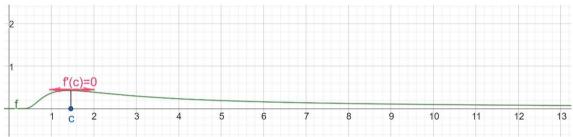
Corrigé du DS 5

Exercice 1 Généralisation du théorème de Rolle.

Soit $a \in \mathbb{R}$ et $f: [a, +\infty[\to \mathbb{R}, \text{continue sur } [a, +\infty[\text{ et dérivable sur }]a, +\infty[\text{ n non constante et telle que } : \lim_{x \to a} f(x) = f(a)$. on cherche à prouver que f' s'annule sur $[a, +\infty[$.

- 1. Illustrer ce résultat.
- **2.** Première preuve : On définit $g: [0,1] \to \mathbb{R}$ telle que : $g(x) = \begin{cases} f\left(\frac{1}{x} + a 1\right) & \text{si } x \neq 0 \\ f(a) & \text{si } x = 0 \end{cases}$.
 - 2.1. Vérifier que g vérifie les hypothèses du théorème de Rolle.
 - 2.2. En déduire qu'il existe un réel $c \in]a, +\infty[$ tel que f'(c) = 0.
- 3. **Deuxième preuve :** f n'est pas constante donc il existe donc un réel $b \in]a, +\infty[$ tel que $f(b) \neq f(a)$. Supposons, par exemple, que : f(b) > f(a).
 - 3.1. Montrer qu'il existe $A \in]b, +\infty[$ tel que : $\forall t \geq A, f(t) < f(b)$.
 - 3.2. Montrer que f admet un maximum M sur [a, A] atteint en un réel $c \in]a, A[$.
 - 3.3. Justifier que f'(c) = 0.

1.Illustration:



2. On définit
$$g: [0,1] \to \mathbb{R}$$
 telle que $: g(x) = \begin{cases} f\left(\frac{1}{x} + a - 1\right) & si \ x \neq 0 \\ f(a) & si \ x = 0 \end{cases}$

2a. $\forall x \in]0,1], \frac{1}{x} + a - 1 \in [a, +\infty[$ et $\forall x \in]0,1[, \frac{1}{x} + a - 1 \in]a, +\infty[$. Comme f est continue sur $[a, +\infty[$ et dérivable sur $]a, +\infty[$, g est continue sur]0,1] et dérivable sur]0,1[.

De plus, $\lim_{x\to 0} \frac{1}{x} + a - 1 = +\infty$ donc $\lim_{x\to 0} f\left(\frac{1}{x} + a - 1\right) = f(a)$. Donc g est continue en 0. Ainsi, g est continue sur [0,1].

2b. g est continue sur [0,1] et dérivable sur]0,1[et g(1)=f(0)=g(0). Donc g vérifie les hypothèses du théorème de Rolle. Alors il existe $d \in]0,1[$ tel que g'(d)=0.

2c. $\forall x \in]0,1[,g'(x)=-\frac{1}{x^2}f'\left(\frac{1}{x}+a-1\right)]$. Donc, $-\frac{1}{d^2}f'\left(\frac{1}{d}+a-1\right)=g'(d)=0$ et par suite, $f'\left(\frac{1}{d}+a-1\right)=0$. Posons $c=\frac{1}{d}+a-1$. Alors $c\in]a,+\infty[$ et f'(c)=0.

3a. $\lim_{x\to +\infty} f(x) = f(a)$ et f(b) > f(a). Donc, d'après la propriété « caractère borné d'une fonction ayant une limite finie », il existe un réel B tel que $\forall x \in [B, +\infty[\cap [a, +\infty[, f(x) < f(b). Posons <math>A = \max(a, B, b + 1)$. Alors $\forall x \in [A, +\infty[, f(x) < f(b).$

3b. f est continue sur le segment [a,A] donc le théorème de fonctions continues sur un segment assure que f admet un maximum M et un minimum sur [a,A]. Il existe donc un réel $c \in [a,A]$ tel que M = f(c).

 $\text{Comme } b \in [a,A], f(b) \leq M = f(c) \text{ et par suite}, f(A) < f(b) \leq f(c)et \ f(a) < f(b) \leq f(c). \ \text{Donc } c \neq a \ et \ c \neq A. \ \text{Ainsi}, c \in]a,A[.]$

3c. Comme f admet un extremum en un point c intérieur à [a,A] et f est dérivable en c (puisque f est dérivable sur $]a,+\infty[$) Le théorème de condition nécessaire d'extremum assure que f'(c)=0.

Exercice 2 polynômes de Tchebychev

On étudie (existence, unicité, propriétés) les polynômes $T_n \in \mathbb{R}[X]$ tels que :

$$\forall \theta \in \mathbb{R}, \widetilde{T_n}(\cos(\theta)) = \cos(n\theta).$$

- 1. Montrer que si T_n existe alors il est unique.
- 2. Vérifier que $T_0 = 1$, $T_1 = X$ et $T_2 = 2X^2 1$.
- 3. Montrer par récurrence que $\forall n \in \mathbb{N}, T_n, T_{n+1}, T_{n+2}$ existent et $T_{n+2} = 2XT_{n+1} T_n$.
- 4. En déduire la parité et le terme dominant de T_n .
- 5. Soit $n \in \mathbb{N}^*$. Déterminer les racines de T_n et factoriser T_n en produit de facteurs irréductibles de $\mathbb{R}[X]$.
- 6. Soit $n \in \mathbb{N}^*$. En déduire que $\prod_{k=0}^{n-1} \cos\left(\frac{(2k+1)\pi}{2n}\right) = \begin{cases} \frac{(-1)^{\frac{n}{2}}}{2^{n-1}} & \text{si } n \text{ pair } \\ 0 & \text{si } n \text{ impair } \end{cases}$.
- 7. Montrer que $\forall n \in \mathbb{N}, (X^2 1)T_n''(X) + XT_n'(X) = n^2T_n(X).$
- 8. Résoudre, sur]1, $+\infty$ [, l'équation différentielle $(x^2-1)y''(x)+xy'(x)=4y(x)$ en posant $y(x)=z(x)T_2(x)$.

- **1.** Supposons qu'il existe deux polynômes T_n et Q_n tels que : $\forall \theta \in \mathbb{R}, \widetilde{T_n}(\cos(\theta)) = \cos(n\theta) = \widetilde{Q_n}(\cos(\theta))$. Posons $H=T_n-Q_n$. Alors H est un polynôme qui vérifie : $\forall \theta \in \mathbb{R}, \widetilde{H}(\cos(\theta))=0$. Donc H admet tous les réels compris entre -1 et 1 comme racine. H admet donc une infinité de racines . Ainsi H est le polynôme nul et par suite $T_n=\ Q_n$. J'en conclus que si T_n existe alors il est unique.
- **2.** S' il existe, $T_0 \in \mathbb{R}[X]$ vérifie $\forall \theta \in \mathbb{R}, \widetilde{T_0}(\cos(\theta)) = \cos(0) = 1$. Donc, $T_0(X) = 1$ convient. S' il existe, $T_1 \in \mathbb{R}[X]$ vérifie $\forall \theta \in \mathbb{R}, \widetilde{T}_1(\cos(\theta)) = \cos(\theta)$. Donc, $T_1(X) = X$ convient. S' il existe, $T_2 \in \mathbb{R}[X]$ vérifie : $\forall \theta \in \mathbb{R}, \widetilde{T_1}(\cos(\theta)) = \cos(2\theta) = 2\cos^2(\theta) - 1$. Donc, $T_2(X) = 2X^2 - 1$ convient.
- Posons H(n): " T_n, T_{n+1}, T_{n+2} existent et $T_{n+2} = 2XT_{n+1} T_n$ ".

Initialisation: T_0, T_1, T_2 existent et $T_2 = 2X^2 - 1 = 2XT_1 - T_0$. Donc H(0) est vraie.

Propagation: Soit un entier naturel n. Supposons que H(n) est vraie. Alors T_{n+1}, T_{n+2} existent.

Posons $Q = 2XT_{n+2} - T_{n+1}$. Alors pour tout réel θ ,

 $\tilde{Q}(\cos(\theta)) = 2\cos(\theta) T_{n+2}(\cos(\theta)) - T_{n+1}(\cos(\theta))$

- $= 2\cos(\theta)\cos((n+2)\theta) \cos((n+1)\theta)$
- $= 2\cos(\theta)\cos((n+1)\theta + \theta) \cos((n+1)\theta)$
- $= 2\cos(\theta)\left[\cos((n+1)\theta)\cos(\theta) \sin((n+1)\theta)\sin(\theta)\right] \cos((n+1)\theta)$
- $= [2\cos^2(\theta) 1]\cos((n+1)\theta) 2\sin(\theta)\cos(\theta)\sin((n+1)\theta)$
- $=\cos(2\theta)\cos((n+1)\theta)-\sin(2\theta)\sin((n+1)\theta)$
- $=\cos((n+1)\theta+2\theta)$
- $=\cos((n+3)\theta)$

Donc $T_{n+3} = Q$ convient. Alors, T_{n+3} existe et vérifie : pour tout réel θ , $T_{n+3}(\cos(\theta)) = \cos((n+3)\theta)$ et $T_{n+3} = 2XT_{n+2} - T_{n+1}$. Donc H(n+1) est vérifiée dès que H(n) est vraie.

Conclusion: pour tout entier naturel n, H(n) est vraie d'après le théorème de récurrence simple.

Alors $T_3 = 2XT_2 - T_1 = 2X(2X^2 - 1) - X = 4X^3 - 3X$. D'après les expressions de T_1, T_2, T_3 , on peut conjecturer que pour tout entier naturel n non nul, $[T_n$ a la même parité que n et le terme dominant de T_n est $2^{n-1}X^n]_{=H(n)}$.

Initialisation: H(1), H(2) et H(3) sont vraies.

<u>Propagation</u>: Soit n un entier naturel non nul. Supposons H(n) et H(n+1) vraies.

• Alors il existe deux polynômes R_n et R_{n+1} tels que : $T_{n+1} = 2^n X^{n+1} + R_{n+1}$ et $\deg(R_{n+1}) < n+1$.

Alors, $T_{n+2} = 2XT_{n+1} - T_n = 2X(2^nX^{n+1} + R_{n+1}) - T_n = 2^{n+1}X^{n+2} + 2XR_{n+1} - T_n$.

 $\text{Or, } \deg(2^{n+1}X^{n+2}) = n+2 \text{ } et \text{ } \deg(2XR_{n+1}) = \deg(2X) + \deg(R_{n+1}) < 1 + (n+1) = n+2 \text{ } et \text{ } \deg(T_n) = n < n+2 \text{ } . \text{Donce } T_n = n+2 \text{ } et \text{ } deg(2XR_{n+1}) = n+2 \text{ } deg(2XR_{$ $\deg(T_{n+2})=n+2$ et le terme dominant de T_{n+2} est $2^{n+1}X^{n+2}$.

• Supposons n+2 pair. Alors n est pair donc T_n est pair et n+1 est impair donc T_{n+1} est impair. Alors

 $T_{n+2}(-X) = 2(-X)T_{n+1}(-X) - T_n(-X) = 2(-X)(-T_{n+1}(X)) - T_n(X) = 2XT_{n+1}(X) - T_n(X) = T_{n+2}(X) \text{ donc } T_{n+2} \text{ est pair.}$

Supposons n+2 impair. Alors n est impair donc T_n est impair et n+1 est pair donc T_{n+1} est pair. Alors

 $T_{n+2}(-X) = 2(-X)T_{n+1}(-X) - T_n(-X) = 2(-X)(T_{n+1}(X)) - (-T_n(X)) = -2XT_{n+1}(X) + T_n(X) = -T_{n+2}(X) \text{ donc } T_{n+2} \text{ est impair.}$

Donc H(n + 2) est vraie dès que H(n) et H(n + 1) sont vraies.

<u>Conclusion</u>: le théorème de récurrence double assure alors que pour tout entier naturel n non nul, H(n) est vraie.

5. Soit n un entier natruel non nul. Cherchons d'abord les racines de T_n qui se trouvent dans [-1,1].

Soit $y \in [-1,1]$. ALors il existe un unique $\theta \in [0,\pi]$ tel que $y = \cos(\theta)$ (il s'agit de $\theta = Arccos(y)$). Par conséquent,

$$\widetilde{T_n}(y) = 0 \Leftrightarrow \widetilde{T_n}(\cos(\theta)) = 0 \Leftrightarrow \cos(n\theta) = 0 \Leftrightarrow \exists k \in \mathbb{Z}/n\theta = \frac{\pi}{2} + k\pi \Leftrightarrow \exists k \in \mathbb{Z}/\theta = \frac{(2k+1)\pi}{2n} \Leftrightarrow \underset{\substack{c \text{ arr} \\ \theta \in [0,\pi]}}{\Longrightarrow} \exists k \in [0,n-1]/\theta = \frac{(2k+1)\pi}{2n}.$$

Donc les réels $\cos\left(\frac{(2k+1)\pi}{2n}\right)tq\ k\in \llbracket 0,n-1\rrbracket$ sont les racines de T_n qui se trouvent dans [-1,1]. Ces n réels sont tous distincts puisque Les réels $\frac{(2k+1)\pi}{2n}$ tq $k \in \llbracket 0,n-1 \rrbracket$ sont n réels distincts compris entre 0 et π et que la fonction cosinus est injective sur $\llbracket 0,\pi \rrbracket$. Donc, les réels $\cos\left(\frac{(2k+1)\pi}{2n}\right)$ tq $k \in \llbracket 0,n-1 \rrbracket$ sont n racines distinctes de T_n qui est de degré n. J'en conclus que T_n n' a pas d'autres racines , que $\cos n$ racines sont toutes simples dans T_n et T_n est scindé sous la forme :

$$T_n = codom(T_n) \prod_{k=0}^{n-1} \left(X - \cos\left(\frac{(2k+1)\pi}{2n}\right) \right) = 2^{n-1} \prod_{k=0}^{n-1} \left(X - \cos\left(\frac{(2k+1)\pi}{2n}\right) \right)$$

Soit $n \in \mathbb{N}^*$. $\prod_{k=0}^{n-1} \cos\left(\frac{(2k+1)\pi}{2n}\right)$ est le produit des racines de T_n .

Donc le cours assure que $\prod_{k=0}^{n-1} \cos\left(\frac{(2k+1)\pi}{2n}\right) = (-1)^n \frac{terme\ constant\ de\ T_n}{codom(T_n)}$.

On repaque d'abord que le terme constant de T_n est égal à $\widetilde{T_n}(0)$.

1er cas : n est impair. Alors T_n est impair donc ($terme\ constant\ de\ T_n$) = $\widetilde{T_n}(0) = 0\ et\ par\ suite \ \frac{n-1}{k=0}\cos\left(\frac{(2k+1)\pi}{2n}\right) = 0$

 2^{er} cas: n est pair, n = 2p. Montrons par récurrence sur p que " $(terme\ constant\ de\ T_{2p}) = (-1)^p$ " ($propriété\ H(p)$).

<u>Initialisation</u>: H(0) et H(1) sont vraies.

<u>Propagation</u>: Soit p un entier naturel. Supposons H(p) vraie.

Alors $T_{2(p+1)} = T_{2p+2} = 2XT_{2p+1} - T_{2p}$.

Donc (terme constant de $T_{2(p+1)}$) = $\widetilde{T_{2p+2}}(0) = 2 \times 0 \times \widetilde{T_{2p+1}}(0) - \widetilde{T_{2p}}(0) = -(terme constant de T_{2p}) = -(-1)^p = (-1)^{p+1}$.

Donc, H(p + 1) est vraie dès que H(p) est vraie.

<u>Conclusion</u>: le théorème de récurrence simple assure alors que H(p) est vraie pour tout entier naturel p.

J'en déduis que $\prod_{k=0}^{n-1} \cos\left(\frac{(2k+1)\pi}{2n}\right) = (-1)^{2p} \frac{(-1)^p}{2^{2p-1}} = \frac{(-1)^{\frac{n}{2}}}{2^{n-1}}$

7. $\forall \theta \in \mathbb{R}, \widetilde{T_n}(\cos(\theta)) = \cos(n\theta)$. Or, $\widetilde{T_n}$ et cos sont infiniment dérivable, donc, en dérivant une puis deux fois dans cette égalité, j'obtiens : $\forall \theta \in \mathbb{R}, -\sin(\theta) \widetilde{T_n}'(\cos(\theta)) = -n\sin(n\theta)$

puis
$$-\cos(\theta)\widetilde{T_n'}(\cos(\theta)) + \sin^2(\theta)\widetilde{T_n''}(\cos(\theta)) = -n^2\cos(n\theta).$$

Autrement dit, $\forall \theta \in \mathbb{R}, -\cos(\theta)\widetilde{T_n}'(\cos(\theta)) + (1-\cos^2(\theta))\widetilde{T_n}''(\cos(\theta)) = -n^2\widetilde{T_n}(\cos(\theta)).$

J'en déduis que, $\forall y \in [-1,1], -y\widetilde{T_n'}(y) + (1-y^2)\widetilde{T_n''}(y) = -n^2\widetilde{T_n}(y).$

Posons $Q = -n^2 T_n(X) + (X^2 - 1)T_n''(X) + XT_n'(X)$.

Alors Q est un polynôme qui vérifie $\forall y \in [-1,1], \tilde{Q}(y) = 0$. Donc Q admet une infinité de racines et ainsi Q = 0. J'en conclus que :

$$(X^2 - 1)T_n''(X) + XT_n'(X) = n^2T_n(X).$$

8.

8a. $\widetilde{T_n}$ est une solution particulière que l'équation différentielle étudiée (E_n) qui ne s'annule pas sur $]1,+\infty[$.

Soit y une fonction deux fois dérivable sur]1, $+\infty$ [. Posons $\forall x \in$]1, $+\infty$ [, $z(x) = \frac{y(x)}{\overline{T_n}(x)}$

Alors z est une fonction deux fois dérivable sur]1, $+\infty$ [car y et $\widetilde{T_n}$ le sont et $\widetilde{T_n}$ ne s'annule pas sur cet intervalle et $\forall x \in$]1, $+\infty$ [, $y(x) = z(x)\widetilde{T_n}(x),$

$$y'(x) = z'(x)\widetilde{T_n}(x) + z(x)\widetilde{T_n}'(x),$$

$$y''(x) = z''(x)\widetilde{T_n}(x) + 2z'(x)\widetilde{T_n}'(x) + z(x)\widetilde{T_n}''(x).$$

Par conséquent,

y est solution de l'equa.diff. (E_n)

$$\Leftrightarrow \forall x \in]1, +\infty[, (x^2-1)[z^{\prime\prime}(x)\widetilde{T_n}\ (x) + 2z^{\prime}(x)\widetilde{T_n}^{\prime}\ (x) + z(x)\widetilde{T_n}^{\prime\prime}\ (x)] + x[z^{\prime}(x)\widetilde{T_n}\ (x) + z(x)\widetilde{T_n}^{\prime}\ (x)] - n^2[\ z(x)\widetilde{T_n}\ (x)] = 0$$

$$\Leftrightarrow \forall x \in]1, +\infty[, [\underbrace{(x^2-1)\widetilde{T_n}''(x) + x\widetilde{T_n}'(x) - n^2\widetilde{T_n}(x)}_{=0 \ car \ \widetilde{T_n} \ est \ solution \ de \ (E_n)}]z(x) + [2(x^2-1)\widetilde{T_n}'(x) + x\widetilde{T_n}(x)]z'(x) + (x^2-1)\widetilde{T_n}(x)z''(x) = 0$$

$$\Leftrightarrow \forall x \in]1, +\infty[, \left[2(x^2-1)\widetilde{T_n}'(x) + x\widetilde{T_n}(x)\right]z'(x) + \left[(x^2-1)\widetilde{T_n}(x)\right]z''(x) = 0$$

$$\Leftrightarrow$$
 z' est solution de l'équa. diff. d'ordre 1 homogène (D_n) : $[(x^2-1)\widetilde{T_n}(x)]Y'(x)+[2(x^2-1)\widetilde{T_n}'(x)+x\widetilde{T_n}(x)]Y(x)=0$.

8b. Cherchons une primitive de la fonction continue $(x \mapsto \frac{1}{x^2\sqrt{x^2-1}})$ sur $]1,+\infty[$:

Cherchons une primitive de la fonction continue
$$(x \mapsto \frac{1}{x^2\sqrt{x^2-1}})$$
 sur $]1, +\infty[$:
$$\int_{\cdot}^{y} \frac{1}{x^2\sqrt{x^2-1}} dx = \int_{\cdot}^{\ln\left(y+\sqrt{y^2-1}\right)} \frac{ch^2(t)}{ch^2(t)sh(t)} sh(t) dt = \int_{\cdot}^{\ln\left(y+\sqrt{y^2-1}\right)} \frac{1}{ch^2(t)} dt = \left[\frac{sh(t)}{ch(t)}\right]_{\cdot}^{\ln\left(y+\sqrt{y^2-1}\right)} = \frac{\sqrt{y^2-1}}{y} + cste$$

$$= \int_{\cdot}^{\ln\left(x+\sqrt{x^2-1}\right)} \frac{1}{ch^2(t)} dt = \left[\frac{sh(t)}{ch(t)}\right]_{\cdot}^{\ln\left(y+\sqrt{y^2-1}\right)} = \frac{\sqrt{y^2-1}}{y} + cste$$

$$= \int_{\cdot}^{\ln\left(x+\sqrt{x^2-1}\right)} \frac{1}{ch^2(t)} dt = \left[\frac{sh(t)}{ch(t)}\right]_{\cdot}^{\ln\left(y+\sqrt{y^2-1}\right)} = \frac{\sqrt{y^2-1}}{y} + cste$$

8c.y est solution de l'equa.diff. $(E_1) \Leftrightarrow z'$ est solution de l'équa. diff. d'ordre 1 homogène (D_1) : $(x^2 - 1)xY'(x) + [3x^2 - 2]Y(x) = 0$. Résolvons (D_1) :

Posons $a(x) = \frac{3x^2 - 2}{(x^2 - 1)x}$. Décomposons a en éléments simples. Sa partie entière est nulle (car le degré du numérateur est strictement inférieur à celui du dénominateur) . Il existe donc troiqs uniques réels $u,v,w\,$ tels que :

$$\forall x \in \mathbb{R} \backslash \{\pm 1, 0\}, a(x) = \frac{3x^2 - 2}{x(x - 1)(x + 1)} = \frac{u}{x - 1} + \frac{v}{x + 1} + \frac{w}{x}$$

Alors
$$u = \lim_{x \to 1} (x - 1)a(x) = \frac{1}{2}$$

$$v = \lim_{x \to -1} (x+1)a(x) = \frac{1}{2}$$

$$w = \lim_{x \to 0} xa(x) = \frac{-2}{-1} = 2.$$

Ainsi,
$$\forall x \in \mathbb{R} \setminus \{\pm 1, 0\}, a(x) = \frac{x^2 + 2}{x(x - 1)(x + 1)} = \frac{\frac{1}{2}}{x - 1} + \frac{\frac{1}{2}}{x + 1} + \frac{2}{x}.$$

Par conséquent, $A:(x\mapsto \frac{1}{2}\ln(x^2-1)+2\ln(x))$ est une primitive de a sur $]1,+\infty[$ et $\forall x\in]1,+\infty[$,

$$e^{-A(x)} = e^{\frac{-1}{2}\ln(x^2-1)-2\ln(x))} = (x^2-1)^{-\frac{1}{2}}x^{-2} = \frac{1}{x^2\sqrt{x^2-1}}$$

Alors les solutions de (D1) sont toutes les fonctions de la forme $\left(x \mapsto k \frac{1}{r^2 \sqrt{r^2 - 1}}\right)$ telles que $k \in \mathbb{R}$.

Par suite, y est solution de l'equa.diff. $(E_1) \Leftrightarrow$ il existe k réel tel que $z'(x) = k \frac{1}{x^2 \sqrt{x^2 - 1}}$

Alors par 8b., y est solution de l'equa.diff. $(E_1) \Leftrightarrow$ il existe k et c deux réels tels que : $\forall x \in]1, +\infty[z(x) = k \frac{\sqrt{x^2-1}}{x} + c.$

Ainsi y est solution de l'equa.diff. $(E_1) \Leftrightarrow$ il existe k et c deux réels tels que : $\forall x \in]1, +\infty[y(x) = k(\sqrt{x^2-1}) + cx$.

Exercice 3 Intégrales de Wallis-Intégrale de Gau β .

A. Intégrales de Wallis.

On pose $\forall n \in \mathbb{N}, \ W_n = \int_0^{\frac{\pi}{2}} (\cos(t))^n dt$

1. Monter que : $\forall n \in \mathbb{N}, W_n = \int_0^{\frac{\pi}{2}} (\sin(t))^n dt$.

 $\forall n \in \mathbb{N}, (t \mapsto (\cos(t))^n) \text{ est continue sur } \left[0, \frac{\pi}{2}\right] \text{ donc } W_n \text{ existe et } \int_0^{\frac{\pi}{2}} \left(\cos(t)\right)^n dt = \int_{\frac{\pi}{2}}^0 \left(\cos\left(\frac{\pi}{2} - u\right)\right)^n \left(-du\right) = \int_0^{\frac{\pi}{2}} \left(\sin(u)\right)^n du.$

2. Montrer que la suite (W_n) est convergente.

Soit $n \in \mathbb{N}$. $\forall t \in \left[0, \frac{\pi}{2}\right]$, $\cos(t) \in [0, 1]$ donc, $0 \le \left(\cos(t)\right)^{n+1} \le \left(\cos(t)\right)^n \le 1$. Par conséquent, $0 \le \int_0^{\frac{\pi}{2}} (\cos(t))^{n+1} dt \le \int_0^{\frac{\pi}{2}} (\cos(t))^n dt \le \int_0^{\frac{\pi}{2}} 1 dt$ i.e. $0 \le W_{n+1} \le W_n \le \frac{\pi}{2}$.

J'en déduis que la suite W est décroissante et minorée par 0 donc convergente.

3. Justifier que : $\forall n \in \mathbb{N}, W_n \neq 0$.

Soit $n \in \mathbb{N}$. $(t \mapsto (\cos(t))^n)$ est continue et positive sur $\left[0,\frac{\pi}{2}\right]$ et prend une valeur non nul sur $\left[0,\frac{\pi}{2}\right]$ (en 0) donc la contraposée du lemme d'annulation assure que $W_n \neq 0$. Et par suite $W_n > 0$.

4. Montrer que : $\forall n \in \mathbb{N}, W_{n+2} = \frac{n+1}{n+2}W_n$.

Soit $n \in \mathbb{N}$. $W_{n+2} = \int_{2}^{\frac{\pi}{2}} (\cos(t))^{n+2} dt = \int_{2}^{\frac{\pi}{2}} (\cos(t))^{n} (\cos(t))^{2} dt = \int_{2}^{\frac{\pi}{2}} \cos^{n}(t) (1 - \sin^{2}(t)) dt$ $W_{n+2} = \int_0^{\frac{\pi}{2}} \cos^n(t) dt + \int_0^{\frac{\pi}{2}} \left| \underbrace{-\sin(t) \cos^n(t)}_{u'(t)} \right| \underbrace{\sin(t)}_{v(t)} dt = W_n + \left[\frac{\cos^{n+1}(t)}{n+1} \sin(t) \right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} \frac{\cos^{n+1}(t)}{n+1} \cos(t) dt = W_n - \frac{W_{n+2}}{n+1} \cos(t) dt = W_n - \frac{W_n}{n+1} \cos(t) dt = W_n - \frac{W_n$

Donc, $\left(1 + \frac{1}{n+1}\right) W_{n+2} = W_n \ et \ ainsi, W_{n+2} = \frac{n+1}{n+2} W_n$.

Montrer que $(nW_nW_{n-1})_{n\in\mathbb{N}}$ est constante égale à $\frac{\pi}{2}$

Posons $\forall n \in \mathbb{N}^*, t_n = nW_nW_{n-1}$ et montrons que la suite t est constante. Soit $n \in \mathbb{N}^*.t_{n+1} = (n+1)W_{n+1}W_n = (n+1)\frac{n}{n+1}W_{n-1}W_n = nW_{n-1}W_n = t_n.$

La suite t est donc constante égale à $t_1 = W_1 W_0 = \frac{\pi}{2}$. Ainsi, $\forall n \in \mathbb{N}^*, nW_{n-1} W_n = \frac{\pi}{2}$.

6. En déduire la limite de la suite (W_n) .

D'après a., on sait que W est convergente. Notons L sa limite.

Alors en passant à la limite dans l'égalité $W_{n-1}W_n=\frac{\pi}{2n}$, on obtient $L^2=0$ soit L=0. Ainsi, $\lim_{n\to +\infty}W_n=0$.

7. Justifier que : $\forall n \in \mathbb{N}, \frac{n+1}{n+2} \leq \frac{W_{n+1}}{W} \leq 1$.

 $W \text{ est décroissante donc } \forall n \in \mathbb{N}^*, W_{n+2} \leq W_{n+1} \leq W_n \ donc \ \frac{W_{n+2}}{W_n} \leq \frac{W_{n+1}}{W_n} \leq 1 \ i. \ e. \frac{n+1}{n+2} \leq \frac{W_{n+1}}{W_n} \leq 1.$

8. En déduire que : $W_{n+1} \sim_{n \to +\infty} W_n$.

 $\text{Comme } \lim_{n \to +\infty} \frac{n+1}{n+2} = 1 \text{, l'encadrement précédent permet d'affirmer que } \lim_{n \to +\infty} \frac{W_{n+1}}{W_n} = 1 \text{ et ainsi que } W_{n+1} \sim_{n \to +\infty} W_n.$

9. En déduire que : $W_n \sim_{n \to +\infty} \sqrt{\frac{\pi}{2n}}$.

Alors, $(n+1)W_{n+1}W_n \sim_n nW_n^2$ et par suite $nW_n^2 \sim_n \frac{\pi}{2}$. Alors, $W_n^2 \sim_{+\infty} \frac{\pi}{2n}$ et enfin, $W_n \sim_{+\infty} \sqrt{\frac{\pi}{2n}}$.

10. Intégrale de Gauss.

Soit
$$F: \left(\begin{matrix} \mathbb{R}^+ \to \mathbb{R} \\ x \mapsto \int_0^x e^{-t^2} dt \end{matrix} \right)$$
.

1. Montrer que F est strictement croissante sur \mathbb{R}^+ .

Comme $f:(t\mapsto e^{-t^2})$ est continue sur $\mathbb R$, le théorème fondamental de l'intégration assure que F est la primitive de de f sur $\mathbb R$ qui s'annule en 0. Donc F est définie et de classe C^1 sur \mathbb{R} et F' = f. Donc F' > 0. J'en déduis que F est strictement croissante sur \mathbb{R} . Par conséquent, F admet une limite en $+\infty$.

 $\forall t \in [1, +\infty[, e^{-t^2} \le e^{-t}]$. En déduire que F est majorée.

 $\forall t \in [1, +\infty[, t^2 \ge t \text{ donc} - t^2 \le -t \text{ et par croissance de la fonction exponentielle, } e^{-t^2} \le e^{-t}.$

Soit $x \in [1, +\infty[$. D' après ce qui précède, $\forall t \in [1, x], e^{-t^2} \le e^{-t}$. Alors par croissance de l'opérateur intégral sur [1, x] appliquée aux fonctions continues f et $(t \mapsto e^{-t})$, $\int_1^x e^{-t^2} dt \le \int_1^x e^{-t} dt$.

Or
$$\int_1^x e^{-t} dt = [-e^{-t}]_1^x = 1 - e^{-x} \le 1$$
. Donc, $\int_1^x e^{-t^2} dt \le 1$.

Donc
$$F(x) = \int_0^1 e^{-t^2} dt + \int_1^x e^{-t^2} dt \le \int_0^1 e^{-t^2} dt + 1 = \underbrace{F(1) + 1}_{cste \ independante}$$
. J'en conclus que F est majorée.

3. Déduire de ce qui précède que $\lim_{x \to +\infty} F(x)$ existe et est finie.

F est strictement croissante sur \mathbb{R} . Par conséquent, F admet une limite L en $+\infty$. Comme F est majorée, cette limite L est finie.

4. Montrer que $\forall u \in]-1, +\infty[$, $\ln(1+u) \leq u$.

La fonction $h: (u \mapsto \ln(1+u))$ est concave sur $Dh =]-1, +\infty[$, car $\forall u \in Dh, h''(u) = -\frac{1}{(1+u)^2} < 0$. Donc, C_h est en -dessous de toutes ses tangentes. Or la droite d'équation y = u est la tangente à C_h en 0. Ainsi, $\forall u \in]-1, +\infty[$, $\ln(1+u) \leq u$.

5. Soit $n \in \mathbb{N}^*$.

5.1. Montrer que
$$\int_0^{\sqrt{n}} \left(1 - \frac{t^2}{n}\right)^n dt \le \int_0^{\sqrt{n}} e^{-t^2} dt$$

$$\forall t \in \left[0, \sqrt{n}\right], -\frac{t^2}{n} \in \left]-1, 0\right[\operatorname{donc}\left(1-\frac{t^2}{n}\right)^n > 0 \text{ et par suite, } \ln\left[\left(1-\frac{t^2}{n}\right)^n\right] = n\ln\left(1-\frac{t^2}{n}\right).$$

 $\text{Or } \forall t \in \left[0, \sqrt{n}\right], -\frac{t^2}{n} \in]-1, \\ 0 [\text{ donc } \ln\left(1-\frac{t^2}{n}\right) \leq -\frac{t^2}{n} \text{ et par conséquent, } \ln\left[\left(1-\frac{t^2}{n}\right)^n\right] \leq -t^2. \text{ J'en déduis par stricte}$ $\text{croissance de l'exponentielle que}: \ \forall t \in \left[0, \sqrt{n}\right], \left(1-\frac{t^2}{n}\right)^n \leq e^{-t^2}. \text{ Alors par croissance de l'intégrale sur } \left[0, \sqrt{n}\right] \text{ appliquée aux fonctions continues } f \text{ et } (t \mapsto \left(1-\frac{t^2}{n}\right)^n), \int_0^{\sqrt{n}} \left(1-\frac{t^2}{n}\right)^n dt \leq \int_0^{\sqrt{n}} e^{-t^2} dt = \int_0^{\sqrt{n}} e^{-x^2} dx \ .$

5.2. Montrer, en effectuant le changement de variable $t = \sqrt{n}\cos(u)$, que: $\sqrt{n}W_{2n+1} \le \int_0^{\sqrt{n}} e^{-x^2} dx$.

$$\int_0^{\sqrt{n}} \left(1-\frac{t^2}{n}\right)^n dt = \sum_{\substack{CV \\ t=\sqrt{n}\cos(u) \\ dt=-\sqrt{n}\sin(u)du \\ t=\sqrt{n}\cos(u) \\ t=0 \Leftrightarrow u=\frac{\pi}{2}}} \int_{\frac{\pi}{2}}^0 (1-\cos^2(u))^n [-\sqrt{n}\sin(u)\,du] = \sqrt{n} \int_{\frac{\pi}{2}}^0 (\sin^2(u))^n \sin(u)\,du = \sqrt{n} W_{2n+1}. \text{ Donc l'ing\'elit\'e}$$

obtenue au 5.1 s'écrit : $\sqrt{n}W_{2n+1} \le \int_0^{\sqrt{n}} e^{-x^2} dx$.

6. Soit $n \in \mathbb{N}^*$.

6.1. Montrer que :
$$\forall t \in \left[0, \sqrt{n}\right], e^{-t^2} \le \left(1 + \frac{t^2}{n}\right)^{-n}$$
.

 $\forall t \in \left[0, \sqrt{n}\right], \frac{t^2}{n} \in]-1, +\infty[\text{ donc } \ln\left(1+\frac{t^2}{n}\right) \leq \frac{t^2}{n} \text{ donc } n\ln\left(1+\frac{t^2}{n}\right) \leq t^2 \text{ et } -t^2 \leq -n\ln\left(1+\frac{t^2}{n}\right) \text{ et finalement, par croissance de l'exponentielle, } e^{-t^2} \leq \left(1+\frac{t^2}{n}\right)^{-n}. \text{ Et par croissance de l'opérateur intégral, } \int_0^{\sqrt{n}} e^{-t^2} dt \leq \int_0^{\sqrt{n}} \left(1+\frac{t^2}{n}\right)^{-n} dt.$

6.2. Montrer, en effectuant le changement de variable $t = \sqrt{n} \tan(u)$, que :

$$\textstyle \int_0^{\sqrt{n}} \left(1 + \frac{t^2}{n}\right)^{-n} dt = \sqrt{n} \int_0^B \cos^{2p} \left(u\right) du \text{ où } B \in \left[0, \frac{\pi}{2}\right] \text{ } et \text{ } p \in \mathbb{N} \text{ sont à déterminer.}$$

$$\int_{0}^{\sqrt{n}} \left(1 + \frac{t^{2}}{n}\right)^{-n} dt = \int_{0}^{\pi} \int_{0}^{\frac{\pi}{4}} (1 + tan^{2}(u))^{-n} \frac{\sqrt{n}}{\cos^{2}(u)} du = \int_{0}^{\pi} \int_{0}^{\frac{\pi}{4}} \left(\frac{1}{\cos^{2}(u)}\right)^{-n} \frac{1}{\cos^{2}(u)} du = \sqrt{n} \int_{0}^{\frac{\pi}{4}} \cos^{2n-2}(u) du = \int_{0}^{\pi} \int_{0}^{\frac{\pi}{4}} \cos^{2n-2}(u) du = \int_{0}^{\pi} \int_{0}^{\pi} \cos^{2}(u) du = \int_{0}^{\pi} \int$$

Ainsi,
$$\int_0^{\sqrt{n}} \left(1 + \frac{t^2}{n}\right)^{-n} dt = \sqrt{n} \int_0^B \cos^{2p}(u) du \operatorname{tq} B = \frac{\pi}{4} \operatorname{et} p = n - 1$$

6.3. Montrer que :
$$\int_{0}^{\sqrt{n}} e^{-x^2} dx \le \sqrt{n} W_{2n-2}$$
.

$$\int_{0}^{\frac{\pi}{2}} \cos^{2n-2}(u) \, du = \int_{0}^{\frac{\pi}{4}} \cos^{2n-2}(u) \, du + \underbrace{\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos^{2n-2}(u) \, du}_{\geq 0 \, \text{car} \, \forall u \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right], \\ \cos^{2n-2}(u) \geq 0}$$

$$\int_0^{\sqrt{n}} e^{-t^2} dt \le \int_0^{\sqrt{n}} \left(1 + \frac{t^2}{n}\right)^{-n} dt = \sqrt{n} \int_0^{\frac{\pi}{4}} \cos^{2n-2}(u) du \le \sqrt{n} \int_0^{\frac{\pi}{2}} \cos^{2n-2}(u) du = \sqrt{n} W_{2n-2}.$$

7. En déduire $\lim_{x\to +\infty} F(x)$.

On a montré que : $\forall n \in \mathbb{N}^*$, $\sqrt{n}W_{2n+1} \leq F(\sqrt{n}) \leq \sqrt{n}W_{2n-2}$. Donc $\frac{W_{2n+1}}{W_{2n}} \leq \frac{F(\sqrt{n})}{\sqrt{n}W_{2n}} \leq \frac{W_{2n-2}}{W_{2n}}$. Or, $W_{2n+1} \sim W_{2n} \sim W_{2n-1} \sim W_{2n-2}$. Donc les deux suites qui encadrent $\frac{F(\sqrt{n})}{\sqrt{n}W_{2n}}$ tendant vers 1, et j'en déduis que $\lim_{n \to +\infty} \frac{F(\sqrt{n})}{\sqrt{n}W_{2n}} = 1$. Alors $F(\sqrt{n}) \sim \sqrt{n}W_{2n} \sim \sqrt{n}\sqrt{\frac{\pi}{2n}} = \sqrt{\frac{\pi}{2}}$. J'en conclus que $\lim_{n \to +\infty} F(\sqrt{n}) = \sqrt{\frac{\pi}{2}}$. Comme $\lim_{x \to +\infty} F(x) = L$ et $\lim_{n \to +\infty} \sqrt{n}$, par le théorème de caractérisation séquentielle de la limite (ou par composition) assure que $\lim_{n \to +\infty} F(\sqrt{n}) = L$. Alors par unicité de la limite, $\lim_{x \to +\infty} F(x) = \sqrt{\frac{\pi}{2}}$.

FIN