Ensembles-Applications Dénombrement.

I. <u>Ensembles-Applications (beaucoup de rappels)</u>

Définitions 1: Un **ensemble** E est une collection d'objets. Les objets qui le constituent sont les éléments de E. Si x est un **élément** de E, on note E (se lit E élément de E ou E appartient à E), sinon on note E0 on note E1 ensemble vide. Soit E2 et E3 deux ensembles.

- E = F signifie que E et F ont exactement les mêmes éléments i.e $x \in E \Leftrightarrow x \in F$.
- $E \cup F$, la **réunion** de E et F, est l'ensemble constitué des éléments de E et de F i.e. $x \in E \cup F \Leftrightarrow x \in E$ ou $x \in F$.
- $E \cap F$, l'intersection de E et F, est l'ensemble des éléments communs à E et F i.e. $x \in E \cap F \Leftrightarrow x \in E$ et $x \in F$.
- E et F sont **disjoints** lorsque $\cap F = \emptyset$.
- $A \subset E$ signifie que tout élément de A est élément de E et se lit A est inclus dans E. On dit alors que A est une partie ou un sous-ensemble de E. On note $\mathscr{F}(E)$ l'ensemble de toutes les parties de E. NB: $\mathscr{F}(E)$ contient \emptyset et E.

On définit alors le **complémentaire de** A **dans** E, noté \bar{A} ou C_E^A , par : $C_E^A = \{x \in E / x \notin A\}$.

On définit aussi la fonction indicatrice de A, notée $\chi_A ou$ \mathbb{I}_A et définie par : $\forall x \in E$, $\mathbb{I}_A(x) = \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{si } x \notin A \end{cases}$

- • $E \times F = \{(x, y)/x \in E \text{ et } y \in F\}$ est le produit cartésien de E et F.
- •Soit p un entier naturel non nul. E^p est l'ensemble des p-uplets d'éléments de E .
- •Une famille d'éléments de E indexée par I est une application F de I dans E . F(i) est noté x_i et $F = (x_i)_{i \in I}$. Lorsque $I = \mathbb{N}$, la famille $(x_i)_{i \in I}$ est une suite d'éléments de E.

Remarques 2:

- 1. $E = F \Leftrightarrow \underbrace{E \subset F \ et \ F \subset E}_{double \ inclusion} \Leftrightarrow \left[\underbrace{(x \in E \Leftrightarrow x \in F)}_{E \ et F \ ont \ les \ m\^{e}mes \ \'et\'ements}\right].$
- 2. $E \subset F \Leftrightarrow E \cap F = E \Leftrightarrow E \cup F = F$.
- 3. Si A et B sont deux parties de E alors $A \setminus B = A \cap C_E^B = A \cap \overline{B}$. En probabilité, on choisira d'écrire l'intersection car la notation $A \setminus B$ sera utilisée pour les probabilités conditionnelles (A sachant B).
- 4. Si A et B sont deux parties de E alors $A \cap B = \emptyset \Leftrightarrow A \subset C_E^B \Leftrightarrow A \subset \bar{B}$.

Propriété 3: Soit *A*, *B* et *C* trois ensembles.

- 1. La réunion et l'intersection sont commutatives et associatives.
- 2. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ et $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- 3. si A et B sont deux parties de E, $\overline{A \cap B} = \overline{A} \cup \overline{B}$ et $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

Démo:

```
1. x \in A \cup (B \cup C) \Leftrightarrow x \in A \ ou \ x \in B \cup C \Leftrightarrow x \in A \ ou \ x \in B \ ou \ x \in C \Leftrightarrow x \in A \cup B \ ou \ x \in C \Leftrightarrow x \in (A \cup B) \cup C. Donc, A \cup (B \cup C) = (A \cup B) \cup C. Idem avec \cap.
```

 $2. x \in (A \cup B) \cap (A \cup C) \Leftrightarrow x \in A \cup B \text{ et } x \in A \cup C \Leftrightarrow (x \in A \text{ ou } x \in B) \text{ et } (x \in A \text{ ou } x \in C)$

 $\Leftrightarrow \underbrace{(x \in A \ et \ x \in A)ou \ (x \in A \ et \ x \in C) \ ou \ (x \in B \ et \ x \in A)}_{} ou \ (x \in B \ et \ x \in C) \Leftrightarrow x \in A \ ou \ x \in B \cap C$

 $\Leftrightarrow x \in A \cup (B \cap C) \text{ OK }.$

De même, $x \in (A \cap B) \cup (A \cap C) \Leftrightarrow x \in A \cap B$ et $x \in A \cap C \Leftrightarrow (x \in A \text{ et } x \in B)$ ou $(x \in A \text{ et } x \in C)$

- $\Leftrightarrow x \in A \ et \ (x \in B \ ou \ x \in C) \Leftrightarrow x \in A \ et \ x \in B \cup C$
- $\Leftrightarrow x \in A \cap (B \cup C) \text{ OK }.$
- 4. $x \in \overline{A \cap B} \Leftrightarrow x \notin A \cap B \Leftrightarrow x \in A \setminus B \text{ ou } x \in B \setminus A \text{ ou } x \notin A \cup B \Leftrightarrow (x \in A \text{ et } x \notin B) \text{ ou } (x \notin A \text{ et } x \in B) \text{ ou} (x \notin A \text{ et } x \notin B) \Leftrightarrow (x \in A \text{ et } x \notin B) \text{ ou} (x \notin A \text{ et } x \notin B) \text{ ou} (x \notin A \text{ et } x \notin B) \Leftrightarrow (x \in A \text{ et } x \notin B) \Leftrightarrow (x \in A \text{ et } x \notin B) \text{ ou} (x \notin A \text{ et } x \notin B) \Leftrightarrow (x \in A \text{ et } x \notin B$
- 5. $x \in \overline{A \cup B} \Leftrightarrow x \notin A \cup B \Leftrightarrow x \notin A \text{ et } x \notin B \Leftrightarrow x \in \overline{A} \text{ et } x \in \overline{B} \Leftrightarrow x \notin \overline{A} \cap \overline{B}$.

```
Définition 4: Soit A_1, A_2, \dots, A_n des parties d'un ensemble E.
```

 $\bigcup_{i=1}^n A_i = \{x \in E \mid \exists i \in \{1, ..., n\}; x \in A_i\}$, la réunion des A_i , contient tous les éléments de tous les A_i .

 $\bigcap_{i=1}^n A_i = \{x \in E / \forall i \in \{1, ..., n\}, x \in A_i\}$, l'intersection des A_i , contient tous les éléments communs à tous les A_i .

La famille (A_1, A_2, \dots, A_n) est une partition de E lorsque

les ensembles A_i tels que $i \in \{1, ..., n\}$ sont deux à deux disjoints ($i \neq j \Rightarrow A_i \cap A_j = \emptyset$)

E est la réunion de tous les A_i ie $\bigcup_{i=1}^n A_i = E$.

Cas particuliers : Si A est une partie de E alors (A, \bar{A}) est une partition de E.

```
Définition rappel 5: •Une application de E dans F est une relation f qui à chaque objet de E associe exactement un objet dans
F. On note F^E ou F(E,F) l'ensemble des applications de E dans. Si f est une application de E dans F et x \in E, on
note f(x) l'objet de F associé à x par f et y = f(x) est l'image de x par f et x est un antécédent de y par f. On a : a = b \Rightarrow
f(a) = f(b) ...La réciproque n'est vraie que si f est injective .
•Soit f une application de E dans F, A une partie de E et B une partie de F.
f(A) = \{f(x)/x \in A\} \subset F \text{ et } f^{-1}(B) = \{x \in E/f(x) \in B\} \subset E.
NB:1) f(E) est donc l'ensemble de toutes les images par f.
2)f^{-1}\langle B\rangle existe même si f n'est pas bijective (ie quand f^{-1} n' existe pas). Mais si f^{-1} existe alors f^{-1}\langle B\rangle = f^{-1}(B).
f est injective si et ssi tout élément de F a au plus un antécédent par f.
                <u>si et ssi</u> pour tout élément de F, l'équation f(x) = y admet au plus une solution.
                \underline{\text{si et ssi}} tous éléments distincts de E ont des images par f distinctes .
                si et ssi tous éléments de E ayant la même image par f sont nécessairement égaux.
f est surjective si et ssi tout élément de F a au moins un antécédent par f
                <u>si et ssi</u> pour tout élément <u>de F</u>, l'équation f(x) = y admet au moins une solution.
                \underline{\text{si et ssi}} f(E) = F
f est bijective <u>si et ssi</u> tout élément de F a exactement un antécédent par f.
                <u>si et ssi</u> pour tout élément de F, l'équation f(x) = y admet exactement une solution.
                \underline{\text{si et ssi}} f est injective et surjective.
                <u>si et ssi</u> il existe une application g de F dans E telle que f \circ g = id_F et g \circ f = id_E
Dans ce cas, f^{-1}(=g) est la bijection réciproque de f définie par : f(x) = y \Leftrightarrow x = f^{-1}(y).
               \forall y \in F, f^{-1}(y) = l'unique antécédent de y par f = l'unique solution de l'équation f(x) = y''
                       f^{-1} est aussi l'unique application de F dans E vérifiant f^{-1} \circ f = id_E et f \circ f^{-1} = id_F.
```

3. Si (A_1, A_2, \dots, A_n) est une <u>partition</u> de E et F est une partie de E alors $(A_1 \cap F, A_2 \cap F, \dots, A_n \cap F)$ est une <u>partition</u> de F.

Propriété 6: La composée d'injections (resp. surjections, resp. bijections) est injective (resp. surjective, resp. bijective). Le cas échéant, $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$.

Si $f \circ g$ est injective alors g est injective. Si $f \circ g$ est surjective alors f est surjective.

Prop 4 bis Soit A_1, A_2, \dots, A_n des parties d'un ensemble E et F est une partie de E

1. $F \cup (\bigcap_{i=1}^n A_i) = \bigcap_{i=1}^n F \cup A_i$ et $F \cap (\bigcup_{i=1}^n A_i) = \bigcup_{i=1}^n F \cap A_i$.

2. $\overline{\bigcap_{i=1}^{n} A_i} = \overline{\bigcap_{i=1}^{n} \overline{A_i}} \text{ et } \overline{\bigcap_{i=1}^{n} A_i} = \overline{\bigcap_{i=1}^{n} \overline{A_i}}.$

Démo: Soit $f: E \to F$ et $g: F \to G$.

- 1) Supposons f et g injectives et montrons que $g \circ f$ est injective. Soit $(x,y) \in E^2/g \circ f(x) = g \circ f(y)$. Montrons que x = y. Alors g(f(x)) = g(f(y)). Donc, f(x) et f(y) ont la même image par g. Comme g est injective, nécessairement, f(x) = f(y). Alors x et y ont la même image par f. Donc nécessairement x = y.
- 2) Supposons f et g surjectives et montrons que $g \circ f$ est surjective.

```
g(F)
g \circ f(E) = g(f(E))
                                      car g sur jective
```

3) Supposons f et g bijectives et montrons que $g \circ f$ est bijective et $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

f et g sont injectives et surjectives donc, $g \circ f$ est injective et surjective donc bijective.

De plus, $(f^{-1} \circ g^{-1}) \circ (g \circ f)^{\square} = f^{-1} \circ (g^{-1} \circ g) \circ f = f^{-1} \circ id_F \circ f = f^{-1} \circ f = id_E$ et de même $(g \circ f) \circ (f^{-1} \circ g^{-1}) = id_G$. J'en déduis que $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

- 4) Supposons $g \circ f$ est injective. Montrons que f est injective. Soit $(x, y) \in E^2/f(x) = f(y)$. Alors g(f(x)) = g(f(y))i. $e \cdot g \circ f(x) = f(y)$. $g \circ f(y)$. Comme $g \circ f$ est injective, nécessairement x = y.
- 5) Supposons $g \circ f$ est surjective. Montrons que g est surjective. Soit $z \in G$. Montrons que nz est a un antécédent par g.
- $g \circ f$ est surjective donc, z a un antécédent x par $g \circ f$. Donc $z = g \circ f(x) = g(f(x))$. Alors y = f(x) est un antécédent de z par g.

Définition 7: Soit E un ensemble . \Re est une relation d'équivalence sur E lorsque : \Re met en relation des éléments de E deux par deux $(x \Re y \text{ signifie que } x \text{ et } y \text{ sont en relation par } \Re)$ et vérifie : $x \Re y$ $\forall x \in E$, $x \Re x$. (tout élément de E est toujours en relation avec lui même) \Re est dite réflexive

 $\forall (x,y) \in E^2$, $x \Re y \Rightarrow y \Re x$ (on dit alors que x et y sont en relation). \Re symétrique

 $\forall (x, y, z) \in E^3$, $(x \Re y \text{ et } y \Re z \Rightarrow x \Re z)$, (si x est en relation avec y et y avec z alors x est en relation avec z) \Re transitive Soit $x \in E$. La classe de x est noté cl(x) ou \bar{x} des élements de E en relation avec x par \Re i. e. $\bar{x} = \{y \in E/x\Re y\}$

- **1.** $E = M_n(\mathbb{R})$ et \Re est la relation « est équivalente par colonne à ...» ou « est semblable à ...» .
- Soit $A \in M_n(K)$ et u l'endomorphisme de K^n canoniquement asoccié à A. Alors $\bar{A} = \{M/\exists B \text{ base de } K^n, M = mat_{\square}u\}$
 - **2.** $E = \mathbb{Z}$ et \Re est la relation « est congru modulo 6 à ... » . $\bar{1} = \{1 + 6n/n \in \mathbb{Z}\}$

Théo : Soit E un ensemble et \Re une relation d'équivalence sur E . L'ensemble des classes d'équivalence est une partition de E.

II. Ensembles finis

Définition9 : Un ensemble non vide E est fini (e) s'il (ou elle) contient un nombre fini d'éléments. Le cardinal de E est alors le nombre d'éléments de E et est noté card(E). Et par convention, l'ensemble vide est de cardinal nul.

Attention: dans un ensemble, les éléments ne sont pas ordonnés et si deux éléments sont égaux, on en notera qu'un seul et il ne sera compté qu'une seule fois . Par contre dans une famille ou une suite ou un n-uplet, les éléments sont indéxés et ordonnés et deux éléments indéxés différemment mais prenant la même valeur comptent pour deux éléments.

Exemple : Si $E = \{1; 1; 3; -4\} = \{1; 3; -4\}$ alors cardE = 3. Si F=((1,1,1)),(2,1,0),(2,1,0),(1,1,1)) alors card F=4.

NB 10: Soit un ensemble fini E de cardinal p. Les éléments de E peuvent être nommés et pour cela, le plus souvent on numérote ces éléments et on note $E = \{x_1, x_2, ..., x_p\}$ et cette notation signifie sauf indication contraire que les x_i dans l'accolade sont distincts. Numéroter les p éléments de E revient à construire une bijection de $\{1, 2, ..., p\}$ dans E qui à chaque entier de 1 à P fait correspondre un élément de P. On peut d'ailleurs caractériser les ensembles finis par :

Un ensemble non vide E est fini de cardinal p sietssi il existe une bijection de $\{1, 2, \dots, p\}$ dans E.

Théorème 11: Soit A une partie d'un ensemble fini E. Alors A est fini et $card(A) \leq card(E)$ et $A = E \Leftrightarrow card(A) = card(A)$

Démo : A étant inclus dans E, donc nécessairement A ne peut contenir pus d'éléments que E et par conséquent A est fini et $card(A) \le card(E)$. De plus, $cardA = cardE \Leftrightarrow A$ et E ont exactement les mêmes éléments.

Théorème 12: Si E et F sont deux ensembles finis <u>d'intersection vide</u> (disjoints) alors $E \cup F$ est un ensemble fini et $card(E \cup F) = card(E) + card(F)$.

Démo: Soit $E = \{x_1, x_2, ..., x_p\}$ et $F = \{y_1, y_2, ..., y_n\}$ où p = card(E) et n = card(F). Alors, $E \cup F = \{x_1, x_2, ..., x_p, y_1, y_2, ..., y_n\}$. Comme $E \cap F = \emptyset$, aucun x_i n'est égal à un y_i . Donc $card(E \cup F) = p + n = card(E) + card(F)$.

Généralisation 13 : Si E_1, E_2, \dots, E_n sont des ensembles deux à deux <u>disjoints</u> alors $card \cup_{i=1}^n E_i = \sum_{i=1}^n card E_i$

Démo: Soit H_n : "Si E_1, E_2, \ldots, E_n sont des ensembles deux à deux disjoints alors $card \bigcup_{i=1}^n E_i = \sum_{i=1}^n card E_i$." <u>Init°</u>: H_2 est vraie d'après le théo12.

Propage: Soit $n \in \mathbb{N}/n \ge 2$. Je suppose que H_n est vraie. Soit E_1, E_2, \dots, E_{n+1} des ensembles deux à deux disjoints.

Posons $E=E_1\cup E_2,\dots\cup E_n$ et $F=E_{n+1}$. Alors par associativité de la réunion, $E\cup F=\bigcup_{i=1}^{n+1}E_i$. Et par hypothèse de récurrence,

 $\bigcup_{i=1}^n E_i \ \textit{est finie et } \ \textit{cardE} = \textit{card} \ \bigcup_{i=1}^n E_i = \sum_{i=1}^n \textit{cardE}_i. \ \text{De plus,} \ E \cap F = (\bigcup_{i=1}^n E_i) \cap E_{n+1} = \bigcup_{i=1}^n (E_i \cap E_{n+1}) = \bigcup_{i=1}^n \emptyset = \emptyset.$

Autrement dit, E et F sont disjoints. Donc, d'après le théorème 12, $card(E \cup F) = card(E) + card(F)$; autrement dit,

 $card \cup_{i=1}^{n+1} E_i = \sum_{i=1}^n card E_i + card E_{n+1} = \sum_{i=1}^{n+1} card E_i$. OK!

 $\underline{\mathsf{CCL}}: \forall n \geq 2, H_n \text{ est vraie.}$

Proposition 14: Soit A et B deux sous-ensembles d'un ensemble fini E.

- 1) $card\bar{A} = cardE cardA$.
- 2) $card(B \setminus A) = cardB card(A \cap B)$
- Si la famille (A_1, A_2, \dots, A_n) est une partition de E alors $cardE = \sum_{i=1}^{n} cardA_i$.

Démo: 1) A et \bar{A} vérifient $A \cap \bar{A} = \emptyset$ et $A \cup \bar{A} = E$. Donc, $card(E) = card(A \cup \bar{A}) = cardA + card\bar{A}$. De même,

 $B \setminus A \text{ et } A \cap B \text{ v\'erifient } (B \setminus A) \cap (A \cap B) = \emptyset \text{ et } (B \setminus A) \cup (A \cap B) = B. \text{ Donc, } card(B) = card(B \setminus A) + card(A \cap B).$

2) Soit (A_1,A_2,\ldots,A_n) une partition de E. Alors, $\bigcup_{i=1}^n A_i = E$ et A_1,A_2,\ldots,A_n sont des ensembles deux à deux disjoints. Par conséquent, $cardE = card \bigcup_{i=1}^n A_i = \sum_{i=1}^n cardA_i$.

généralisation 13

Théorème 15: Soit E et F deux ensembles. $card(E) + card(F) = card(E \cup F) + card(E \cap F)$.

```
 \begin{aligned} \mathbf{D\acute{e}mo} : (E \backslash F, F \backslash E, E \cap F) \text{ est une partition de } E \cup F. \text{ Donc, } card(E \cup F) & = & card(E \backslash F) + card(F \backslash E) + card(E \cap F) \\ & card(E \cup F) & = & card(E) - card(E \cap F) + card(E \cap F) + card(E \cap F) + card(E \cap F) \\ & = & card(E) - card(E \cap F) + card(E \cap F) + card(E \cap F) \\ & = & card(E) - card(E \cap F) + card(E \cap F) \\ & = & card(E) - card(E \cap F) + card(E \cap F) \\ & = & card(E) - card(E \cap F) + card(E \cap F) \\ & = & card(E) - card(E \cap F) + card(E \cap F) \\ & = & card(E) - card(E \cap F) \\ & = & card(E) - card(E \cap F) \\ & = & card(E) - card(E) - card(E \cap F) \\ & = & card(E) - card(E) - card(E) - card(E) \\ & = & card(E) - card(E) - card(E) - card(E) \\ & = & card(E) - card(E) - card(E) - card(E) \\ & = & card(E) - card(E) - card(E) - card(E) \\ & = & card(E) - card(E) - card(E) - card(E) \\ & = & card(E) - card(E) - card(E) - card(E) \\ & = & card(E) - card(E) - card(E) - card(E) \\ & = & card(E) - card(E) - card(E) - card(E) \\ & = & card(E) - card(E) - card(E) - card(E) \\ & = & card(E) - card(E) - card(E) - card(E) - card(E) \\ & = & card(E) - card(E
```

Conséquence 16: E et F sont disjoints $\Leftrightarrow card(E) + card(F) = card(E \cup F)$.

 $\textbf{D\'emo}: E \text{ et } F \text{ sont disjoints} \Leftrightarrow E \cap F = \emptyset \Leftrightarrow card(E \cap F) = 0 \\ \underset{th\'eo}{\Leftrightarrow} card(E) + card(F) = card(E \cup F) \\ \underbrace{card(E) + card(F) = card(E \cup F)}_{th\'eo} \\ \underbrace{card(E) + card(E) + card(E \cup F)}_{th\'eo} \\ \underbrace{card(E) + card(E) + card(E \cup F)}_{th\'eo} \\ \underbrace{card(E) + card(E) + card(E) + card(E)}_{th\'eo} \\ \underbrace{card(E) + car$

Théorème 17 Soit E et F deux ensembles finis. $card(E \times F) = (cardE) \times (cardF)$.

 $\begin{array}{l} \textbf{G\'en\'eralisation 18}: \ \text{Soit} \ q \in \mathbb{N}^*. \\ \text{Si} \ E_1, E_2, \dots, E_q \ \ \text{sont des ensembles finis alors} \ E_1 \times E_2 \times \dots \times E_q \ \text{est fini} \ et \\ card \left(E_1 \times E_2 \times \dots \times E_q\right) = card(E_1) \times card(E_2) \times \dots \times card(E_q). \\ \textbf{Cas particulier}: card(E^q) = card(E)^q. \end{array}$

init: H_1 et H_2 sont vraies.

Propag : Soit $q \in \mathbb{N}^*$. Je suppose que H_q est vraie. Soit E_1, E_2, \dots, E_{q+1} des ensembles finis alors par hypothèse de récurrence $E_1 \times E_2 \times \dots \times E_q$ est fini et $card(E_1 \times E_2 \times \dots \times E_q) = card(E_1) \times card(E_2) \times \dots \times card(E_q)$. De plus, on peut considérer que $E_1 \times E_2 \times \dots \times E_{q+1} = (E_1 \times E_2 \times \dots \times E_q) \times E_{q+1}$. Donc d'après le théorème 17, $(E_1 \times E_2 \times \dots \times E_q) \times E_{q+1}$ est fini et $card(E_1 \times E_2 \times \dots \times E_q) \times E_{q+1} = card(E_1 \times E_2 \times \dots \times E_q) \times card(E_q) \times card(E_q) \times card(E_q) \times card(E_q)$. CCL : $\forall q \in \mathbb{N}^*$, H_q est vraie.

III. Applications entre ensembles finis.

Proposition 19 : Soit E et F deux ensembles finis et f une application de E dans F .

- 1. Si f est injective et E est fini alors $card(E) \leq card(F)$.
- 2. Si f est surjective et F est fini alors $card(E) \ge card(F)$.
- 3. Si E ou F est de cardinal fini et f est bijective de E sur F alors card(E) = card(F)

Démo:

- 1) Supposons f injective. Alors $i \neq i' \Rightarrow x_i \neq x_{i'} \Rightarrow f(x_i) \neq f(x_{i'})$. Par conséquent, $card\{f(x_1), f(x_2), \dots, f(x_p)\} = card(E) = p$. Or, $H = \{f(x_1), f(x_2), \dots, f(x_p)\}$ est une partie de F donc $p = card(H) \leq card(F) = n$.
- 2) Supposons f surjective. Alors $f(E) = \left\{\underbrace{f(x_1), f(x_2), \dots, f(x_p)}_{pas\ forc\'ement\ distincts}\right\} = F \cdot Donc, card(f(E)) = card(F) = n.$ $Mais, card\{f(x_1), f(x_2), \dots, f(x_p)\} \leq p.\ Donc, card(F) = n \leq p = card(E).$

Théorème 20: Soit E et F deux <u>ensembles finis</u> tels que $\underline{card(E)} = \underline{card(F)}$ et f une application de E dans F. Alors, f injective $\Leftrightarrow f$ surjective $\Leftrightarrow f$ bijective.

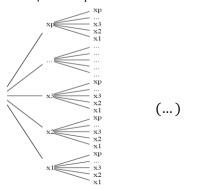
Démo: f injective $\Leftrightarrow card \{f(x_1), f(x_2), ..., f(x_p)\} = p = card(E)$ f injective $\Leftrightarrow card \{f(x_1), f(x_2), ..., f(x_p)\} = card(F) \Leftrightarrow f(E) = F \Leftrightarrow f$ surjective f(E) car f(E) are conséquent, f injective f surjective f bijective.

IV. Nombre de q —uplets. Nombre d'applications.

Théorème 21 : Soit $q \in \mathbb{N}^*$. Si E est un ensemble fini tel que $\underline{card(E)} = \underline{p}$ alors E^q , l'ensemble des q-uplets d'éléments de E, est un ensemble fini et $card(E^q) = (cardE)^q$.

Autrement dit, $p^q = card(E)^q$ est le nombre de q-uplets d'éléments de E.

 $\begin{array}{l} \textbf{Démo}: \text{il suffit d'appliquer la géné 18. en prenant } E = E_1 = E_2 = \cdots = E_q \text{ un ensemble fini, alors } E^q \text{ est fini et } ard(E^q) = (cardE)^q \text{ .} \\ \textbf{Autre démo}: \text{par un arbre de dénombrement. } E = \left\{x_1, x_2, \ldots, x_p\right\}. \text{On cherche combien il existe d'objets de la forme } \\ \left(x_{i_1}, x_{i_2}, \ldots, x_{i_q}\right) \text{ où les } i_k \text{ sont des entiers de } \llbracket 1, p \rrbracket \text{ pas forcément distincts. Pour le choix de } x_{i_1}, \text{ on a donc } p \text{ possibilités parmi les } p \text{ éléments de } E \text{ ; pour le choix de } x_{i_2}, \text{ on a donc } p \text{ possibilités parmi les } p \text{ eléments de } E. \end{aligned}$



Pour chaque composante, on a p choix.

A chaque nouvelle étape, le nombre de bras est donc multiplié par p. $p \times p \times ... \times p = p^q$ est donc le nombre de q-uplets différents dont les composantes sont choisies parmi les p éléments de E.

Théorème 22 : Soit E et F deux ensembles finis de cardinaux respectifs p et n .

L'ensemble F^E ou $\mathcal{F}(E,F)$ des applications de E dans F est un ensemble fini et $\frac{card \mathcal{F}(E,F)}{(E,F)} = \frac{(card F)^{card(E)}}{(card F)^{card(E)}} = n^p$.

Démo : Chaque application de E dans F est entièrement définie par le choix des images $f(x_1), f(x_2), \dots, f(x_n)$ parmi les vecteurs de F.On

peut considérer
$$\Delta$$
: $\begin{pmatrix} F^p \to F^E \\ (y_{i_1}, y_{i_2}, \dots, y_{i_p}) \mapsto f : \begin{pmatrix} E \to F \\ (x_k \mapsto y_{i_k}) \end{pmatrix}$ où les i_k sont des entiers de $\llbracket 1, n \rrbracket$ pas forcément distincts. Alors, Δ est bijective de F^p sur F^E . Donc, $card(F^E) = card(F^p) \underset{th\'{e}o}{=} card(F)^p = card(F)^{card(E)}$.

Définition 23: Pour tous entiers naturels p et q,

on pose :
$$A_p^q = \begin{cases} p(p-1) \dots (p-q+1) = \frac{p!}{(p-q)!} & \text{si } q \leq p \\ 0 & \text{si } q > p \end{cases}$$
 $q \leq p = q! \binom{p}{q}$. $A_p^q \text{ est } l' \text{ arrangement } de q \text{ éléments choisis parmi } p.$

Proposition 24 : Soit *p et q* deux entiers naturels. Alors,

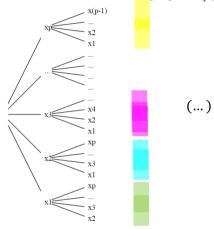
A_n^q est le nombre de q-uplets de composantes toutes <u>distinctes</u> choisies parmi p éléments.

Si E est constitué de ces p éléments, alors un tel q-uplet d'éléments distincts de E est appelé un arrangement de q éléments de

Démo : Notons N le nombre de q-uplets de composantes toutes distinctes choisies parmi les éléments de E.

si q > p alors il n'existe pas q éléments de E distincts donc il n'existe aucun q-uplets de composantes toutes distinctes choisies parmi les éléments de E. Ici N=0.

Si $\leq p$, faisons un arbre de dénombrement. On cherche donc combien il existe d'objets de la forme $(x_{i_1}, x_{i_2}, \dots, x_{i_n})$ où les i_k sont des entiers de $[\![1,p]\!]$ et tous distincts. Pour le choix de x_{i_1} , on a donc p possibilités parmi les p éléments de E; pour le choix de x_{i_2} , on a donc p-1possibilités parmi les p-1 éléments de E distincts de x_{i_1} Pour le choix de x_{i_q} , on a donc p-(q-1) possibilités parmi les p-(q-1)



étape 2 (...)

étape 1

p choix de la p-1 choix de la

A chaque nouvelle étape, on a un choix de moins qu'à l'étape précédente.

.... x1 interdit, x2 interdit, , <mark>.....</mark> x3 interdit .., , <mark>.....</mark> xp interdit puisque les composantes doivent être toutes distinctes.

$$N = \underbrace{p}_{\substack{choix\\pour\\pour\\x_{i_1}}} \times \underbrace{(p-1)}_{\substack{choix\\pour\\pour\\choix\\pour\\x_{i_2}}} \times \ldots \times \underbrace{(p-(q-1))}_{\substack{choix\\pour\\x_{i_{q-1}}}} = \frac{p!}{(p-q)!} \text{ est donc le nombre de } q-1$$

uplets différents dont les composantes sont toutes distinctes et sont choisies parmi les p éléments de E.

première deuxième composante Ainsi, $N=A_n^q$ est le nombre de q-uplets de composantes toutes <u>distinctes</u> choisis parmi les éléments de E.

Proposition 25: Soit *n* et *p* deux entiers naturels. .

Alors, A_n^p est le nombre d'applications injectives d'un ensemble fini à p éléments dans un ensemble fini à n éléments. .

Démo: Soit E et F deux ensembles tels que card(E) = p et card(F) = n.

Si p > n alors la prop. 19 assure qu'il n'existe pas d'application injective de E sur F.

Si $p \le n$, alors chaque application injective de E dans F est entièrement définie par le choix des images toutes distinctes

 $f(x_1), f(x_2), \dots, f(x_p)$ parmi les vecteurs de F. Notons G l'ensemble des applications injectives de E dans F et H l'ensemble des p-uplets

 $f(x_1), f(x_2), \dots, f(x_p)$ parmi les vecteurs de F . Notons on ensemble des apprecions ..., $H \to G$ d'éléments de F dont les composantes sont toutes distinctes. On peut considérer Δ : $\begin{pmatrix} H \to G \\ (y_{i_1}, y_{i_2}, \dots, y_{i_p}) \mapsto f : \begin{pmatrix} E \to F \\ x_k \mapsto y_{i_k} \end{pmatrix}$ où les i_k sont des

entiers de $[\![1,n]\!]$ tous distincts .Alors, Δ est bijective de H sur G. Donc, card(G)=card(H)

Ainsi, A_n^p est le nombre d'applications injectives de E dans F.

Proposition 26: Soit E un ensemble fini de cardinal p. Le nombre de bijections de E dans lui-même est p!.

p! est aussi le nombre de bijections d'un ensemble de cardinal p dans un ensemble de cardinal p.

Une telle bijection de E sur E est aussi appelée permutation de E.

p! est le nombre de façon différente d'ordonner p éléments donnés.

Démo: D'après la prop.20, une bijection de E dans E est une application de E dans E injective. Or, la prop. précédente assure que $A_p^p = p!$ est le nombre d'applications injectives de E dans E. Ainsi, p! est le nombre d'applications bijectives de E sur E.

Parties d'un ensemble fini ٧.

Rappel 27: Pour tous entiers naturels
$$n$$
 et p , $\binom{p}{n} = \begin{cases} \frac{p!}{n!(p-n)!} & \text{si } n \leq p \\ 0 & \text{si } n > p \end{cases}$ (coefficient binomial) et $A_p^n = n! \binom{p}{n}$.

Proposition 28: Soit *p* et *q* deux entiers naturels.

 ${p \choose q}$ est le nombre de parties à q éléments dans un ensemble à p éléments.

 $\binom{p}{q}$ est le nombre de façon de choisir q éléments parmi p.

Démo : Soit E un ensemble de cardinal p.

Si q > p alors il n'existe aucune partie de E à q éléments.

Si q=0 alors il n'existe qu'une seule partie de E à 0 éléments : c'est l'ensemble vide.

Si $0 < q \le p$ alors chaque q-uplet d'éléments distincts de E est entièrement définie par le choix de q éléments distincts de E et par le choix de la place de ces q éléments dans le q-uplet. Soit H l'ensemble des q-uplets d'éléments de E dont les composantes sont toutes distinctes.

Prenons une partie A de E à q éléments. Notons Q_A l'ensemble des q-uplets dont les composantes sont distinctes et sont les éléments de A. Combien de q-uplets différents peut -on construire avec ces q éléments de A ? Autant que de manières différentes de ranger q objets dans q boites, autant que de bijections d'un ensemble à q éléments dans un ensemble à q éléments. J'ai donc q! q-uplets différents dont les composantes sont les q éléments de la partie A. Autrement dit $card(Q_A) = q!$. De plus, si A et B sont deux parties de E distincts et de cardinal q alors les q-uplets formés à partir des éléments de A seront tous distincts des q-uplets formés à partir des éléments de B. Autrement $\mathrm{dit}\ Q_A\cap Q_B=\emptyset.\ \mathrm{Ainsi}\ (Q_A)\underset{card(A)=q}{_{A\subset E}}\mathrm{est}\ \mathrm{une}\ \mathrm{partition}\ \mathrm{de}\ H.\ \mathrm{J'en}\ \mathrm{d\'eduis}\ \mathrm{que}$

$$A_p^q = card(H) = \sum_{\substack{A \subset E \\ card(A) = q}}^{\square} card(Q_A) = \sum_{\substack{A \subset E \\ card(A) = q}}^{\square} q! = q! \left(\sum_{\substack{A \subset E \\ card(A) = q}}^{\square} 1\right) = q! \times (nombre \ de \ parties \ de \ E \ à \ q \ éléments).$$

Ainsi, nombre de parties de E à q éléments $=\frac{1}{a!}A_p^q=\begin{pmatrix} p \\ q \end{pmatrix}$

Notons U l'ensemble des sous-ensembles de E à q éléments , V l'ensemble des permutations de $[\![1,q]\!]$. $V \to H$

$$\begin{array}{l} \text{Soit } \nabla : \left((\underbrace{x_{i_1}, x_{i_2}, \ldots, x_{i_q}}_{avec\ i_1 < i_2 < \cdots < i_q}), f) \mapsto \left(x_{i_{f^{-1}(1)}}, x_{i_{f^{-1}(2)}, \ldots}, x_{i_{f^{-1}(q)}}\right) \right). \text{ Par exemple, prenons } q = 3, \ A = \{x_2, x_3, x_7\} \text{ (ici } i_1 = 2, i_2 = 3 \text{ et } i_3 = 7 \text{) et } \\ f : \begin{pmatrix} 1 \mapsto \mathbf{2} \\ 2 \mapsto \mathbf{1} \\ 3 \mapsto \mathbf{3} \end{pmatrix} \text{ (*) permutation de } \llbracket 1, 3 \rrbracket. \text{ Alors } \nabla (A, f) = \left(x_{i_2}, x_{i_1}, x_{i_3}\right) = (x_3, x_2, x_7). \end{array}$$

(*) 2 indique la place de x_{i_3} dans le triplet image, 1 indique la place de x_{i_2} dans le triplet et 3 indique la place de x_{i_3} dans le triplet.

Alors,
$$\nabla$$
 est une bijection de $U \times V$ sur H . Donc, $\underbrace{card(H)}_{=A_p^q} = card(U \times V) = card(U) \times \underbrace{card(V)}_{=q!}$. Ainsi, $card(U) = \frac{1}{q!}A_p^q = \binom{p}{q}$. CCL : dans tous les cas, $\binom{p}{q}$ est le nombre de parties de E contenant exactement Q éléments. $\binom{p}{q}$ est donc le nombre de façon de faire des

paquets de q éléments parmi p éléments.

Exemple 29: Un jeu de tarot contient 78 cartes, lorsqu'on y joue à 3 joueurs, chaque joueurs a en début de partie 24 cartes. Il y a $\binom{78}{24}$ mains possibles au début du jeu.

Définition 30 : Si E un ensemble fini de cardinal p alors une partie de E à q éléments est encore appelée <u>une combinaison de q</u> <u>éléments de E</u> (ou une q-combinaison) . Il y a donc $\binom{p}{q}$ q-combinaisons dans E.

Théorème 31: Soit E un ensemble finit q card(E) = p. Le nombre de sous-ensembles (parties) de E est 2^p .

Autrement dit, $card \mathscr{F}(E) = 2^{card(E)}$.

Démo : Soit A_q l'ensemble des parties de E à q éléments. Alors $(A_0, A_1, ..., A_q)$ est une partition $\mathscr{S}(E)$. L'en déduis que :

$$card \mathcal{P}(E) = \sum_{k=0}^{q} card(A_i) = \sum_{q=0}^{p} {p \choose q} = \sum_{q=0}^{p} {p \choose q} 1^q 1^{p-q} = (1+1)^p = 2^p.$$

Exemple 32: Soit = $\{1,2,3,4\}$. Alors,

$$\mathscr{T}(E) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}, \{1,2,3\}, \{2,3,4\}, \{1,3,4\}, \{1,2,4\}, \{1,2,3,4\}\}\}$$
 card P $(E) = 2^4 = 16 \ OK!$

NB: E et $\mathscr{P}(E)$ ne contiennent pas du tout les mêmes objets. $\mathscr{P}(E)$ est un ensemble de sous-ensembles de E.