Corrigé Ex 25 TD 19

On note \mathscr{E} le \mathbb{R} -e-v des fonctions continues sur \mathbb{R} et à valeurs dans \mathbb{R} .

Pour tout $f \in \mathcal{E}$, on note U(f), l'application de \mathbb{R} dans \mathbb{R} , définie par : $\forall x \in \mathbb{R}, U(f)(x) = \int_{x=1}^{x} f(t) dt$.

- **1.** Soit $f \in \mathcal{E}$, T-périodique. Montrer que $\forall a \in \mathbb{R}$, $\int_a^{a+T} f(t)dt = \int_0^T f(t)dt$.
- **2.** Soit f une fonction dérivable sur \mathbb{R} .
 - a) Montrer que si f est T-périodique alors f' l'est aussi .
 - b) Justifier que la réciproque est fausse.
- **3.** Montrer que pour tout $f \in \mathcal{E}$, U(f) est de classe C^1 sur \mathbb{R} et calculer sa dérivée.
- **4.** Montrer que U qui à $f \in \mathcal{E}$ associe U(f) est un endomorphisme de \mathcal{E} .
- **5.** Soient $n \in \mathbb{N} \setminus \{0\}$. On note E_n , l'ensemble des fonctions polynomiales de degré inférieur ou égal à n

et $\mathscr{B}_n = (f_0, f_1, f_2, ..., f_n)$ où $f_k : (t \mapsto t^k)$ est la base canonique de E_n

- **5.1** Montrer que U induit un endomorphisme sur E_n que l'on note U_n .
- **5.2** Ecrire la matrice M de U_n dans \mathcal{B}_n .
- **5.3** U_n est-il bijectif?
- **5.4** Démontrer que $U_n id_{E_n}$ est nilpotent.
- **5.5** Soit $\lambda \in \mathbb{R}$. Démontrer que : $Ker(U_n \lambda id_{E_n}) \neq \{0\} \iff \lambda = 1$.
- **6.** Justifier que si l'élément f de \mathscr{E} est dans Ker(U) alors.
 - (i) $\int_0^1 f(t)dt = 0.$
 - (ii) f est 1 périodique.
- 7. A-t-on $Ker(U) = \{ f \in \mathcal{E} / f \text{ est } 1 \text{périodique et } \int_0^1 f(t) dt = 0 \}$?
- 8. Donner explicitement une fonction non nulle et élément de KerU et en donner une représentation graphique sur [-1,2].
- **9.** L'endomorphisme U est -il surjectif?
- **10.** Soit a un réel non nul et f_a la fonction définie sur \mathbb{R} par : $f_a(t) = e^{at}$.
 - **10.1** Déterminer $F_a = U(f_a)$.
 - **10.2** Dresser le tableau des variations de $g: \left(x \mapsto \frac{e^x 1}{x}\right)$.
 - **10.3** En déduire que pour tout réel λ strictement positif, il existe une fonction f non nulle telle que $U(f) = \lambda f$.

1. Soit
$$a \in \mathbb{R}$$
. $\int_{a}^{a+T} f(t)dt = \int_{a}^{0} f(t)dt + \int_{0}^{T} f(t)dt + \underbrace{\int_{T}^{a+T} f(t)dt}_{CV} = \int_{a}^{0} f(t)dt + \int_{0}^{T} f(t)dt + \int_{0}^{a} f(u+T)dt = \int_{0}^{T} f(t)dt.$

- 2. Soit f une fonction dérivable sur \mathbb{R} . Alors $g:(x \mapsto f(x+T))$ est dérivable sur \mathbb{R}
 - c) Supposons que f est T-périodique. Alors $\forall x \in \mathbb{R}$, g(x) = f(x) donc g'(x) = f'(x) i.e. f'(x + T) = f'(x). Ains, f' est T-périodique.
 - d) Trouvons un contre-exemple. Prenons $f(x) = \sin(x) + x$. Alors, $\forall x \in \mathbb{R} f'(x) = \cos(x) + 1$.

Donc, $\forall x \in \mathbb{R}$, $f'(x+2\pi) = \cos(x+2\pi) + 1 = \cos(x) + 1 = f'(x)$ mais $f(x+2\pi) = \sin(x+2\pi) + x + 2\pi = f(x) + 2\pi \neq f(x)$. Donc f' est 2π –périodique mais f ne l'est pas.

3. Soit $f \in \mathscr{E}$; Alors le cours assure que f admet une primitive F sur \mathbb{R} et : $\forall x \in \mathbb{R}$, U(f)(x) = F(x) - F(x-1). Alors, comme F et $(x \mapsto x-1)$ sont de classe C^1 sur \mathbb{R} , U(f) est de classe C^1 sur \mathbb{R} et $\forall x \in \mathbb{R}$,

$$(U(f))'(x) = F'(x) - F'(x-1) = f(x) - f(x-1).$$

4. Pour tout $f \in \mathcal{E}$, $U(f) \in C^1(\mathbb{R}, \mathbb{R}) \subset \mathcal{E}$.

De plus, $\forall (f,g) \in \mathscr{E}^2$, $\forall (a,b) \in \mathbb{R}^2$,

 $\forall x \in \mathbb{R}, \ U(af + bg)(x) = \int_{x-1}^{x} (af + bg)(t)dt = a \int_{x-1}^{x} f(t)dt + b \int_{x-1}^{x} g(t)dt = aU(f)(x) + bU(g)(x) = [aU(f) + bU(g)](x).$

Donc U(af + bg) = aU(f) + bU(g)

Ainsi, U est un endomorphisme de \mathscr{E} .

5.1. Soit
$$k \in [0, n]$$
. $\forall x \in \mathbb{R}, U(f_k)(x) = \int_{x-1}^x t^k dt = \frac{1}{k+1} [x^{k+1} - (x-1)^{k+1}] = \frac{1}{k+1} \left[-\sum_{j=0}^k {k+1 \choose j} (-1)^{k+1-j} x^j \right] = \frac{1}{k+1} \left[-\sum_{j=0}^k {k+1 \choose j} (-1)^{k+1-j} x^j \right] = \frac{1}{k+1} \left[-\sum_{j=0}^k {k+1 \choose j} (-1)^{k+1-j} x^j \right] = \frac{1}{k+1} \left[-\sum_{j=0}^k {k+1 \choose j} (-1)^{k+1-j} x^j \right] = \frac{1}{k+1} \left[-\sum_{j=0}^k {k+1 \choose j} (-1)^{k+1-j} x^j \right] = \frac{1}{k+1} \left[-\sum_{j=0}^k {k+1 \choose j} (-1)^{k+1-j} x^j \right] = \frac{1}{k+1} \left[-\sum_{j=0}^k {k+1 \choose j} (-1)^{k+1-j} x^j \right] = \frac{1}{k+1} \left[-\sum_{j=0}^k {k+1 \choose j} (-1)^{k+1-j} x^j \right] = \frac{1}{k+1} \left[-\sum_{j=0}^k {k+1 \choose j} (-1)^{k+1-j} x^j \right] = \frac{1}{k+1} \left[-\sum_{j=0}^k {k+1 \choose j} (-1)^{k+1-j} x^j \right] = \frac{1}{k+1} \left[-\sum_{j=0}^k {k+1 \choose j} (-1)^{k+1-j} x^j \right] = \frac{1}{k+1} \left[-\sum_{j=0}^k {k+1 \choose j} (-1)^{k+1-j} x^j \right] = \frac{1}{k+1} \left[-\sum_{j=0}^k {k+1 \choose j} (-1)^{k+1-j} x^j \right] = \frac{1}{k+1} \left[-\sum_{j=0}^k {k+1 \choose j} (-1)^{k+1-j} x^j \right] = \frac{1}{k+1} \left[-\sum_{j=0}^k {k+1 \choose j} (-1)^{k+1-j} x^j \right] = \frac{1}{k+1} \left[-\sum_{j=0}^k {k+1 \choose j} (-1)^{k+1-j} x^j \right] = \frac{1}{k+1} \left[-\sum_{j=0}^k {k+1 \choose j} (-1)^{k+1-j} x^j \right] = \frac{1}{k+1} \left[-\sum_{j=0}^k {k+1 \choose j} (-1)^{k+1-j} x^j \right] = \frac{1}{k+1} \left[-\sum_{j=0}^k {k+1 \choose j} (-1)^{k+1-j} x^j \right] = \frac{1}{k+1} \left[-\sum_{j=0}^k {k+1 \choose j} (-1)^{k+1-j} x^j \right] = \frac{1}{k+1} \left[-\sum_{j=0}^k {k+1 \choose j} (-1)^{k+1-j} x^j \right] = \frac{1}{k+1} \left[-\sum_{j=0}^k {k+1 \choose j} (-1)^{k+1-j} x^j \right] = \frac{1}{k+1} \left[-\sum_{j=0}^k {k+1 \choose j} (-1)^{k+1-j} x^j \right] = \frac{1}{k+1} \left[\sum_{j=0}^k {k+1 \choose j} (-1)^{k+1-j} x^j \right] = \frac{1}{k+1} \left[\sum_{j=0}^k {k+1 \choose j} (-1)^{k+1-j} x^j \right] = \frac{1}{k+1} \left[\sum_{j=0}^k {k+1 \choose j} (-1)^{k+1-j} x^j \right] = \frac{1}{k+1} \left[\sum_{j=0}^k {k+1 \choose j} (-1)^{k+1-j} x^j \right] = \frac{1}{k+1} \left[\sum_{j=0}^k {k+1 \choose j} (-1)^{k+1-j} x^j \right] = \frac{1}{k+1} \left[\sum_{j=0}^k {k+1 \choose j} (-1)^{k+1-j} x^j \right] = \frac{1}{k+1} \left[\sum_{j=0}^k {k+1 \choose j} (-1)^{k+1-j} x^j \right] = \frac{1}{k+1} \left[\sum_{j=0}^k {k+1 \choose j} (-1)^{k+1-j} x^j \right] = \frac{1}{k+1} \left[\sum_{j=0}^k {k+1 \choose j} (-1)^{k+1-j} x^j \right] = \frac{1}{k+1} \left[\sum_{j=0}^k {k+1 \choose j} (-1)^{k+1-j} x^j \right] = \frac{1}{k+1} \left[\sum_{j=0}^k {k+1 \choose j} (-1)^{k+1-j} x^j \right]$

$$\frac{1}{k+1} \bigg[\sum_{j=0}^k \binom{k+1}{j} (-1)^{k-j} x^j \bigg]. \text{ Donc } deg \Big(U(f_k) \Big) \leq k \leq n. \text{ Par conséquent, par linéarité de } U, \text{ l'image par } U \text{ de toute combinaison } U \text{ de toute combinai$$

linéaire des f_k tq $k \in [0, n]$ est une combinaison linéaire des f_k tq $k \in [0, n]$. Ainsi, E_n est stable par U et par suite U induit sur E_n un endomorphisme noté U_n .

$$5.2. \forall k \in [0,n], \forall x \in \mathbb{R}, \ U_n(f_k)(x) = \frac{1}{k+1} \left[\sum_{j=0}^k \binom{k+1}{j} (-1)^{k-j} x^j \right] = \frac{1}{k+1} \left[(k+1) x^k + \sum_{j=0}^{k-1} \binom{k+1}{j} (-1)^{k-j} x^j \right]$$

$$= x^k + \sum_{j=0}^{k-1} \frac{1}{k+1} \binom{k+1}{j} (-1)^{k-j} x^j = f_k(x) + \sum_{j=0}^{k-1} \frac{1}{k+1} \binom{k+1}{j} (-1)^{k-j} f_j(x) \ .$$

Donc,
$$U_n(f_k) = f_k + \sum_{j=0}^{k-1} \frac{1}{k+1} {k+1 \choose j} (-1)^{k-j} f_j$$
.

$$\mathsf{Donc}\,M = \begin{pmatrix} \frac{U_n(f_0)}{1} & U_n(f_1) & & U_n(f_k) & & U_n(f_n) \\ 0 & 1 & & \frac{1}{k+1}\binom{k+1}{0} & \frac{1}{n+1}\binom{n+1}{0} \\ 0 & \frac{1}{k+1}\binom{k+1}{1} & \frac{1}{n+1}\binom{n+1}{1} \\ \vdots & \vdots & & \frac{1}{k+1}\binom{k+1}{k-1} \\ & & 0 & & \frac{1}{n+1}\binom{n+1}{n-1} \\ 0 & 0 & & 0 & & 1 \end{pmatrix} f_n$$

 $5.3.\det(M) = 1 \operatorname{donc} M$ est inversible et par suite U_n est un automorphisme de E_n .

$$5.3. N = mat_{B_c}(U_n - Id_{E_n}) = M - I_{n+1} = \begin{pmatrix} (U_n - id)(f_0) & (U_n - id)(f_1) & \frac{(U_n - id)(f_k)}{k+1} & \frac{(U_n - id)(f_n)}{n+1} & \frac{1}{n+1} \binom{n+1}{0} \\ 0 & \mathbf{0} & \frac{1}{k+1} \binom{k+1}{1} & \frac{1}{n+1} \binom{n+1}{1} \\ 0 & \frac{1}{k+1} \binom{k+1}{1} & \frac{1}{n+1} \binom{n+1}{1} \end{pmatrix} f_n$$

$$\vdots & \vdots & \frac{1}{k+1} \binom{k+1}{k-1} & \vdots & 0 \\ 0 & 0 & 0 & \mathbf{0} & \mathbf{0} \end{pmatrix} f_n$$

Soit H(k) la propriété : $(U_n - id)^k (f_k) = 0$. Montrons par une récurrence forte et finie que $\forall k \in [0, n], H(k)$ est vraie. **Initialisation**: D'après la matrice N , $(U_n-id)^0(f_0)=0$.

Propagation : Soit k un entier naturel inférieur à n-1. Supposons que : $\forall j \in [0,k]$, $(U_n-id)^j(f_j)=0$. Montrons que $(U_n - id)^{k+1}(f_{k+1}) = 0.$

$$(U_n - id)^{k+1}(f_{k+1}) = (U_n - id)^k \left(\underbrace{(U_n - id)}_{\substack{\text{est une combi.linéaire} \\ \text{des } f_0, f_1, \dots, f_k}}\right) = (U_n - id)^k \left(\sum_{j=0}^k a_j f_j\right) = \sum_{j=0}^k a_j \underbrace{(U_n - id)^k (f_j)}_{=0} = 0 \text{ OK!!}$$

$$= 0 \text{ car}$$

 $\mathsf{CCL}: \forall k \in [\![0,n]\!], H(k) \text{ est vraie.Et par suite }, \forall j \in [\![0,k]\!], (U_n-id)^n \big(f_j\big) = 0. \ L'endomorphisme \ (U_n-id)^n \text{ envoie tous les vecteurs de } \mathcal{E}(u_n-id)^n \big(f_j\big) = 0. \ L'endomorphisme \ (U_n-id)^n \big(f_j\big) = 0. \ L'$ la base canonique sur 0. J'en dédeuis que l'endomorphisme $(U_n - id)^n$ est $nul.\ U_n - id$ est donc nilpotent.

 $Ker(U_n - \lambda id_{E_n}) \neq \{0\} \iff U_n - \lambda id_{E_n}n'est\ pas\ injectif \iff U_n - \lambda id_{E_n}n'est\ pas\ bijectif \iff \det(M - \lambda I_{n+1}) = 0$

$$Ker(U_n - \lambda id_{E_n}) \neq \{0\} \Leftrightarrow U_n - \lambda id_{E_n} n'est \ pas \ injectif$$

$$6.f \in Ker(U) \iff \forall x \in \mathbb{R}, \int_{x-1}^{x} f(t)dt = 0 \underset{en \ premant \ x=1}{\Longrightarrow} \int_{0}^{1} f(t)dt = 0.$$

$$f \in Ker(U) \Leftrightarrow \forall x \in \mathbb{R}, \int_{x-1}^{x} f(t)dt = 0 \qquad \Leftrightarrow \qquad \forall x \in \mathbb{R}, F(x) - F(x-1) = 0 \Leftrightarrow F \text{ est } 1 - p \text{\'eriodique} \qquad \Leftrightarrow \qquad d'apr \text{\'ess} 2)$$

$$= F' \text{est } 1 - p \text{\'eriodique}.$$

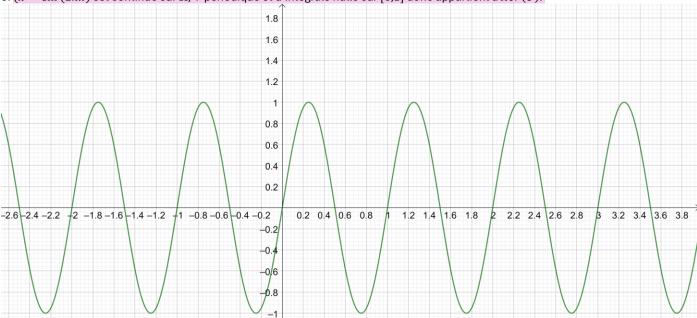
7.

- On a montré dans la question 6. que $Ker(U) \subset \{f \in \mathcal{E} \mid f \text{ est } 1 \text{périodique et } \int_0^1 f(t)dt = 0\}$.
- Soit $f\in \mathscr{E}$ telle que f est 1 —périodique et $\int_0^1 f(t)dt=0$. Alors $\forall x\in\mathbb{R}$,

$$\int_{x-1}^{x} f(t)dt = \lim_{\substack{en \ applica quant \ 1. \ avec \ a=x-1}} \int_{0}^{1} f(t)dt = 0. \text{Donc}, f \in Ker(U).$$

Ainsi, $\{f \in \mathscr{E} / f \text{ est } 1 - \text{périodique et } \int_0^1 f(t) dt = 0\} \subset Ker(U) \text{ et finalement : }$

 $\{f \in \mathscr{E} \mid f \text{ est } 1 - \text{p\'eriodique et } \int_0^1 f(t)dt = 0\} = Ker(U).$



8. U n'est pas surjective de \mathscr{E} sur \mathscr{E} . En effet, nous avons prouvé que les images par U sont des fonctions de classe \mathcal{C}^1 . Or un élément de \mathscr{E} n'est pas forcément de classe \mathcal{C}^1 : par exemple, la valeur absolue est un élément de \mathscr{E} qui n'est pas \mathcal{C}^1 car pas dérivable en 0. Donc la fonction valeur absolue n'a pas d'antécédent par U.

$$10.1. \ \forall x \in \mathbb{R}, F_a(x) = U(f_a)(x) = \int_{x-1}^x e^{at} dt = \frac{1}{a} \left[e^{ax} - e^{a(x-1)} \right] = e^{ax} \left[\frac{e^{-a} - 1}{-a} \right]. \ \ \mathsf{Donc} \ \ U(f_a) = \left[\frac{e^{-a} - 1}{-a} \right] f_a.$$

 $10.1. \ \forall x \in \mathbb{R}, F_a(x) = U(f_a)(x) = \int_{x-1}^x e^{at} \, dt = \frac{1}{a} \left[e^{ax} - e^{a(x-1)} \right] = e^{ax} \left[\frac{e^{-a} - 1}{-a} \right]. \ \text{Donc} \ U(f_a) = \left[\frac{e^{-a} - 1}{-a} \right] f_a.$ $10.2. \ g: \left(x \mapsto \frac{e^x - 1}{x} \right) \text{ est dérivable sur } \mathbb{R}^* \ et \ \forall x \neq 0, g'(x) = \frac{xe^x - (e^x - 1)}{x^2} = \frac{(x-1)e^x + 1}{x^2}. \ \text{Posons} \ h(x) = (x-1)e^x + 1. \ h \ \text{est dérivable sur } \mathbb{R}$ et $et \ \forall x, h'(x) = xe^x$. Donc $h'(x) > 0 \iff x > 0$. Par conséquent, h est strictement croissante sur \mathbb{R}^{+*} et strictement décroissante sur \mathbb{R}^{-*} . Comme h(0) = 0, h est positive et ne s'annule qu'en 0. Et par suite g' est strictement positive sur \mathbb{R}^* . Donc g est strictement croissante sur \mathbb{R}^{+*} et sur \mathbb{R}^{-*} . Comme de plus, $\lim_{x\to 0}g(x)\stackrel{\cong}{=} 1$, g est prolongeable par continuité en 0 par la valeur 1 et son

prolongement $ilde{g}$ est strictement croissant sur \mathbb{R} .

10.3. \tilde{g} est continue et strictement croissant sur \mathbb{R} et $\lim_{x \to -\infty} \tilde{g}(x) = 0$ et $\lim_{x \to +\infty} \tilde{g}(x) = +\infty$. Par conséquent, \tilde{g} est bijective de \mathbb{R} sur

Soit $\lambda \in \mathbb{R}^{+*}$. Alors λ admet un unique antécédent a' par g et s'écrit donc sous la forme $\lambda = g(a') = g(-a) = \frac{e^{-a}-1}{-a}$. Alors, a = a'

 f_a vérifie $U(f_a) = \left[\frac{e^{-a}-1}{-a}\right]f_a = \lambda f_a$. Ainsi, pour tout réel λ strictement positif, il existe une fonction f non nulle telle que $U(f) = \lambda f$.