Espaces préhilbertiens réels

I Espace préhilbertien réel . Produit scalaire

```
1 Déf du produit scalaire Soit E un \mathbb{R} —espace-vectoriel . On appelle produit scalaire sur E toute application \varphi définie sur E \times E (= E^2) et à valeurs dans \mathbb{R} qui vérifie : 1. \forall (\vec{x}, \vec{y}, \vec{z}) \in E^3, \forall (\alpha, \beta) \in \mathbb{R}^2, \varphi(\alpha \vec{x} + \beta \vec{y}, \vec{z}) = \alpha \varphi(\vec{x}, \vec{z}) + \beta \varphi(\vec{y}, \vec{z}) i.e. \varphi est linéaire par rapport à la 1^{\text{ère}} variable \varphi est 2. \forall (\vec{x}, \vec{y}, \vec{z}) \in E^3, \forall (\alpha, \beta) \in \mathbb{R}^2, \varphi(\vec{z}, \alpha \vec{x} + \beta \vec{y}) = \alpha \varphi(\vec{z}, \vec{x}) + \beta \varphi(\vec{z}, \vec{y}) i.e. \varphi est linéaire par rapport à la 2^{\text{nde}} variable bilinéaire 3. \forall (\vec{x}, \vec{y}) \in E^2, \varphi(\vec{x}, \vec{y}) = \varphi(\vec{y}, \vec{x}) \varphi est symétrique \varphi est
```

 $4.. \forall \vec{x} \in E, \varphi(\vec{x}, \vec{x}) \ge 0$ $5.. \forall \vec{x} \in E, \varphi(\vec{x}, \vec{x}) = 0 \Leftrightarrow \vec{x} = \vec{0}$ $\phi \text{ est}$ définie- positive

 ${\it E}$, muni d'un produit scalaire, est appelé un espace préhilbertien réel .

2 notation: φ est notée (. / .) ou $\langle . / . \rangle$ et $\varphi(\vec{x}, \vec{y})$ est noté : (\vec{x}/\vec{y}) ou (\vec{x}/\vec{y}) .

3 Rque : Si les propriétés 1 et 3 sont vérifiées alors nécessairement, la propriété 2 est vérifiée. Donc en pratique, pour prouver que φ est un p.s.s.ur E, il suffit de montrer que φ est une application de E^2 dans \mathbb{R} qui vérifie les propriétés 1, 3, 4 et 5.

4 Règles de calcul:

- $\forall \vec{x} \in E^{\square}, (\vec{x}/\vec{0}) = 0 = (\vec{0}/\vec{x})$
- $\bullet \ \forall (\overrightarrow{x_1}, \overrightarrow{x_2}, ..., \overrightarrow{x_p}) \in E^p, \ \forall (\alpha_1, \alpha_2, ..., \alpha_p) \in \mathbb{R}^p, \ (\sum_{k=1}^p \alpha_k \overrightarrow{x_k} / \overrightarrow{y}) = \sum_{k=1}^p \alpha_k (\overrightarrow{x_k} / \overrightarrow{y}) = (\overrightarrow{y} / \sum_{k=1}^p \alpha_k \overrightarrow{x_k})$
- **5** Exemples à connaitre et savoir redémontrer :
- 1) sur \mathbb{R}^n : l'application $((x_1, ..., x_n), (y_1, ..., y_n)) \mapsto \sum_{i=1}^n x_i y_i$ est un produit scalaire sur \mathbb{R}^n appelé **produit scalaire canonique**. Cas particuliers :

Sur $\mathbb R$: le produit est un produit scalaire sur $\mathbb R$

Sur \mathbb{R}^2 : l'application $(((x,y),(a,b)) \mapsto xa + yb)$ est un produit scalaire sur \mathbb{R}^2

Sur \mathbb{R}^3 : l'application $((x, y, z), (a, b, c)) \mapsto xa + yb + zc)$ est un produit scalaire sur \mathbb{R}^3

- Soit a et b deux réels tels que a < b . Sur $C^{\circ}([a,b],\mathbb{R})$: si ω est une application strictement positive et continue sur [a,b] alors l'application $\left((f,g)\mapsto\int_a^b f(t)g(t)\omega(t)dt\right)$ est un produit scalaire sur $C^{\circ}([a,b],\mathbb{R})$.
- 3) Sur $\mathbb{R}[X]$: l'application $(P,Q) \mapsto \int_a^b \tilde{P}(t)\tilde{Q}(t)dt$ est un produit scalaire sur $\mathbb{R}[X]$
- 4) Si $P = \sum_{k=0}^{n} a_k X^k$ et $Q = \sum_{k=0}^{n} b_k X^k$ et $(P/Q) = \sum_{k=0}^{n} a_k b_k$. L'application : $((P,Q) \mapsto (P/Q))$ est le produit scalaire canonique sur $\mathbb{R}_n[X]$.
- 5) Si a_0 , a_1 ,..., a_n sont n+1 réels distincts alors l'application : $((P,Q) \mapsto \sum_{i=0}^n P(a_i)Q(a_i))$ est un produit scalaire sur $\mathbb{R}_n[X]$.
- 6) $((M/N) = tr(M^T N))$ définit le produit scalaire canonique sur $M_n(\mathbb{R})$

```
6 Proposition Soit E un \mathbb{R} e v muni du produit scalaire (./.).

\forall (\vec{x}, \vec{y}) \in E^2, (\vec{x}/\vec{y})^2 \leq (\vec{x}/\vec{x})(\vec{y}/\vec{y})^{\square} \quad \text{i.e.} \ |(\vec{x}/\vec{y})|^{\square} \leq \sqrt{(\vec{x}/\vec{x})}\sqrt{(\vec{y}/\vec{y})}^{\square} \quad \text{appelée Inégalité de Cauchy -Schwarz}
De plus , \ |(\vec{x}/\vec{y})|^{\square} = \sqrt{(\vec{x}/\vec{x})}\sqrt{(\vec{y}/\vec{y})}^{\square} \Leftrightarrow \vec{x} \ et \ \vec{y} \ sont \ colinéaires .
```

- 7 On retrouve les inégalités de Cauchy-Schwarz prouvées dans d'autres chapitres :
- 1) Cauchy-Schwarz dans \mathbb{R}^n muni du produit scalaire : $\langle (x_1,\ldots,x_n)/(y_1,\ldots,y_n)\rangle = \sum_{i=1}^n x_iy_i$: pour tous n-uplets (x_1,x_2,\ldots,x_n) et (y_1,y_2,\ldots,y_n) , $(\sum_{i=1}^n x_iy_i)^2 \leq (\sum_{i=1}^n x_i^2)(\sum_{i=1}^n y_i^2)$
- 2) On munit $C^{\circ}([a,b],\mathbb{R})$ du $ps.(f/g) = \int_a^b f(t)g(t)dt$, l'inégalité de Cauchy-Schwarz s'écrit alors :

Cauchy-Schwarz dans \mathbb{R}^n dans $C^{\circ}([a,b],\mathbb{R})$ du $ps. (f/g) = \int_a^b f(t)g(t)dt$ pour toutes fonctions f et g continues sur [a,b] et à valeurs réelles , $\left(\int_a^b f(t)g(t)dt\right)^2 \leq \left(\int_a^b (f(t))^2 dt\right)^{\square} \left(\int_a^b (g(t))^2 dt\right)^{\square}$.

3) Pour toutes matrices (a_{ij}) et (b_{ij}) de $M_n(\mathbb{R})$, $\left|\sum_{(i,j)\in[1,n]^2}^{\text{loc}} a_{ij}b_{ij}\right| \leq \sqrt{\sum_{(i,j)\in[1,n]^2}^{\text{loc}} a_{ij}^2} \sqrt{\sum_{(i,j)\in[1,n]^2}^{\text{loc}} b_{ij}^2}$

8Déf d'une norme Soit E un \mathbb{R} e v .

On appelle norme sur E toute application N définie sur E et à valeurs dans \mathbb{R} et telle que :

1. $\forall \vec{x} \in E, N((\vec{x}) \geq 0)$

2. $\forall \vec{x} \in E, (N(\vec{x}) = 0 \iff \vec{x} = 0)$

3. $\forall \alpha \in \mathbb{R}$, $\forall \vec{x} \in E, N(\alpha \vec{x}) = |\alpha|N(\vec{x})$

4. $\forall (\vec{x}, \vec{y}) \in E^2$, $N(\vec{x} + \vec{y}) \leq N(\vec{x}) + N(\vec{y})$ (inégalité triangulaire)

Alors l'application d, définie sur $E \times E$ par : $\forall (\vec{x}, \vec{y}) \in E^2$, $d(\vec{x}, \vec{y}) = ||\vec{x} - \vec{y}||$ est la **distance associée à la norme** || et

 $\forall (\vec{x}, \vec{y}) \in E^2, d(\vec{x}, \vec{y}) \text{ est la } \frac{\text{distance}}{\text{distance}} \text{ entre } \vec{x} \text{ et } \vec{y} \text{ .}$

10Théorème norme euclidienne Soit E un \mathbb{R} e v muni du produit scalaire (. / .).

L'application $\|\vec{x}\|$ définie sur E par : $\forall \vec{x} \in E$, $\|\vec{x}\| = \sqrt{(\vec{x}/\vec{x})}$ est une norme sur E appelée **norme euclidienne** associée au produit scalaire (. / .).

L'inégalité triangulaire et celle de Cauchy-Schwarz s'écrivent alors $\forall (\vec{x}, \vec{y}) \in E^2, ||\vec{x} + \vec{y}|| \stackrel{\frown}{\leq} ||\vec{x}|| + ||\vec{y}||$ et $|(\vec{x}/\vec{y})| \stackrel{\frown}{\leq} ||\vec{x}|| ||\vec{y}||$

- Dans \mathbb{R}^n muni du produit scalaire canonique, la norme euclidienne canonique est $\|(x_1,...,x_n)\| = \sqrt{\sum_{i=1}^n x_i^2}$,
- Dans C°([a,b], \mathbb{R}) muni du ps: $(f/g) = \int_a^b f(t)g(t)dt$, la norme euclidienne associée est $||f|| = \sqrt{\int_a^b (f(t))^2 dt}$.
- Dans $\mathbb{R}_n[X]$ du ps: $(P/Q) = \sum_{i=0}^n P(a_i)Q(a_i)$ où a_0 , a_1 ,..., a_n sont n+1 réels fixés distincts alors $\|P\| = \sqrt{\sum_{i=0}^n P(a_i)^2}$.
- Dans $M_n(\mathbb{R})$ muni du $ps:(M/N)=tr(M^TN)$, $\forall M=\left(m_{ij}\right)\in M_n(\mathbb{R}), \|M\|=\sqrt{tr(M^TM)}=\sqrt{\sum_{(i,j)\in [\![1,n]\!]^2}m_{ij}^2}.$

12 Désormais, E un \mathbb{R} e v muni du produit scalaire (./.) de norme associée ||...||.

13Def d'un vecteur unitaire: On dit que le vecteur \vec{u} de E est unitaire ou normé lorsque $||\vec{u}|| = 1$.

14Remarque: Tout vecteur \vec{x} non nul de \vec{E} est colinéaire à un vecteur unitaire car $\vec{x} = ||\vec{x}|| \frac{x}{||\vec{x}||}$

15Propriétés : Des relations entre norme et produit scalaire. $\forall (\vec{x}, \vec{y}) \in E^2$,

 $\|\vec{x} + \vec{y}\|^2 = \|\vec{x}\|^2 + 2(\vec{x}/\vec{y}) + \|\vec{y}\|^2$ et $\|\vec{x} - \vec{y}\|^2 = \|\vec{x}\|^2 - 2(\vec{x}/\vec{y}) + \|\vec{y}\|^2$

 $(\vec{x} + \vec{y}/\vec{x} - \vec{y}) = ||\vec{x}||^2 - ||\vec{y}||^2$

 $(\vec{x}/\vec{y}) = \frac{1}{4} ||\vec{x} + \vec{y}||^2 - ||\vec{x} - \vec{y}||^2$ identité de polarisation.

II Orthogonalité

16Dans tout ce paragraphe, E est un \mathbb{R} e v muni du produit scalaire (./.) de norme associée |..|

1. Orthogonalité-Orthogonal d'une partie.

17Déf de vecteurs et espaces orthogonaux.

- 1) Deux vecteurs \vec{x} et \vec{y} de \vec{E} sont dits orthogonaux lorsque $(\vec{x}/\vec{y}) = 0$. On note $\vec{x} \perp \vec{y}$.
- 2) Deux **ss e v** F et G de E sont dits **orthogonaux** lorsque $\forall \vec{x} \in F$, $\forall \vec{y} \in G$, $(\vec{x}/\vec{y}) = 0$ On note $F \perp G$.
- 3) Un vecteur \vec{y} est orthogonal à un ss-e-v F lorsque $\forall \vec{x} \in F, (\vec{x}/\vec{y}) = 0$. On note $\vec{y} \perp F$.

18Déf de l'orthogonal d'une partie :

Soit X une partie de E. L'orthogonal de X est l'ensemble noté X^{\perp} des vecteurs de E orthogonaux à tous les vecteurs de X.

$$X^{\perp} = \{ \vec{u} \in E \mid \forall \vec{x} \in X, (\vec{u}/\vec{x}) = 0 \}.$$

ie. $\vec{u} \in X^{\perp}$ si et ssi $\forall \vec{x} \in X$, $(\vec{u}/\vec{x}) = 0$ si et ssi $\vec{u} \perp X$.

19Exemple: On munit \mathbb{R}^3 du produit scalaire canonique alors $P = \{(x, y, z)/x + 2y - 3z = 0\} = \{(1, 2, -3)\}^{\perp}$.

20Théorème Soit X une partie de E. Alors X^{\perp} est un sous espace vectoriel de E et $X^{\perp} = (vect(X))^{\perp}$.

21Propriétés 1) Si X et Y sont deux sous-ensembles de E tels que $X \subset Y$ alors $Y^{\perp} \subset X^{\perp}$.

- 2) Si les <u>ss-e-v</u> F et G de E sont orthogonaux alors $F \cap G = \{\vec{O}\}$ (i.e. F et G sont en somme directe).
- 3) Soit F et G sont deux ss e v de E. Alors $G \perp F \iff G$ est un ss e v de $F \perp$.

22Caractérisation Soit $(\overrightarrow{e_i})_{i\in\{1,..,p\}}$ une famille génératrice d' un $\underline{\text{ss-e-v}}\ F\$ de $E\$.

Soit \vec{u} un vecteur de E et X une partie de E .

1. $\vec{u} \perp F \Leftrightarrow \vec{u} \in F^{\perp} \Leftrightarrow \forall i \in \{1, ..., p\}, (\vec{u}/\vec{e_i}) = 0$.

Autrement dit, $F^{\perp} = \{\vec{u} \in E / \forall i \in \{1,...,p\}, (\vec{u}/\vec{e_i}) = 0\}.$

- 2. $X \perp F \iff X \subset F \perp \iff \forall \vec{x} \in G, \forall i \in \{1, ..., p\}, (\vec{x}/\vec{e_i}) = 0.$
- 3. Si G est le ss-e-v engendré par $(\vec{g}_k)_{k=1..q}$ alors $G \perp F \iff \forall k \in \{1..,q\}, \forall \ell \in \{1,..,p\}$, $\vec{g}_k \perp \vec{e_\ell}$.

NB:, pour être orthogonal à un ss-e-v , il faut et il suffit d'être orthogonal à tous les vecteurs générateurs de ce sse-v.

2. Famille orthogonale, famille orthonormale

23Déf d'une famille orthogonale , orthonormale Soit $B = (\vec{e_i})_{i \in I}$ une famille de vecteurs de E.

• B est une famille orthogonale lorsque les vecteurs de B sont deux à deux orthogonaux.

ie. $\forall (k,m) \in I^2$, $(m \neq k \Rightarrow (\overrightarrow{e_m}/\overrightarrow{e_k}) = 0)$

- B est dite base orthogonale de E lorsque B est une base de E et B est orthogonale.
- B est dite orthonormale (ou orthonormée)lorsque B est orthogonale et les vecteurs de B sont unitaires i.e. lorsque :

 $\forall (k,m) \in I^2$, $(\overrightarrow{e_m}/\overrightarrow{e_k}) = \delta_{mk}$ (symbole de Kronecker))

ullet B est dite ${f base}$ orthonormée $(B.\ O.\ N)$ de E lorsque B est une base de E et B est orthonormale .

24Remarques

- •Une famille orthonormale ne contient jamais le vecteur nul
- •Si $B = (\overrightarrow{e_i})_{i \in I}$ une famille de vecteurs de E ,orthogonale , alors $\forall (\alpha_i)_{i \in I} \in \mathbb{R}^I$, $B' = (\alpha_i \overrightarrow{e_i})_{i \in I}$ est une famille orthogonale.

25Propriété: Toute famille orthogonale de vecteurs non nuls de E est libre. En particulier, toute famille orthonormale est libre.

26Théorème La base canonique de \mathbb{R}^n est une BON pour le produit scalaire canonique de \mathbb{R}^n .

27Autres bases ortho(...) à connaître et savoir redémontrer

- 2) $(E_{ij})_{i=1..n}$ est une BON de $M_n(\mathbb{R})$ muni de son p.s. canonique.
- 3) $(X^k)_{k=0,n}$ est une BON de $\mathbb{R}_n[X]$ de son produit scalaire canonique .
- 4) Soit a_0 , a_1 ,..., a_n (n+1) réels distincts . On munit $\mathbb{R}_n[X]$ du produit scalaire $(P/Q) = \sum_{i=0}^n P(a_i)Q(a_i)$ et on définit les polynômes : $L_k(X) = \prod_{\substack{j=0 \ j \neq k}}^n \frac{X-a_j}{a_k-a_j}$ pour $k \in [\![0,n]\!]$. Alors $(L_k)_{k=0..n}$ est une BON de $\mathbb{R}_n[X]$.
- 5) On munit $C^{\circ}([0,\pi],\mathbb{R})$ du produit scalaire $(f,g)\mapsto \int_0^{\pi}f(t)g(t)dt$ et on définit $f_k\colon (t\to\cos(kt))$. Alors $(f_k)_{k\in\mathbb{N}}$ est une famille orthogonale donc libre.

28Théorème de Pythagore: Les vecteurs \vec{u} et \vec{v} , de \vec{E} , sont orthogonaux si et seulement si $||\vec{u} + \vec{v}||^2 = ||\vec{u}||^2 + ||\vec{v}||^2$.

29Généralisation (de \Rightarrow): Si $B = (\overrightarrow{e_i})_{i \in \{1,..,n\}}$ est une famille orthogonale de vecteurs de E alors $\forall (\alpha_i)_{i \in \{1,..,n\}} \in \mathbb{R}^n$,

$$\left\| \sum_{i=1}^{n} \alpha_i \, \overrightarrow{e_i} \right\|^2 = \sum_{i=1}^{n} |\alpha_i|^2 \, \|\overrightarrow{e_i}\|^2$$

30Théorème d'orthonormalisation de Gramm - Schmidt : Construction d'une famille orthonormée de E à partir d'une famille libre. Soit $V=(\overrightarrow{v_i})_{i\in\{1,\dots,n\}}$ une famille libre de vecteurs de E .

Alors, il existe une BASE orthonormée $B = (\overrightarrow{e_i})_{i \in \{1, ..., n\}}$ de E telle que : $\forall i \in \{1, ..., n\}$, $\overrightarrow{e_i} \in vect(\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_i})$.

III Espaces euclidiens

1. Définition

31Déf : E est un espace euclidien lorsque E est un espace préhilbertien réel de dimension finie (i.e. un \mathbb{R} e v de dimension finie muni d'un produit scalaire) .

32NB: Si F est un ss e v de E alors en restreignant le produit scalaire à $F \times F$, je munis F d'une structure d'espace vectoriel euclidien appelée structure induite par celle de E . F est alors un espace euclidien.

2. Existence d'une BON

33Théorème Tout espace vectoriel euclidien de dimension non nulle possède une BON .

34Exercice: Déterminer une base de $\mathbb{R}_2[X]$ muni du produit scalaire: $(P/Q) = \int_0^1 \tilde{P}(t)\tilde{Q}(t)dt$.

35Théorème de la base incomplète : Toute famille orthonormée d'un espace vectoriel euclidien E peut être complétée pour obtenir un BON de E.

3. Ecriture dans une BON

36Proposition: Ecriture dans une BON.

Soit $B = (\overrightarrow{e_i})_{i \in \{1,\dots,n\}}$ une BON de l'espace euclidien E . Soit \vec{x} et \vec{y} deux vecteurs de E .

Si $(x_1, x_2, ..., x_n)$ et $(y_1, y_2, ..., y_n)$ sont les composantes de respectivement \vec{x} et \vec{y} dans la base orthonormée $B = (\overrightarrow{e_i})_{i \in \{1, n\}}$ alors

$$\forall i \in [\![1,n]\!], x_i = (\vec{x}/\vec{e_i}) \;, \qquad \|\vec{x}\|^2 = \sum_{i=1}^n x_i^2 \qquad et \qquad (\vec{x}/\vec{y}) = \sum_{i=1}^n x_i y_i$$

Autrement dit:

$$\vec{x} = \sum_{k=1}^{n} (\vec{x}/\overrightarrow{e_k}) \overrightarrow{e_k} \quad et \quad ||\vec{x}|| = \sum_{k=1}^{n} (\vec{x}/\overrightarrow{e_k})^2 \quad et \quad (\vec{x}/\vec{y}) = \sum_{k=1}^{n} (\vec{x}/\overrightarrow{e_k}) (\vec{y}/\overrightarrow{e_k})$$

$$\mathbf{Matriciellement}: mat_{B}\vec{x} = X = \begin{pmatrix} (\vec{x}/\overrightarrow{e_{1}}) \\ (\vec{x}/\overrightarrow{e_{2}}) \\ \vdots \\ (\vec{x}/\overrightarrow{e_{n}}) \end{pmatrix}, \ mat_{B}\vec{y} = Y = \begin{pmatrix} (\vec{y}/\overrightarrow{e_{1}}) \\ (\vec{y}/\overrightarrow{e_{2}}) \\ \vdots \\ (\vec{y}/\overrightarrow{e_{n}}) \end{pmatrix}, \ (\vec{x}/\vec{y}) = X^{T}Y = Y^{T}X \quad \text{ et } \|\vec{x}\|^{2} = X^{T}X.$$

37NB: Calculer le produit scalaire de deux vecteurs revient à effectuer le produit scalaire canonique de leurs n-uplets de composantes dans une BON . Calculer la norme d'un vecteur revient à calculer la norme euclidienne canonique de son n-uplet de

composantes dans une BON . $(\vec{x}/\vec{y}) = \sum_{i=1}^n x_i y_i = \langle (x_1, \dots, x_n)/(y_1, \dots, y_n) \rangle$, $||\vec{x}||^{\square} = \sqrt{\sum_{i=1}^n x_i^2} = ||(x_1, \dots, x_n)||^{\square}$ 38Exercice: Soit a_0 , a_1 , ..., a_n des réels distincts et $\forall k \in [0, n]$, $L_k(X) = \prod_{\substack{j=0 \ j \neq k}}^n \frac{X-a_j}{a_k-a_j}$. Montrer que $\forall P$ de $\mathbb{R}_n[X]$, $P = \sum_{k=0}^n P(a_k) L_k$.

IV Supplémentaire orthogonal d'un ss-e-v de dimension finie et projection orthogonale sur un ss-e-v de dimension finie.

Dans ce paragraphe, (E, (. /.)) un espace préhilbertien réel de norme associée

F désigne un sous-e-v de E tel que F est de dimension finie. F est donc un e-v euclidien et possède donc une B. O. N.

1. Supplémentaire orthogonal d'un ss-e-v F de E tel que F est dimension finie

39Propriété Si F est un ss e v de l'espace préhilbertien réel E et F est de <u>dimension finie</u> alors

- 1. $E = F \oplus F^{\perp}$ i.e. F^{\perp} est un supplémentaire de F dans E
- 2. F^{\perp} est le seul supplémentaire de F dans E qui soit orthogonal à F. on note $E = F \oplus^{\perp} F^{\perp}$
- 3. $(F^{\perp})^{\perp} = F$.

40Définition: F^{\perp} est appelé le supplémentaire orthogonal de F dans E

41Conséquence : si E est de dimension finie alors $dimF + dimF^{\perp} = dimE$.

2. Projection orthogonale sur un ss-e-v de dimension finie.

42Définition : Soit E un espace préhilbertien réel et F un ss-e-v de E tel que $dimF < +\infty$.

La **projection orthogonale** sur F est la projection sur F et parallèlement à F^{\perp} et est notée p_F .

Soit $\vec{x} \in E$. $p_F(\vec{x})$ est le **projeté orthogonal** de \vec{x} sur F et $p_{F^{\perp}}(\vec{x}) = \vec{x} - p_F(\vec{x})$ est le **projeté orthogonal** de \vec{x} sur F^{\perp} .

43Conséquence: On sait que : $Imp_F = F$ et $Kerp_F = F^{\perp}$ donc Imp_F et $Kerp_F$ sont orthogonaux.

44Caractérisation d'une projection orthogonale. Soit E un espace vectoriel euclidien et p une application de E vers E. p est un projecteur orthogonal sur E si et ssi $p \in \mathcal{L}(E)$ et $p \circ p = p$ et $Im(p) \perp Ker(p)$.

45Exercice: \mathbb{R}^3 est muni de son produit scalaire usuel. Soient $M = \frac{1}{14} \begin{pmatrix} 5 & 6 & -3 \\ 6 & 10 & 2 \\ -3 & 2 & 13 \end{pmatrix}$ et p l'endomorphisme de \mathbb{R}^3 canoniquement associé à M. Montrer que p est une projection orthogonale , en donner ses éléments caractéristiques. Déterminer une base orthonormée de \mathbb{R}^3 dans laquelle la matrice de p est diagonale.

3. Projeté orthogonal sur un ss-e-v de dimension finie

46Caractérisations du projeté orthogonal Soit E un espace préhilbertien réel et F un ss-e-v de E tel que $dimF < +\infty$ Soit \vec{x} un vecteur de E

- 1. $p_F(\vec{x})$ et $p_{F\perp}(\vec{x})$ sont les uniques vecteurs de respectivement F et F^{\perp} vérifiant $\vec{x} = p_F(\vec{x}) + p_{F\perp}(\vec{x})$.
- 2. $p_F(\vec{x})$ est l'unique vecteur de E tel que : $p_F(\vec{x}) \in F$ et $\vec{x} p_F(\vec{x}) \perp F$.
- 3. Si $(\overrightarrow{u_k})_{k \in \{1,..,p\}}$ est une base de F alors $p_F(\vec{x})$ est l'unique vecteur de E tel que : $\begin{cases} p_F(\vec{x}) = \sum_{k=1}^p \lambda_k \overrightarrow{u_k} \\ \text{et } \forall l \in [1,p], (\vec{x}-p_F(\vec{x})/\overrightarrow{u_l}) = 0 \end{cases}$
- 4. $Si(\overrightarrow{e_i})_{i \in \{1,\dots,p\}}$ est une base orthonormée de F alors $\forall \vec{x} \in E$, $p_F(\vec{x}) = \sum_{k=1}^p (\vec{x}/\overrightarrow{e_k}) \overrightarrow{e_k}$.

47Exercice: Déterminer le projeté orthogonal de $3X^2 + 2X - 1$ sur $F = \{P \in \mathbb{R}_2[X]/P'(0) = 2P(0)\}$ dans $\mathbb{R}_2[X]$ muni du p.s. (P/Q) = P(0)Q(0) + P(1)Q(1) + P(-1)Q(-1) de $\mathbb{R}_2[X]$.

48Prop: Soit $\vec{x} \in E$.

- 1. $\|\vec{x}\|^2 = \|p_F(\vec{x})\|^2 + \|\vec{x} p_F(\vec{x})\|^2$ et $\|\vec{x}\| \ge \|p_F(\vec{x})\|$
- 2. $\forall \vec{f} \in F, ||\vec{x} p_F(\vec{x})|| \le ||\vec{x} \vec{f}||.$

49Conséquence: $\forall \vec{x} \in E, \ \|\vec{x} - p_F(\vec{x})\| = \min\{\|\vec{x} - \vec{f}\|/\vec{f} \in F\}$; autrement dit, $\|\vec{x} - p_F(\vec{x})\|$ est la plus courte distance entre \vec{x} et n'importe quel vecteur de F.

50Définition: pour tout $\vec{x} \in E$, $\min\{\|\vec{x} - \vec{f}\|/\vec{f} \in F\}$ est la distance entre \vec{x} et F notée $d(\vec{x}, F)$.

Cette distance est atteinte en un et un seul vecteur $p_F(\vec{x})$. Autrement dit, pour tout $\vec{x} \in E$, $p_F(\vec{x})$ est l'unique vecteur de F vérifiant: $\forall \vec{x} \in E$, $d(\vec{x}, F) = d(\vec{x}, p_F(\vec{x})) = ||\vec{x} - p_F(\vec{x})|| = ||p_{F^{\perp}}(\vec{x})||$.

51Exercice: Calculons $inf_{(a,b)\in\mathbb{R}^2}\int_0^{\frac{\pi}{2}}(sint-at-b)^2dt$

52Proposition: projection orthogonale sur une droite, distance à une droite:

Soit D la droite vectorielle engendrée par le vecteur \vec{u} de E. Soit $\vec{x} \in E$. Alors, $p_D(\vec{x}) = \frac{(\vec{x}/\vec{u})}{(\vec{u}/\vec{u})} \vec{u}$ et $d(\vec{x}, D) = \left\| \vec{x} - \frac{(\vec{x}/\vec{u})}{(\vec{u}/\vec{u})} \vec{u} \right\|$

IV Hyperplan d'un espace euclidien.

Dans ce paragraphe, E est de dimension finie i.e. E est un espace euclidien.

53Proposition-Définition: projection orthogonale sur une hyperplan, distance à un hyperplan quand E est de dimension finie Soit H un hyperplan de l'espace euclidien E.

- 1. H^{\perp} est une droite vectorielle. Tout vecteur directeur (donc non nul) de cette droite H^{\perp} est appelé un vecteur normal à H.
- 2. Pour tout vecteur \vec{n} normal à H, $d(\vec{x},D) = \frac{|(\vec{x}/\vec{n})|}{||\vec{n}||}$

54Equation d'un hyperplan dans une base orthonormée: Soit $B = (\overrightarrow{e_t})_{i \in \{1, \dots, n\}}$ une BON de E. Soit H un hyperplan de E de vecteur normal $\overrightarrow{n} = \sum_{i=1}^n n_i \overrightarrow{e_t}$. Alors , $H = \{\overrightarrow{x} \in E / \overrightarrow{x} = \sum_{i=1}^n x_i \overrightarrow{e_t}$ et $\underbrace{\sum_{i=1}^n x_i n_i = 0}_{\text{équation de H dans B}}\}$ et $d(\overrightarrow{x}, D) = \underbrace{\frac{|\sum_{i=1}^n x_i n_i|}{\sum_{i=1}^n x_i \overrightarrow{e_t}}}_{où \overrightarrow{x} = \sum_{i=1}^n x_i \overrightarrow{e_t}} \underbrace{\frac{|\sum_{i=1}^n x_i n_i|}{\sum_{i=1}^n n_i^2}}_{ou \overrightarrow{x} = \sum_{i=1}^n x_i \overrightarrow{e_t}}$.