpha_n) \in K^n, f(\sum_{k=1}^n \alpha_k \overrightarrow{u_k}) = \sum_{k=1}^n \alpha_k f(\overrightarrow{u_k}).$

2. Exemples.

Application linéaire nulle : ω : $E \to F$ telle que $\omega(\vec{x}) = \overrightarrow{O_F}$

Endomorphisme nul $\omega: E \to E$ telle que $\omega(\vec{x}) = \overrightarrow{O_E}$. Identité $id_E: E \to E$ telle que $id_E(\vec{x}) = \vec{x}$.

Homothétie h vectorielle de rapport $\alpha \in K^* : h: E \to E$ telle que $h(\vec{x}) = \alpha \vec{x}$.

Endomorphisme de K^n canoniquement associé à la matrice A de $M_n(K)$: $f:((x_1,x_2,...,x_n)\mapsto (y_1,y_2,...,y_n))$ telle que : $\begin{pmatrix} y_1\\ \vdots\\ y_n \end{pmatrix} = A\begin{pmatrix} x_1\\ \vdots\\ x_n \end{pmatrix}$

Application linéaire de $K^p dans \ K^n$ canoniquement associée à la matrice A de $M_{n,p}(K)$: $f:((x_1,x_2,...,x_p) \mapsto (y_1,y_2,...,y_n))$ telle que :

$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = A \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}$$

Trace, transposition, opérateur Intégral, dérivation (...).

3. Propriété fondamentale

Soit $B = (\vec{e_i})_{i \in I}$ une base de l'espace vectoriel E et $(\vec{y_i})_{i \in \in I}$ une famille de vecteurs de F. Il existe une unique application linéaire f de E vers F qui vérifie : $\forall i \in I, f(\vec{e_i}) = \vec{y_i}$.

Une application linéaire f de E dans F est entièrement caractérisée par la donnée des images par f des vecteurs d'une base de E. Deux applications linéaires de E dans F qui associent la même image à tous les vecteurs d'une base de E sont égales (partout). Soit $E = E_1 \oplus E_2$ et $u_1 \in \mathscr{L}(E_1, F)$ et $u_2 \in \mathscr{L}(E_2, F)$. Il existe une unique application linéaire u de E vers F tq: $u_{E_1} = u_1$ et $u_{E_2} = u_2$.

Question de cours : Savoir énoncer tout résultat de cours et savoir énoncer et démontrer les résultats suivants :

- 1) Dans un K-e-v E de dimension finie, le nombre d'éléments d'une famille libre est inférieur ou égal au nombre d'éléments d'une famille génératrice de E.
- 2) La formule de changement de bases pour les vecteurs.
- 3) Dans un K-e-v E de dimension finie, tout ss-e-v F de E admet un supplémentaire dans E.
- 4) La formule de Grassmann.
- 5) Soit $B = (\vec{e}_1, \vec{e}_2, ..., \vec{e}_n)$ une base du K-e-v E et $(\vec{y}_1, \vec{y}_2, ..., \vec{y}_n)$ une famille de vecteurs du K-e-v E. Démontrer qu'il existe une et une seule application linéaire f de E dans F telle que $\forall k \in [\![1, n]\!], f(\overrightarrow{e_k}) = \overrightarrow{y_k}$.