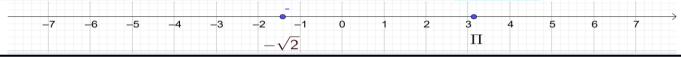
# Inégalités dans R. Premières fonctions réelles.

#### I. Relation d'ordre dans $\mathbb{R}$ .

- **1.** On rappelle que pour tous réels x et y,
- $x \le y$  signifie que  $y x \ge 0$ .
- x < y signifie que  $x \le y$  et  $x \ne y$ .
- Un nombre réel non nul et son inverse on le même signe.
- Le produit de deux réels de même signe (resp. strict) est positif (resp. strictement).
- **2.** On dit que : la relation  $\leq$  est une relation d'ordre totale sur  $\mathbb{R}$  car elle vérifie :
  - Réflexivité : pour tout réel  $x, x \leq x$ .
  - Antisymétrie: pour tous réels x et y,  $(x \le y \ et \ y \le x) \Rightarrow x = y$ .
  - Transitivité: pour tous réels x, y et z,  $(x \le y \text{ et } y \le z) \Rightarrow x \le z$ .
  - Ordre total: pour tous réels x et y,  $(x \le y \text{ ou } y \le x)$ . (tous les réels sont comparables entre eux)
- 3. On représente alors l'ensemble des réels par une droite graduée et orientée dite droite des réels.



#### 4. Caractérisation de certains réels :

- Le seul réel positif strictement inférieur à tout réel positif est ZERO i.e. soit  $a \in \mathbb{R}$ ; alors,  $(\forall \varepsilon > 0, 0 \le a \le \varepsilon) \Longrightarrow (a = 0)$ .
- Un réel inférieur à tout réel positif est un réel négatif i.e. soit  $a \in \mathbb{R}$ ; alors,  $(\forall \varepsilon > 0, a \le \varepsilon) \Rightarrow a \le 0$ .
- 5. <u>Droite numérique achevée</u> (utile pour les calculs de limites). On ajoute à  $\mathbb R$  les objets  $+\infty$  et  $-\infty$  pour construire  $\mathbb R=$  $\mathbb{R} \cup \{+\infty, -\infty\}$  appelée droite numérique achevée. Dans cet ensemble, voici les règles de calcul qui <u>complètent</u> celles de  $\mathbb{R}$ .
- Pour tout réel a,  $-\infty < a < +\infty$ 
  - $a+(+\infty)=+\infty$
- $(+\infty) + (+\infty) = +\infty$ •  $(-\infty) \times (-\infty) = +\infty$
- $(-\infty) \times (+\infty) = -\infty$

- **6. Formes indéterminées («** FI»):  $(-\infty) + (+\infty)$ ,  $\frac{\infty}{\infty}$ ,  $0 \times \infty$ ,  $\frac{0}{2}$ ,  $1^{\infty}$ ,  $0^{0}$ ,  $+\infty^{0}$ ,  $a/0^{avec\ chgt\ de\ signe}$

Cette relation d'ordre totale dans  $\mathbb R$  vérifie les **propriétés** suivantes :

- **7.Propriétés :** Soient a, b, t et  $a_1, \ldots, a_n$  et et  $b_1, \ldots b_n$  des réels et p un entier relatif.
- 1. si  $a \le b$  et  $a' \le b'$  (resp. a' < b') alors  $a + a' \le b + b'$  (resp. a + a' < b + b'). ( $\le$ ) est dite compatible avec l'addition.
- 2. **Généralisation**: si pour tout k,  $a_k \le b_k$ , alors  $\sum_{k=1}^n a_k \le \sum_{k=1}^n b_k$ .
- 3. si  $\forall k \in [1, n]$ ,  $a_k \le b_k$  et  $\exists k \in [1, n] / a_k < b_k$  alors  $\sum_{k=1}^n a_k < \sum_{k=1}^n b_k$ .
- 4. En particulier : si  $a \le b$  alors  $a + t \le b + t$ .
- 5. si  $\mathbf{0} \le a \le b$  et  $\mathbf{0} \le a' \le b'$  alors  $0 \le aa' \le bb'$ .
- 6. **Généralisation**:
- $\triangleright$  si pour tout k,  $0 \le a_k \le b_k$ , alors  $0 \le \prod_{k=1}^n a_k \le \prod_{k=1}^n b_k$ .
- $\blacktriangleright$  si  $\mathbf{0} \le a \le b$  alors  $0 \le a^p \le b^p$ .
- 7.  $\operatorname{si} a \leq b \operatorname{et} \mathbf{0} \leq \mathbf{t}$  alors  $ta \leq tb$ . Et  $\operatorname{si} a < b \operatorname{et} \mathbf{0} < \mathbf{t}$  alors ta < tb.
- 8. si  $a \le b$  et  $t \le 0$  alors  $ta \ge tb$ .
- 9. si  $\mathbf{0} < \mathbf{a} \le b$  alors  $\frac{1}{a} \ge \frac{1}{b} > 0$  et si  $a \le b < \mathbf{0}$  alors  $0 > \frac{1}{a} \ge \frac{1}{b}$
- 10. si a < 0 < b alors  $\frac{1}{a} < 0 < \frac{1}{b}$ .
- 11. Si b > 0 et  $\frac{a}{b} > 1$  alors a > b. Si b > 0 et  $\frac{a}{b} < 1$  alors a < b. Si b < 0 et  $\frac{a}{b} > 1$  alors a < b. Si b < 0 et  $\frac{a}{b} < 1$  alors a > b.
- **8.NB**: 10 et 11 disent que la fonction inverse est strictement décroissante sur  $\mathbb{R}^{+*}$  et sur  $\mathbb{R}^{-*}$  mais pas sur  $\mathbb{R}^{*}$ .

Pour multiplier une inégalité par un réel, je dois connaître le signe de ce réel .

Pour mettre au carré chaque membre d' une inégalité, il faut connaître le signe de ces deux membres.

Pour comparer l'inverse des membres d'une

**9.Inéquations**: Soient a, b, et x des réels. (a + x > b sietssi x > b - a) et (ax > b sietssi x > b - a)

**10.Définitions** : 1. Soit  $(u_n)_{n\in\mathbb{N}}$  une suite de nombres réels.

La suite  $(u_n)_{n\in\mathbb{N}}$  est croissante lorsque :  $\forall n\in\mathbb{N}, u_n\leq u_{n+1}$ .

La suite  $(u_n)_{n\in\mathbb{N}}$  est décroissante lorsque :  $\forall n\in\mathbb{N}, u_n\geq u_{n+1}$ .

La suite  $(u_n)_{n\in\mathbb{N}}$  est strictement croissante (resp. décroissante) lorsque :  $\forall n\in\mathbb{N}, u_n< u_{n+1}$  (resp.  $u_n>u_{n+1}$ ).

2. Soit une fonction f définie sur un intervalle I et à valeurs réelles.

f est croissante sur I lorsque : pour tous réels x et y dans I, ( $x \le y$  $f(x) \le f(y)$ .

f est décroissante sur I lorsque : pour tous réels x et y dans I, ( $x \le y \Longrightarrow f(x) \ge f(y)$ ).

f est strictement croissante sur I lorsque : pour tous réels x et y dans I,  $(x < y \Leftrightarrow f(x) < f(y))$ .

f est strictement décroissante sur I lorsque : pour tous réels x et y dans I,  $(x < y \Leftrightarrow f(x) > f(y))$ .

#### 11. Méthode: Pour comparer deux nombres,

1) on utilise les règles de calcul en démarrant d'une inégalité évidente.

**Exercice** : Démontrer que : pour tout entier naturel n,  $\frac{1}{\sqrt{n+1}+\sqrt{n}} < \frac{1}{2\sqrt{n}} < \frac{1}{\sqrt{n}+\sqrt{n-1}}$ .

on étudie très souvent le signe de leur différence. Pour prouver que  $a \le b$  , on prouve que  $b-a \ge 0$ .

**Exercice**: Démontrer que pour tous réels a et b,  $\frac{a^2+b^2}{2} \ge ab$ . (inégalité à connaître).

Pour comparer a et b, on peut comparer  $\frac{a}{b}$  avec 1 dès que  $b \neq 0$  et que je connais le signe de b.

**Exercice**: Soit a un réel strictement positif. On pose  $\forall n, P_n = \prod_{k=0}^n (1+a^k)$ . Montrer que la suite  $(P_n)$  est strictement croissante.

On peut les comparer à un réel intermédiaire . Pour prouver que  $a \le b$ , on prouve que  $a \le c$  puis  $c \le b$ .

**Exercice**: comparons  $a = \sqrt{3}$ ,  $b = \frac{17}{10}$  et  $c = \sqrt{6} - \sqrt{2}$ 

5) on peut comparer leurs images par une fonction strictement monotone (croissante ou décroissante) sur un intervalle contenant ces deux réels. Assez souvent, pour comparer deux réels positifs, on compare leurs carrés ( qui sont ordonnés dans le même ordre) puisque la fonction carrée est strictement croissante sur  $\mathbb{R}^+$ .

En particulier Si a et b sont strictement positifs. alors a < b si et ssi  $\sqrt{a} < \sqrt{b}$  si et ssi  $a^2 < b^2$  si et ssi  $\frac{1}{a} > \frac{1}{b}$  si etssi  $\ln(a) < \ln(b)$ .

**12.Exercice**: Montrer que pour tout entier naturel n,  $\sqrt{n+1} + \sqrt{n+2} > \sqrt{2n+3}$ .

**13.** Exercice : Soit x un réel. Comparer les réels a, b et éventuellement c dans les cas suivants

 $a = \sqrt{4 + 2\sqrt{3}}$ ,  $b = 2\sqrt{3}$  et  $c = 1 + \sqrt{3}$ .  $a = \frac{100001}{1000001} \text{ et } b = \frac{1000001}{10000001}.$ 

5.  $a = \frac{2x}{x^2 + 1}$  et  $b = \frac{2x - 1}{x^2}$ 6.  $a = \frac{1}{x}$  et b = -2

 $a = e^{x^2 + 1}$  et  $b = e^{2x}$ .

 $a = \ln(\sqrt{x+1} - \sqrt{x}), b = \ln(\sqrt{x+2} - \sqrt{x+1}).$ 

Par contre, si préalablement je sais que a et b sont

14. ATTENTION: la fonction carrée est croissante sur  $\mathbb{R}^+$ et décroissante sur  $\mathbb{R}^-$ . En général , pour a et b

réels, les équivalences suivantes sont fausses:

 $(a^2 \le b^2 \Leftrightarrow a \le b) \ et \left(a < b \Leftrightarrow \frac{1}{a} > \frac{1}{b}\right)$ 

 $(a^2 \le b^2 \Leftrightarrow a \ge b)$  et  $\left(a < b \Leftrightarrow \frac{1}{a} > \frac{1}{b}\right)$  sont vraies.

15. Somme nulle de réels positifs : une somme de réels positifs est nulle si et seulement si chacun de ces réels est nul.

Autrement dit, (  $a_1 \geq 0, a_2 \geq 0, \dots, a_n \geq 0, \ a_1 + a_2 + \dots + a_n = 0$ )  $\Leftrightarrow$   $(a_1 = a_2 = \dots = a_n = 0). \hookrightarrow Démo par contraposée.$ 

**16. Exercice**: Soient a, b, c et d des réels tels que :  $a^2 + b^2 + c^2 + d^2 = ab + bc + cd + da$ . Montrer que a = b = c = d.

#### Les intervalles et les parties bornées de $\mathbb{R}$ . II.

## 1. Intervalles.

**17.** Définition d'un intervalle: Les intervalles de  $\mathbb R$  sont <u>par définition</u> les sous-ensembles de  $\mathbb R$  « sans trous » i.e.

Un sous-ensemble D de  $\mathbb R$  est un intervalle **sietssi** tout réel compris entre deux éléments de D est élément de D

sietssi  $\forall (a, b) \in D^2, \forall x \in \mathbb{R}, (a \le x \le b \Longrightarrow x \in D).$ 

**18.Exercice**: Montrer que l'intersection de deux intervalles de  $\mathbb{R}$  est un intervalle de  $\mathbb{R}$ .

**19.**Il existe 10 types d'intervalles différents dans  $\mathbb R$  : soient a et b réels tq a < b

 $\emptyset = ]a, a[$ 

 $\{a\} = [a, a]$ singleton

 $[a,b] = \{x \in \mathbb{R}/a \le x \le b\}$ 

 $[a,b] = \{x \in \mathbb{R}/a < x \le b\}$ 

 $[a, b] = \{x \in \mathbb{R}/a \le x < b\}$ 

 $|a, b| = \{x \in \mathbb{R} | a < x < b\}$ 

- **20.** NB: 1. L'ensemble vide  $\emptyset$  ne contient rien. $\{a\}$  est appelé un singleton et contient un seul réel a.
- 2. Un intervalle qui n'est ni un singleton ni le vide contient une infinité de réels. Un tel intervalle sera dit non trivial.
- 3.  $]y a, y + a[ = \{x \in \mathbb{R}/|x y| < a\}$  contient tous les réels qui sont à distance de y strictement inférieure à a et  $[a y, a + y] = \{x \in \mathbb{R}/|x y| \le a\}$  contient les réels qui sont à distance de y inférieure à a (Cf paragraphe suivant). Ce sont des intervalles centrés en y.
- 4. **Rappel** : si n et m sont deux entiers tels que  $n \le m$  alors [n, m] est l'ensemble de tous les entiers compris entre n et m. Autrement dit,  $[n, m] = \{n, n + 1, ..., m\}$ .
- entre n et m. Autrement dit,  $[n,m] = \{n,n+1,...,m\}$ . **21.Propriété**: Soit a et b deux réels tels que a < b.  $[a,b] = \{ta+(1-t)b/t \in [0,1]\}$ .  $\Rightarrow$  Démo par double inclusio
- **22.**Exercices : 1. Justifier que la réunion de deux intervalles n'est pas forcément un intervalle. Matérialiser sur l'axe réel les ensembles  $E = \bigcup_{n=1}^{+\infty} [n, n + \frac{1}{2}[$  et  $F = \bigcap_{i=1}^{10} \left[1 \frac{1}{i}, 1 + \frac{1}{i}\right[$ .

## 2. Parties majorées, minorées ou bornées.

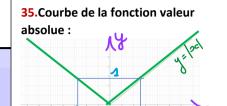
- **23.**Définition d'une partie majorée (resp. minorée): Soit A une partie de  $\mathbb{R}$ . A est majorée (respectivement minorée) lorsqu''il existe un réel m' (resp. m) tel que tout élément x de A vérifie:  $x \leq m'$  (resp.  $m \leq x$ ). m' est appelé un majorant de A (resp. m est appelé un minorant de A). (A majorée  $\Leftrightarrow \exists m' \in \mathbb{R} \ / \forall x \in A, x \leq m'$ ).
- **24.Définition d'une partie bornée :** Une partie A de  $\mathbb{R}$  est bornée lorsque A est majorée et minorée, i.e. lorsqu'il existe deux réels m et m' tels que tout élément x de A vérifie :  $m \le x \le m'$  ( $\exists (m, m') \in \mathbb{R}^2 / \forall x \in A, m \le x \le m'$ ).
- 25.Exemple: Les intervalles bornés sont le vide et les intervalles dont les deux extrémités sont finies.
- **26.Définitions**: 1. Soit  $(u_n)_{n\in\mathbb{N}}$  une suite de nombres réels. On note  $A=\{u_n/n\in\mathbb{N}\}$   $(u_n)_{n\in\mathbb{N}}$  est majorée lorsqu'il existe un réel m, indépendant de n, tel que  $\forall n\in\mathbb{N}, u_n\leq m$ ; autrement dit, lorsque A est majorée.  $(u_n)_{n\in\mathbb{N}}$  est minorée lorsqu'il existe un réel m', indépendant de n, tel que  $\forall n\in\mathbb{N}, u_n\geq m'$ .  $(u_n)_{n\in\mathbb{N}}$  est bornée lorsque  $(u_n)_{n\in\mathbb{N}}$  est minorée et majorée.
- 2. Soit une fonction f définie sur un intervalle I et à valeurs réelles. On note  $A = \{f(x)/x \in Df\}$  f est majorée lorsqu'il existe un réel m, indépendant de x, tel que  $\forall x \in Df$ ,  $f(x) \leq m$ ; autrement dit, lorsque A est majorée. f est minorée lorsqu'il existe un réel m', indépendant de x, tel que  $\forall x \in Df$ ,  $f(x) \geq m'$ . f est bornée lorsque f est minorée et majorée.
- **27.** Définition d'un maximum et d'un minimum d'une partie. Soit A une partie de  $\mathbb{R}$ . m est appelé le plus petit élément ou minimum de A lorsque m minore A et m est élément de A . m' est appelé le plus grand élément ou maximum de A lorsque m' majore A et m' est élément de A . On note, le cas échéant,  $m = \min(A)$  et  $m' = \max(A)$ .
- **28.NB** : 1) Tout sous-ensemble de  $\mathbb{R}$  fini admet un plus grand et un plus petit élément. Exemple :  $\max\left\{\pi; 2\sqrt{3}; \frac{10}{3}\right\} = 2\sqrt{3}$ .
- 2) Si A est un ensemble <u>d'entiers relatifs</u> et A est majoré (resp. minoré) alors A admet un maximum (resp. minimum). **exemple** : Si  $A = \mathbb{Z} \cap \left[ -\sqrt{2}, +\infty \right[$  alors min (A) = -1.
- 3) Si A est un ensemble de réels minoré (resp. majoré) alors A n'a pas forcément de minimum (resp. de maximum). ex : A = ]1,  $+\infty$  [est minoré par -3 mais aucun minorant de A n'appartient à A. Donc A n'a pas de minimum. Par contre, on constate que parmi tous les minorants de A, l'un d'entre eux est plus près de A que les autres : il s'agit de 1. 1 est le plus grand minorant de A. 1 est appelé la borne inférieure de A, c'est le plus grand minorant de A. Idem avec la borne supérieure qui sera le plus petit majorant d'un ensemble majoré.
- **29.Définition**: Si a et b sont deux réels alors max(a, b) (respectivement min (a, b)) est le plus grand (respectivement petit) des réels a et b. De même, si  $a_1, a_2, ..., a_n$  sont de réels alors  $max(a_1, a_2, ..., a_n)$  (resp.  $min(a_1, a_2, ..., a_n)$ ) est le plus grand (resp. petit) réel parmi les réels  $a_1, a_2, ..., a_n$ .
- **30.** Exercice: Soit n entier naturel supérieur ou égal à 2. Soient  $a_1, a_2, \dots, a_n$  et  $b_1, b_2, \dots, b_n$  des réels. Les réels  $a_1, a_2, \dots, a_n$  sont strictement positifs.
- 1. On pose  $m = \min\{b_1, b_2, \dots, b_n\}$   $et \ M = \max\{b_1, b_2, \dots, b_n\}$ . Montrer que  $: m \leq \frac{\sum_{k=1}^n a_k b_k}{\sum_{k=1}^n a_k} \leq M$ .
- 2. En déduire que  $\min\left\{\frac{b_1}{a_1}, \frac{b_2}{a_2}, ..., \frac{b_n}{a_n}\right\} \leq \frac{\sum_{k=1}^n b_k}{\sum_{k=1}^n a_k} \leq \max\left\{\frac{b_1}{a_1}, \frac{b_2}{a_2}, ..., \frac{b_n}{a_n}\right\}.$
- **31.**Méthode pour encadrer la somme finie  $\sum_{k=0}^{n} a_k$ :
  - 1. On fixe un entier  $k \in [0, n]$
  - 2. On encadre  $a_k$  en utilisant  $0 \le k \le n$  et les inégalités usuelles.
  - 3. On somme cet encadrement pour k allant de 0 à n.

# III. Valeur absolue d'un réel.

**32.Définition :** Soit x un réel.  $|x| = \begin{cases} x \text{ si } x \ge 0 \\ -x \text{ si } x < 0 \end{cases}$  appelé la valeur absolue du réel x. Sur l'axe réel, |x| est la distance entre les points d'abscisses 0 et x. On définit alors la fonction valeur absolue qui à chaque réel x, associe la valeur absolue de x.

**33.NB**: pour tout réel x, |x| existe et est un réel positif.

**34.** Valeurs particulières à connaître : |-13,45| = 13,45 = |13,45|



**36.Propriétés de la valeur absolue** : Soit x, y et a,  $a_1, \ldots, a_n$  des réels.

1)  $|x|^2 = x^2 et |-x| = |x| = \max(x; -x)$ .

- 2)  $|x-a| = \begin{cases} x-a & \text{si } x-a \ge 0 \\ a-x & \text{si } x-a < 0 \end{cases}$  = distance entre les réels a et x.
- 3) Si a > 0 alors  $|x| < a \Leftrightarrow -a < x < a \Leftrightarrow x \in ]-a, a[$ .
- 4) La fonction valeur absolue est strictement croissante ( $resp. d\'{e}croissante$ ) sur  $\mathbb{R}^+$  ( $resp. sur \mathbb{R}^-$ )
- 5) Si a > 0 alors  $|x y| < a \Leftrightarrow y a < x < y + a \Leftrightarrow x \in ]y a, y + a[$ .
- 6) |xy| = |x||y| et si y non nul,  $\left|\frac{x}{y}\right| = \frac{|x|}{|y|}$ .
- 7) inégalités triangulaires :  $\frac{|x| |y|}{|x| |y|} \stackrel{\text{lère } l.T}{\leq} |x + y| \stackrel{\text{lère } l.T}{\leq} |x| + |y|$
- 8) Généralisations :  $|\prod_{k=1}^n a_k| = \prod_{k=1}^n |a_k|$  et  $|\sum_{k=1}^n a_k| \stackrel{\frown}{\leq} \sum_{k=1}^n |a_k|$ .  $\hookrightarrow$  Démo
- 37.Exercices:
- 1. Montrer que pour tous réels a, b et c,  $|a-b| \le |a-c| + |c-b|$ .
- 2. Résoudre, par équivalence, l'équation  $7 4x \ge |2x + 5|$  d'inconnue réelle x.
- 3. Soit x et y deux réels. Prouver par disjonction de cas que :  $\max(x,y) = \frac{x+y+|x-y|}{2}$  et  $\min(x,y) = \frac{x+y-|x-y|}{2}$

**38.** Théorème: Une partie A de  $\mathbb{R}$  est bornée sietssi il existe un réel M tel que :  $\forall a \in A, |a| \leq M$ .  $\rightarrow$  Démo

La suite réelle u est bornée sietssi il existe un réel M tel que :  $\forall n \in \mathbb{N}, |u_n| \leq M$ .

La fonction réelle f est bornée sietssi il existe un réel M tel que :  $\forall x \in Df$ ,  $|f(x)| \leq M$ .

**39.Exercices : 1)**Montrer que les ensembles  $A = \left\{\frac{x}{1+x^2}/x \in \mathbb{R}\right\}$  et  $B = \left\{\frac{1-\sin{(x)}}{3-2\cos{(x)}}/x \in \mathbb{R}\right\}$  sont bornés.

**2)** Soit  $a \in \mathbb{R}^{+*}$ . Déterminer un majorant et un minorant de  $g: \binom{[-1,1] \to \mathbb{R}}{t \mapsto \frac{at^2}{e^t + 1} - \frac{t^2}{a^2}}$ .

**40.** Pour **majorer**  $\frac{a}{b}$  où a > 0 et  $b \ge 0$ , il faut majorer a et minorer b par un réel strictement positif.

Pour **majorer** a-b, il faut majorer a et minorer b .

# IV. Racine carrée et racine $n^{\text{ième}}$ d'un réel positif.

**41.Définition :** Soit *x* un réel.

Si  $x \ge 0$   $alors \sqrt{x}$  est l'unique réel positif dont le carré vaut x,  $\sqrt{x}$  est l'unique antécédent positif de x par la fonction carrée.  $\sqrt{x}$  est appelé la racine carrée du réel positif x.

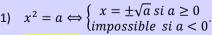
Si x < 0 alors  $\sqrt{x}$  n'est pas défini ( ou n'existe pas).

On définit alors la fonction racine carrée sur  $\mathbb{R}^+$ qui à chaque réel positif x, associe  $\sqrt{x}$ .

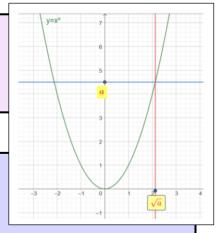
**42.NB**:  $\sqrt{x}$  est un réel positif.  $\sqrt{x}$  existe sietssi  $x \ge 0$ .

**42.** Valeurs particulières à connaître :  $\sqrt{2} \approx 1,41 \ et \ \sqrt{3} \approx 1,73$ .

**43.**Propriétés de la racine carrée. Soit  $x, y \ et \ a$  ,  $a_1, \ldots, a_n$  des réels.



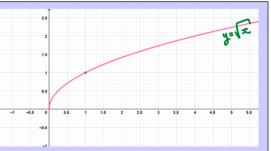
- 2)  $\sqrt{x^2 |x|}$ . Et, si  $x \ge 0$  alors  $(\sqrt{x})^2 = x$ .
- 3)  $0 \le a < x \Leftrightarrow \sqrt{a} < \sqrt{x}$ . La fonction racine carrée est strictement croissante.
- 4) Si x et y sont positifs, alors  $\sqrt{xy} \le \frac{x+y}{2}$ .
- 5) Si x et y sont de même signe alors  $\sqrt{xy} = \sqrt{|x|}\sqrt{|y|}$  et si, de plus, x est non nul, alors  $\sqrt{\frac{y}{x}} = \frac{\sqrt{|y|}}{\sqrt{|x|}}$
- 6) Si x et y sont positifs, alors  $\sqrt{x+y} \le \sqrt{x} + \sqrt{y}$ .
- 7) **Généralisations**: si tous les réels  $a_k$  sont positfs alors  $\sqrt{\prod_{k=1}^n a_k} = \prod_{k=1}^n \sqrt{a_k} \sqrt{\sum_{k=1}^n a_k} \le \sum_{k=1}^n \sqrt{a_k}$   $\rightarrow$  Démo
- 8) Inégalité de Cauchy-Schwarz pour tous réels  $a_1, \ldots, a_n, b_1, \ldots, b_n, |\sum_{k=1}^n a_k b_k| \le \sqrt{\sum_{k=1}^n a_k^2} \sqrt{\sum_{k=1}^n b_k^2}$



- 2. Résoudre par analyse -synthèse puis
- l'équation  $\sqrt{20+x}+5=x$  d'inconnue réelle x

**45.Propriétés de la fonction racine carrée.**  $f:(x\mapsto \sqrt{x})$  est continue sur  $\mathbb{R}^+$  et dérivable sur  $\mathbb{R}^{+*}$  mais n'est pas dérivable en 0.  $\forall x>0, f'(x)=\frac{1}{2\sqrt{x}}=\frac{1}{2}x^{-\frac{1}{2}}$  et Cf admet une tangente verticale en 0.

## 46.La courbe de la fonction racine carrée est :



- **47.** Définitions : Soit une fonction f définie sur un intervalle non trivial I et à valeurs réelles. Soit a un élément de I .
- $f \operatorname{est} \operatorname{continue} \operatorname{en} a \operatorname{lorsque} : \lim f(x) = f(a)$
- f est continue sur I lorsque pour tout  $a \in I$ , f est continue en a.
- f est  $\frac{d\acute{e}rivable\ en\ a}{d}$  lorsque :  $\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$  existe et est finie et on note alors  $f'(a)=\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$ . La droite dite  $\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f(a)}{f(a)}=\frac{f$
- f est dérivable sur I lorsque pour tout  $a \in I$ , f est dérivable en a.
- $Si\ f$  est dérivable sur I alors f est continue sur I. Réciproque fausse.
- Cf admet une tangente verticale en a lorsque f est continue en a et  $\lim_{x\to a} \frac{f(x)-f(a)}{x-a} = \pm \infty$ .

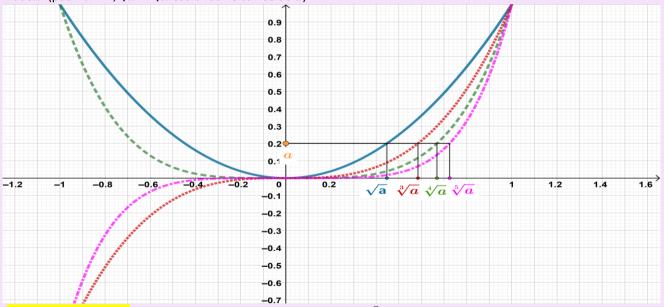
Pour transformer une expression qui contient une somme ou différence de racines carrées, on multiplie cette expression par  $1=\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}-\sqrt{b}}$  ou  $1=\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}$  pour faire apparaitre  $\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)$ .

**48.Déf** si a et x sont deux réels positifs non tous nuls alors  $\sqrt{a} \pm \sqrt{x}$  est appelée la quantité conjuguée de  $\sqrt{a} \mp \sqrt{x}$  .  $(\sqrt{a} - \sqrt{x})(\sqrt{a} + \sqrt{x}) = a - x$ .

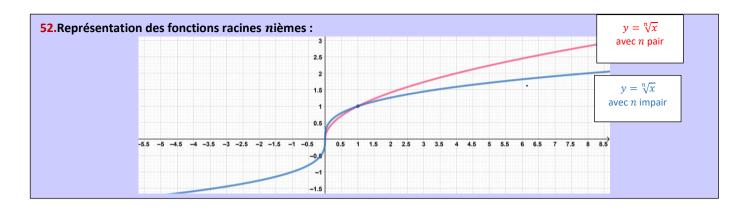
- **49.Exercices : 1.** Rendre entiers les dénominateurs des réels suivants :  $a = \frac{3-\sqrt{2}}{2-\sqrt{3}}$  et  $b = \frac{5+2\sqrt{6}}{\sqrt{2}+\sqrt{3}} + \frac{5-2\sqrt{6}}{\sqrt{2}-\sqrt{3}}$
- **2.** Montrer que la suite  $(u_n)$  définie par :  $\forall n \in \mathbb{N}, u_n = \sqrt{n+1} \sqrt{n}$  tend en décroissant vers 0.
- 3. Soit  $n \in \mathbb{N}^*$ . Démontrer que  $\sqrt{n+1} \sqrt{n} < \frac{1}{2\sqrt{n}} < \sqrt{n} \sqrt{n-1}$ . En déduire un encadrement puis la limite quand  $N \to +\infty$  de  $T_N = \sum_{n=1}^N \frac{1}{\sqrt{n}}$

## **50.** Définition d'une racine $n^{\text{ième}}$ :

- Soit n un entier naturel pair. Tout **réel** x **positif**,  $\sqrt[n]{x} = x^{\frac{1}{n}}$ , la racine nième du réel positif x, est l'unique réel positif dont la puissance n vaut x. (pour n = 2,  $\sqrt[2]{a} = \sqrt{a}$  est la racine carrée de a).
- Soit n un entier naturel impair, pout tout **réel** x,  $\sqrt[n]{x} = x^{\frac{1}{n}}$ , la racine nième du réel x, est l'unique réel dont la puissance n vaut x. (pour n = 2,  $\sqrt[2]{x} = \sqrt{x}$  est la racine carrée de a).



- Soit un rationnel  $r = \frac{p}{q}$  (où  $p \in \mathbb{Z}$  et  $q \in \mathbb{N}^*$ ) et a un  $r \in el$ .  $a^r = a^{\frac{p}{q}} = \sqrt[n]{a^p} = (a^p)^{\frac{1}{n}}$  existe dès que  $\sqrt[n]{a^p}$  existe (cela dépend de la parité de n et p).
- **51.**Exemple:  $\sqrt[3]{8} = 2$  et  $\sqrt[3]{-8} = -2$  et  $\sqrt[4]{16} = 2$  mais  $\sqrt[4]{-16}$  n'existe pas  $(-8)^{\frac{4}{3}} = \sqrt[3]{(-8)^4} = \sqrt[3]{2^{12}} = 2^4 = 16$ .



## 53. Règles de calcul sur les puissances entières :

- Pour tout entier naturel pair n, pour tout réel x,  $\sqrt[n]{x^n} = |x|$  et pour tout réel positif x,  $\left(\sqrt[n]{x}\right)^n = x$ .
- Pour tout entier naturel impair n, pour tout réel x,  $\sqrt[n]{x^n} = x$ .
- Pour tous rationnels p et q, pour tous réels (ou complexes si p et q sont entiers) x et y éventuellement non nuls,  $x^p x^q = x^{p+q}$   $x^p = x^p = x^{p-q}$   $x^p = x^p = x$
- En particulier, si x et y sont réels POSITIFS, alors  $\sqrt{x}\sqrt{y}=\sqrt{xy}$  et si y est non nul alors  $\frac{\sqrt{x}}{\sqrt{y}}=\sqrt{\frac{x}{y}}$ .
- **Généralisation**: pour tous réels (éventuellement positifs ou strictement positifs) $x, x_1, \dots, x_n$  et tous rationnels  $p, p_1, \dots, p_n$ ,  $(\prod_{k=1}^n x_k)^p = \prod_{k=1}^n x_k^p$  et  $\prod_{k=1}^n x^{p_k} = x^{\sum_{k=1}^n p_k}$

**54.** Exemples: 
$$\sqrt[\Box]{\frac{(-2)^{2k+4}\times 3^{k-1}}{4^k\times 3^{-k+1}}} = \left(\frac{(-1)^{2k+4}\times 2^{2k+4}\times 3^{k-1}}{2^{2k}\times 3^{-k+1}}\right)^{\frac{1}{2}} = \left(2^{2k+4-2k}\times 3^{k-1+k-1}\right)^{\frac{1}{2}} = \left(2^4\times 3^{2k-2}\right)^{\frac{1}{2}} = \left(2^4\right)^{\frac{1}{2}}\times \left(3^{2k-2}\right)^{\frac{1}{2}} = 2^2\times 3^{k-1}.$$

**55.** Exercice: Montrer que pour tous réels positifs  $a_1, a_2, ..., a_n$ , pour tout entier naturel non nul p;  $\sqrt[p]{\sum_{k=1}^n a_k} \le \sum_{k=1}^n \sqrt[p]{a_k}$ 

## V. Partie entière

**56.** Définition de la partie entière d'un réel. Soit x un réel, Le plus grand entier relatif inférieur ou égal à x s'appelle la partie entière de x, notée  $\lfloor x \rfloor$ . Autrement dit,  $\lfloor x \rfloor$  est l'unique entier relatif qui vérifie :  $\lfloor x \rfloor \le x < \lfloor x \rfloor + 1$ .

**57.**Exemple :  $[\pi] = 3$  et  $[-\pi] = -4$ .

**58.**Caractérisation de la parte entière Soit k un entier relatif et x un réel. Alors :  $k = \lfloor x \rfloor$  si et ssi  $k \leq x < k+1$ . Autrement dit, si un réel est encadré par deux entiers consécutifs et ne peut pas être égal au plus grand de ces deux entiers alors le plus petit des deux entiers est la partie entière de ce réel.

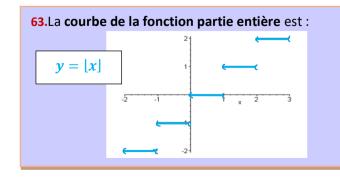
**59.Exercice**: Soit n un entier naturel. Montrer que :  $|\sqrt{n^2 + 7n + 12}| = n + 3$ .

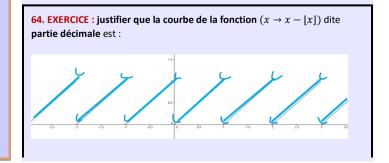
**60.Pour montrer que** [X] = p, il suffit de prouver que :  $p \in \mathbb{Z}$  et  $p \le X .$ 

#### **61.Propriété de la partie entière** . Soit x et y deux réels\_

- **1.**  $x 1 < \lfloor x \rfloor \le x$
- **2.**  $x = [x] \Leftrightarrow x \in \mathbb{Z}$ .
- **3.**  $\forall n \in \mathbb{Z}, (n \le x \Rightarrow n \le \lfloor x \rfloor)$  et  $(n > x \Rightarrow n \ge \lfloor x \rfloor + 1)$
- **4.**  $\forall n \in \mathbb{Z}, \lfloor x+n \rfloor = \lfloor x \rfloor + n$
- **5.**  $x \le y \Rightarrow \lfloor x \rfloor \le \lfloor y \rfloor$ . La fonction partie entière est croissante (pas strictement).

## **62.**On définit ainsi la fonction partie entière $E:(x\mapsto |x|)$ définie sur $\mathbb{R}$





#### 66.Application:

Soit x un réel et  $n \in \mathbb{N}$ . Montrer qu'il existe un unique entier relatif tel que :  $p10^{-n} \le x < p10^{-n} + 10^{-n}$ .

Entre deux réels distincts, il y a toujours un rationnel et un irrationnel.

Cela signifie que  $\mathbb{Q}$  et  $\mathbb{R}\setminus\mathbb{Q}$  sont denses dans  $\mathbb{R}$ .

#### Fonctions exponentielle et logarithme népérien VI.

67. Sans démonstration rappelons les principaux résultats vus en terminale :

La fonction exponentielle est l'unique fonction définie et dérivable sur  $\mathbb{R}$ , qui vérifie  $\forall x \in \mathbb{R}$ ,  $exp'(x) = exp(x) \stackrel{\triangle}{=} e^x$  et  $e^0 = 1$ . La fonction logarithme népérien est l'unique fonction définie et dérivable sur  $\mathbb{R}^{+*}$ , qui vérifie  $\forall x \in \mathbb{R}^{+*}$ ,  $ln'(x) = \frac{1}{r}et \ln(1) = 0$ .

68.Ces fonctions vérifient les règles de calcul suivantes :

 $\forall (x, y) \in \mathbb{R}^2, \forall (a, b) \in \mathbb{R}^{+*2},$ 

- $\ln(e^x) = x \text{ et } e^{\ln(a)} = a$
- $a = e^x \Leftrightarrow x = \ln(a)$
- $e^{x+y} = e^x e^y$  et  $\ln(ab) = \ln(a) + \ln(b)$
- $e^{-x} = \frac{1}{e^x}$  et  $\ln\left(\frac{1}{a}\right) = -\ln\left(a\right)$
- $e^{x-y} = \frac{e^x}{e^y} \operatorname{et} \ln\left(\frac{a}{b}\right) = \ln(a) \ln(b)$   $e^{px} = (e^x)^p \operatorname{et} \ln(a^p) = p\ln(a)$
- $e^x > 0$ .  $e^x < e^y \Leftrightarrow x < y$ .
- $\ln(x) < \ln(y) \Leftrightarrow x < y$ .

69. Généralisation: pour tous réels strictement positifs  $a_0, \ldots, a_n$  et tous réels  $x_0, \ldots, x_n$ ,

- $\ln \left( \prod_{k=0}^{n} a_k \right) = \sum_{k=0}^{n} \ln \left( a_k \right)$  $e^{\sum_{k=0}^{n} x_k} = \prod_{k=0}^{n} e^{x_k}.$

71. Ces fonctions ont pour graphe:

**70.NB**: si ab > 0 alors ln(ab) = ln|a| + ln|b| idem avec  $\frac{a}{a}$ .

#### VII. Fonctions polynomiales.

# 1. Définition

**72.Définitions**: Une fonction ou expression polynomiale réelle (resp. complexe) est une fonction de la forme :

$$\forall x \in \mathbb{R}, f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = \sum_{k=0}^n a_k x^k \left( ^*_{**} \right)$$

où n est un entier naturel,  $a_n, a_{n-1}, \dots, a_1, a_0$  sont des réels (resp. complexes) indépendants de la variable x (des constantes)  $a_n, a_{n-1}, \dots, a_1, a_0$  sont appelés les\*\* coefficients de f et  $(\star^*)$  est la\*\* forme développée de f.

Si  $a_n \neq 0$  alors le degré de f est n et on note  $n = \deg(f)$  et  $a_n x^n$  est le terme dominant de f. La fonction nulle est la seule fonction polynomiale dont tous les coefficients sont nuls ; par convention, le degré de la fonction nulle vaut  $-\infty$ .

Le réel (ou complexe)  $\alpha$  est racine réelle (ou complexe) de f lorsque  $f(\alpha) = 0$  i.e. lorsque  $\alpha$  est une solution réelle (ou complexe) de l'équation polynomiale f(x) = 0.

# 2. De degré 2

73. Théorème : factorisation et signe d'un trinôme.

Soient a, b et c trois réels tels que a non nul. On pose  $P(x) = ax^2 + bx + c$  (forme développée de P)

P est une fonction polynomiale de degré 2 à coefficients réels. On note (E) l'équation P(x) = 0. Par définition, les solutions de (E) sont les racines de P. On note  $\Delta = b^2 - 4ac$  appelé le discriminant de P et de (E). 1.

■Alors, pour tout réel x,  $P(x) = a\left[\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}\right]$  (forme canonique de P).

■ Si  $\Delta = 0$ , alors  $\Delta = \delta^2$  tel que  $\delta = 0$  et (E) admet une unique solution (dite solution double) qui est réelle et qui vaut :  $x_0 = 0$ 

 $\frac{-b-\delta}{2a} = \frac{-b+\delta}{2a} = \frac{-b}{2a} = x_1 = x_2. \text{ Pour tout réel } x \text{ , } \frac{P(x)}{a} = a(x-x_0)^2 \text{ (forme factorisée de } P) \text{ et } P(x) \text{ est du signe de } a.$ 

**Si**  $\Delta > 0$ , alors  $\Delta = \delta^2$  tel que  $\delta = \sqrt{\Delta}$  et (E) admet deux solutions distinctes qui sont réelles et qui sont :  $x_1 = \frac{-b - \delta}{2a}$  et  $x_2 = \frac{b - \delta}{2a}$ 

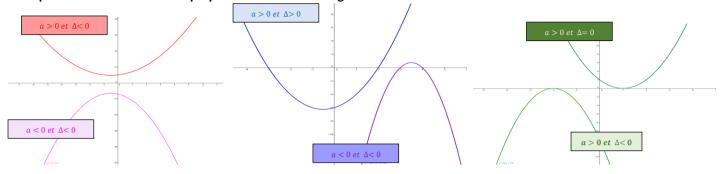
 $\frac{-b+\delta}{2a}$ . De plus, pour tout réel x,  $P(x) = a(x-x_1)(x-x_2)$  (forme factorisée de P) et

P(x) est du signe de a sietssi x ne se trouve pas entre  $x_1$  et  $x_2$ .

**Si**  $\Delta < \mathbf{0}$ , alors (E) n'admet aucune solution réelle. Pour tout réel x, P(x) est du signe strict de a

■■Enfin,  $x_1 + x_2 = 2x_0 = \frac{-b}{a}$  et  $x_1 \times x_2 = x_0^2 = \frac{c}{a}$ . Démo

74. Représentation des fonctions polynomiales réelles de degré 2



**75.NB:** 1. Dès que je connais une solution  $x_1$  de l'équation  $ax^2 + bx + c = 0$ , alors je sais déterminer l'autre solution qui vaut  $x_2 = -\frac{b}{a} - x_1$  ( ou  $x_2 = \frac{c}{ax_1}$  si  $x_1 \neq 0$ ).

2. Lorsque c=0 alors l'équation est x(ax+b)=0 et admet 0 et  $\frac{-b}{a}$  comme solution.

3. Pour que  $\forall x \in \mathbb{R}, P(x) = ax^2 + bx + c$  conserve le même signe, il faut et il suffit que son discriminant  $\Delta_n$  soit négatif ou nul.

76.Exercice: 1) Compléter:

 $x^2 + 12 > 7$  sietssi ... ... ...

 $e^{2x} + e^x - 2 = 0$  sietssi ... ... ...

 $|x| + 5x^2 - 6 > 0$  sietssi ... ... ... ...

2)Calculer  $\lim_{x \to -\frac{1}{2}} \frac{8x^3 + 1}{2x^2 - x - 1}$  et  $\lim_{x \to 1} \frac{x^2 - 1}{x + 5\sqrt{x} - 6}$ 

3) Soit  $f(x) = \frac{2x+3}{x^2-3x+2} + \frac{1-3x}{-x^2-5x+6}$ . Etudier le signe f(x) en fonction de x. 4) Résoudre l'inéquation  $\sqrt{x+1} \ge x$  d'inconnue x réelle.

**77.** Pour trouver les solutions réelles de (E):  $ax^2 + bx + c = 0$  ou factoriser, dans  $\mathbb{R}$ ,  $ax^2 + bx + c$ , il faut

Ou bien trouver deux réels  $x_1$  et  $x_2$  qui vérifient  $x_1 + x_2 = \frac{-b}{a}$  et  $x_1 \times x_2 = \frac{c}{a}$ . Ou bien trouver une solution évidente  $x_1$  de (E) alors l'autre solution de (E)est  $x_2 = \frac{-b}{a} - x_1$  (ou  $x_2 = \frac{c}{ax_1} si x_1 \neq 0$ )

Ou bien calculer  $\Delta$  et appliquer le théorème de factorisation.

**78.Application**: Inégalité de Cauchy-Schwarz pour tous réels  $a_1, \ldots, a_n, b_1, \ldots, b_n$ ,  $|\sum_{k=1}^n a_k b_k| \le \sqrt{\sum_{k=1}^n a_k^2} \sqrt{\sum_{k=1}^n b_k^2}$ 

**79.Théorème** Soit  $\alpha$  et  $\beta$  deux réels. Les seuls réels x et y (éventuellement confondus) qui vérifient  $\begin{cases} x+y=\alpha \\ xy=\beta \end{cases}$  sont les solutions de l'équation  $t^2 - \alpha t + \beta = 0$ .  $\rightarrow$  Démo

# 3. <u>De degré *n*</u>

**80.Théorème :** Les coefficients d'une fonction polynomiale sont uniques . Autrement dit si  $\forall x \in \mathbb{R}, a_n x^n + a_{n-1} x^{n-1} + \cdots + a_{n-1} x^{n-1}$  $a_1x + a_0 = b_nx^n + b_{n-1}x^{n-1} + \dots + b_1x + b_0$ , alors  $\forall k \in [0, n], a_k = b_k$ .  $\rightarrow Démo$ 

81.Théorème:

2. Soit  $p \in \mathbb{Z}$ .  $f_p:(x \mapsto x^p)$  est dérivable sur son domaine  $Df_p$  de définition et  $\forall x \in Df_p$ ,  $f_p'(x) = \begin{cases} px^{p-1}si \ p \neq 0 \\ 0 \ si \ p = 0 \end{cases}$ 

3. Soit  $a_0, a_1, \dots, a_n$  des réels. La fonction polynomiale  $f: (x \mapsto \sum_{k=0}^n a_k x^k)$  est dérivable sur  $\mathbb{R}$  et  $\forall x \in \mathbb{R}, f'(x) = \sum_{k=1}^n k a_k x^{k-1}$ .

3.  $\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} terme \ dominant \ de \ f(x)$  et cette limite existe toujours (finie ou infinie) et  $\lim_{x \to 0} f(x) = a_0$ 

Par suite , f' étant polynomiale , f' est aussi dérivable sur  $\mathbb{R}$  et  $\forall x \in \mathbb{R}$ ,  $f''(x) = \sum_{k=2}^n k(k-1)a_k x^{k-2}$  ....

## 82. Opérations sur les fonctions polynomiales :

Si  $f:(x\mapsto \sum_{k=0}^n a_k x^k)$  et  $g:(x\mapsto \sum_{k=0}^m b_k x^k)$  sont deux fonctions polynomiales alors en posant  $\forall k>n, a_k=0$  et  $\forall k>n$  $m, b_k = 0 \text{ , on a } \forall x \in \mathbb{R}, \ f(x) + g(x) = \sum_{k=0}^{\max{(n,m)}} (a_k + b_k) x^k \text{ et } f(x) g(x) = \sum_{k=0}^{n+m} c_k x^k \text{ où } c_k = \sum_{j=0}^k a_{k-j} b_j.$ 

**Conséquences**: 1. La somme et le produit de fonctions polynomiales sont polynomiales.

2.  $\deg(f+g) \leq \max(\deg(f), \deg(g))$  et  $\deg(f \times g) = \deg(f) + \deg(g)$ .  $\rightarrow \mathsf{D} \acute{\mathsf{e}} \mathsf{mo}$ 

Corollaire des valeurs intermédiaires : Si f est continue sur un intervalle I et f change de signe sur I alors f s'annule sur I.

#### 84. Théorème de la division euclidienne polynomiale (a pour le moment):

Si f et g sont deux fonctions polynomiales réelles (resp. complexes) telles que g est non nulle alors il existe deux uniques fonctions polynomiales q et r réelles (resp. complexes) telles que  $\forall x \in \mathbb{R}$ , f(x) = g(x)q(x) + r(x) et  $\deg(r) < \deg(q)$ .

**85.Déf.**: q est le quotient de la division euclidienne de f par g. r est le reste de la division euclidienne de f par g. Lorsque le reste r est nul, on dit que g divise f.

86.En pratique: on pose la division (comme pour des entiers)

$$\begin{array}{c}
2x^{5} + 4x^{2} - 1 \\
-(2x^{5} - \frac{4}{3}x^{4} + \frac{2}{3}x^{3}) \\
\frac{4}{3}x^{4} - \frac{2}{3}x^{3} + 4x^{2} - 1 \\
-(\frac{4}{3}x^{4} - \frac{8}{9}x^{3} + \frac{4}{9}x^{2}) \\
\frac{2}{9}x^{3} + \frac{32}{9}x^{2} - 1 \\
-(\frac{2}{9}x^{3} - \frac{4}{27}x^{2} + \frac{2}{27}x) \\
\hline
\frac{100}{27}x^{2} - \frac{2}{27}x - 1 \\
-(\frac{100}{27}x^{2} - \frac{200}{81}x + \frac{100}{81}) \\
\hline
194 ... 181
\end{array}$$

On obtient:  $2x^5 + 4x^2 - 1 = (3x^2 - 2x + 1)\left(\frac{2}{3}x^3 + \frac{4}{9}x^2 + \frac{2}{27}x + \frac{100}{81}\right) + \frac{194}{81}x - \frac{181}{81}$ 

## 87.Théorème:

Si f est une fonction polynomiale réelle non nulle de degré n et  $\alpha$  est racine réelle de f alors

- il existe une unique fonction polynomiale réelle q de degré (n-1) telle que : pour tout réel x ,  $f(x) = (x-\alpha)q(x)$ .
- q(x) est le quotient de la division euclidienne de f(x) par  $g(x) = x \alpha$  et le reste est nul (i. e. g divise f).  $\rightarrow$  Démo

**88.NB**: si  $\alpha$  est racine complexe de f ou bien si f est à coefficients complexes, alors g existe encore et est à coefficients

**89.** Exemple : Soit  $f(x) = 2x^3 + x^2 + 1$ . Déterminons le signe de f(x) selon les valeurs de x.

Je constate que (-1) est racine évidente de f. Alors (x-(-1)) divise f(x). Cherchons le quotient g tel que  $\forall x \in \mathbb{R}$ , f(x)=(x+1)g(x).

Je constate que 
$$(-1)$$
 est racine évidente de  $f$ . Alors  $(x-(-1))$  divise  $f(x)$ . Cherchons le quotient  $q$  tel que  $\forall x \in \mathbb{R}$ ,  $f(x)=(x+1)q(x)$ .

$$\begin{array}{c|c}
2x^3+x^2+1\\
-(2x^3+2x^2)\\
-x^2+1\\
\hline
-(x^2+1)\\
\hline
-x^2-x\\
x+1\\
\hline
-(x+1)\\
\hline
0
\end{array}$$

$$\begin{array}{c|c}
2^{\underline{kme}} & \underline{m \text{ \'ethode}} : \text{ Cherchons un r\'eel } b \text{ tel que }, \forall x, 2x^3+x^2+1=(x+1)(2x^2+bx+1). \\
\text{i.e. } \forall x, 2x^3+x^2+1=2x^3+(b+2)x^2+(b+1)x+1. \\
\text{Alors } b=-1 \text{ convient.}
\end{array}$$

$$\begin{array}{c|c}
90. \text{ Pour connaître le signe d'une fonction } \\
\text{polynomiale } f, \\
\text{1. je la factorise :} \\
\text{Si } deg(f)=2 \text{ alors je sais trouver les racine} \\
\text{Si } deg(f)>2 \text{ alors je cherche une racine} \\
\text{Si } deg(f)>2 \text{ alors je cherche une racine} \\
\text{Si } deg(f)>2 \text{ alors je cherche une racine} \\
\text{Si } deg(f)>2 \text{ alors je cherche une racine}
\end{array}$$

VIII. Fonctions rationnelles simples.

Comme  $\Delta_q < 0$ ,  $\forall x \in \mathbb{R}, q(x) > 0$ . Par conséquent, f(x) est du signe de x + 1. Ainsi,  $f(x) > 0 \Leftrightarrow x > -1$ .

# 90. Pour connaître le signe d'une fonction

1. je la factorise :

- $\triangleright$  Si deg(f) = 2 alors je sais trouver les racines.
- Si deg(f) > 2 alors je cherche une racine évidente a puis je factorise f(x) par x - a. Alors f(x) = (x - a)q(x). je factorise alors q(x) avec ces mêmes principes.
- 2. je fais si besoin un tableau de signe.
- Si je ne parviens pas à factoriser f j'étudie ses

## 91.Définitions:

Une fonction rationnelle réelle est une fonction f de la forme  $f(x) = \frac{A(x)}{B(x)}$  où A et B sont polynomiales réelles et  $deg(B) \ge 1$ .

**92.Propriété** : Si  $f(x) = \frac{A(x)}{B(x)}$  alors  $\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{terme\ dominant\ de\ A}{terme\ dominant\ de\ B}$  et cette limite existe toujours (finie ou infinie)

**93.**Propriété : Si  $f(x) = \frac{A(x)}{B(x)}$  et A(x) = B(x)Q(x) + R(x)  $tq \deg(R) < \deg(B)$  alors  $\forall x \in Df, f(x) = Q(x) + \frac{R(x)}{B(x)}$ Q, le quotient de la division euclidienne de A par B est appelé la partie entière de f.

**94.** Exemple: prenons  $f(x) = \frac{x^4 - 3x + 1}{x^2 - 2x + 5}$ . En effectuant la division euclidienne de  $x^4 - 3x + 1$  par  $x^2 - 2x + 5$ , j'obtiens:  $x^4 - 3x + 1 = (x^2 - 2x + 5)(x^2 + 2x - 1) - 15x + 6$ . Alors,

$$f(x) = \frac{(x^2 - 2x + 5)(x^2 + 2x - 1) - 15x + 6}{x^2 - 2x + 5} = \underbrace{\frac{x^2 + 2x - 1}{partie}}_{entière\ de\ f} + \underbrace{\frac{-15x + 6}{x^2 - 2x + 5}}_{\frac{R}{B}\ avec}$$

95.ADMIS Décomposition en éléments simples de  $\frac{R(x)}{B(x)}$  tq R et B polynomiales et  $0 \le \deg(R) < \deg(B) \le 4$ .

**1er cas** deg(B) = 1 alors deg(R) = 0 et  $\frac{R}{R}$  est déjà décomposé en éléments simples.

2éme cas deg(B) = 2

Ou bien  $\Delta_B > 0$  alors  $B(x) = \lambda(x - a)(x - b)$  et il existe deux uniques réels u et v tels que :

 $\forall x \in \mathbb{R} \setminus \{a, b\}, \frac{R(x)}{B(x)} = \frac{u}{x-a} + \frac{v}{x-b}$  (l'unique décomposition en éléments simples de  $\frac{R}{B}$ ).

Ou bien deg(B) = 2 et  $\Delta_B = 0$  alors  $B(x) = \lambda(x - a)^2$  et il existe deux uniques réels u et v tels que :

 $\forall x \in \mathbb{R} \setminus \{a,b\}, \ \frac{R(x)}{B(x)} = \frac{u}{x-a} + \frac{v}{(x-a)^2}$  (la décomposition en éléments simples de  $\frac{R}{B}$ ).

Ou bien deg(B) = 2 et  $\Delta_B < 0$  alors  $\frac{R(x)}{R(x)}$  est déjà décomposé en éléments simples.

**3éme cas** deg(B) = 3 alors B a au moins une racine réelle et

- Ou bien  $B(x) = \lambda(x-a)(x-b)(x-c)$  avec a,b,c réels distincts et il existe trois uniques réels u et v et w tels que :  $\forall x \in \mathbb{R} \setminus \{a, b\}, \frac{R(x)}{B(x)} = \frac{u}{x-a} + \frac{v}{x-b} + \frac{w}{x-c}$  (la décomposition en éléments simples de  $\frac{R}{B}$ ).
- Ou bien  $B(x) = \lambda(x-a)(x-b)^2$  avec a,b réels distincts et il existe trois uniques réels u et v et w tels que :  $\forall x \in \mathbb{R} \setminus \{a,b\}, \ \frac{R(x)}{B(x)} = \frac{u}{x-a} + \frac{v}{(x-a)^2} + \frac{w}{x-b}$  (la décomposition en éléments simples de  $\frac{R}{B}$ ).

Ou bien  $B(x) = \lambda(x-a)^3$  avec a réel et il existe trois uniques réels u et v et w tels que :

 $\forall x \in \mathbb{R} \setminus \{a, b\}, \ \frac{R(x)}{B(x)} = \frac{u}{x-a} + \frac{v}{(x-a)^2} + \frac{w}{(x-a)^3}$  (la décomposition en éléments simples de  $\frac{R}{B}$ ).

Ou bien B(x) = (x - a)T(x)où T polyniomiale, deg(T) = 2 et  $\Delta_T < 0$  alors il existe trois uniques réels u et v et w tels que :  $\forall x \in \mathbb{R} \setminus \{a, b\}, \frac{R(x)}{R(x)} = \frac{ux+v}{T(x)} + \frac{w}{x-c}$  (la décomposition en éléments simples de  $\frac{R}{R}$ ).

**3éme cas** deg(B) = 4 alors

Ou bien  $B(x) = \lambda(x-a)(x-b)(x-c)(x-d)$  avec a,b,c,d réels distincts et il existe quatre uniques réels s, u et v et w tels que :

 $\forall x \in \mathbb{R} \setminus \{a, b\}, \frac{R(x)}{B(x)} = \frac{u}{x-a} + \frac{v}{x-b} + \frac{w}{x-c} + \frac{s}{x-d}$  (la décomposition en éléments simples de  $\frac{R}{B}$ ).

- Ou bien  $B(x) = \lambda(x-a)^2(x-b)(x-c)$  avec a,b,c réels distincts et il existe quatre uniques réels u et v et w et s tels que : $\forall x \in \mathbb{R} \setminus \{a,b\}$ ,  $\frac{R(x)}{B(x)} = \frac{u}{x-a} + \frac{v}{(x-a)^2} + \frac{w}{x-b} + \frac{s}{x-c}$  (la décomposition en éléments simples de  $\frac{R}{B}$ ).
- Ou bien  $B(x) = \lambda(x-a)^3 (x-b)$  avec a, b réels distincts et il existe quatre uniques réels u et v et w et s tels que :

 $\forall x \in \mathbb{R} \setminus \{a, b\}, \ \frac{R(x)}{B(x)} = \frac{u}{x-a} + \frac{v}{(x-a)^2} + \frac{w}{(x-a)^3} + \frac{s}{x-d}$  (la décomposition en éléments simples de  $\frac{R}{B}$ ).

**Ou bien**  $B(x) = \lambda(x-a)^4$  avec a réel et il existe quatre uniques réels u et v et w et s tels que :  $\forall x \in \mathbb{R} \setminus \{a,b\}, \frac{R(x)}{B(x)} = \frac{u}{x-a} + \frac{v}{(x-a)^2} + \frac{w}{(x-a)^3} + \frac{s}{(x-a)^4}$  (la décomposition en éléments simples de  $\frac{R}{B}$ ).

Ou bien  $B(x) = \lambda(x-a)(x-b)T(x)^{\square}$  avec a et b réels distincts et T polyniomiale tq deg(T) = 2 et  $\Delta_T < 0$  et il

existe quatre uniques réels u et v et w et s tels que :  $\forall x \in \mathbb{R} \setminus \{a,b\}, \ \frac{R(x)}{B(x)} = \frac{u}{x-a} + \frac{v}{(x-b)} + \frac{wx+s}{T(x)} \ \ \text{(la décomposition en éléments simples de } \frac{R}{B} \text{)}.$ 

Ou bien  $B(x) = \lambda(x-a)^2 T(x)^{\square}$  avec a r'eelet T polyniomiale tq  $deg(T) = 2 \text{ et } \Delta_T < 0$  et il existe quatre uniques r\'eels u et v et w et s tels que :

 $\forall x \in \mathbb{R} \setminus \{a, b\}, \ \frac{R(x)}{B(x)} = \frac{u}{x-a} + \frac{v}{(x-a)^2} + \frac{wx+s}{T(x)}$  (la décomposition en éléments simples de  $\frac{R}{B}$ ).

Ou bien  $B(x) = M(x)T(x)^{\square}$  avec a r'eelet M et T polyniomiales  $tq deg(M) = deg(T) = 2 et \Delta_T < 0 et \Delta_M < 0$  et il existe quatre uniques réels u et v et w et s tels que :

 $\forall x \in \mathbb{R} \setminus \{a, b\}, \frac{R(x)}{B(x)} = \frac{ux+v}{M(x)} + \frac{wx+s}{T(x)}$  (I'unique décomposition en éléments simples de  $\frac{R}{B}$ ).

Ou bien  $B(x) = (T(x))^2$  avec T polyniomiale tq deg(T) = 2  $et \Delta_T < 0$  et il existe quatre uniques réels u et v et w et s tels que :

 $\forall x \in \mathbb{R} \setminus \{a, b\}, \frac{R(x)}{B(x)} = \frac{ux+v}{T(x)} + \frac{wx+s}{(T(x))^2}$  (l'unique décomposition en éléments simples de  $\frac{R}{B}$ ).

#### 96. Regardons sur des exemples comment déterminer les réels u, v et w?

1. Prenons  $f(x) = \frac{x^4}{x^3 - x^2 - 4x + 4}$ . En effectuant la division euclidienne de  $x^4$  par  $x^3 - x^2 - 4x + 4$ , nous obtenons :

$$x^4 = (x^3 - x^2 - 4x + 4)(x + 1) + 5x^2 - 4 \text{ donc } f(x) = (x + 1) + \frac{5x^2 - 4}{x^3 - x^2 - 4x + 4}. \text{ Posons } g(x) = \frac{5x^2 - 4}{x^3 - x^2 - 4x + 4}.$$
 Factorisons  $B(x) = x^3 - x^2 - 4x + 4$ :

$$x^3 - x^2 - 4x + 4 = (x - 1)(x^2 - 4) = (x - 1)(x - 2)(x + 2)$$

1 est racine évidente de 
$$B$$
. Donc je peux factoriser  $B(x)$  par  $x-1$  . J'obtiens : 
$$x^3-x^2-4x+4=(x-1)(x^2-4)=(x-1)(x-2)(x+2).$$
 Alors  $g(x)=\frac{5x^2-4}{x^3-x^2-4x+4}=\frac{5x^2-4}{(x-1)(x-2)(x+2)}.$ 

Donc il existe trois réels u, v et w tels que  $\forall x \in \mathbb{R} \setminus \{1, 2, -2\}, g(x) = \frac{5x^2 - 4}{(x - 1)(x - 2)(x + 2)} = \frac{u}{x - 1} + \frac{v}{x - 2} + \frac{w}{x + 2}$ 

Alors 
$$\forall x \in \mathbb{R} \setminus \{1,2,-2\}, (x-1) g(x) = \frac{5x^2-4}{(x-2)(x+2)} = u + \frac{v(x-1)}{x-2} + \frac{w(x-1)}{x+2}.$$
 Donc  $\lim_{x \to 1} (x-1)g(x) = \frac{1}{(-3)} = u.$  Donc  $u = -\frac{1}{3}$ .

De même, 
$$(x-2)$$
  $g(x) = \frac{5x^2-4}{(x-1)(x+2)} = \frac{u(x-2)}{x-1} + v + \frac{w(x-2)}{x+2}$ . Donc  $\lim_{x\to 2} (x-2)g(x) = \frac{16}{4} = v$ . Donc  $v=4$ 

De même, 
$$(x-2)$$
  $g(x) = \frac{5x^2-4}{(x-1)(x+2)} = \frac{u(x-2)}{x-1} + v + \frac{w(x-2)}{x+2}$ . Donc  $\lim_{x\to 2} (x-2)g(x) = \frac{16}{4} = v$ . Donc  $v = 4$ . Et,  $(x+2)$   $g(x) = \frac{5x^2-4}{(x-1)(x-2)} = \frac{u(x+2)}{x-1} + \frac{v(x+2)}{x-2} + w$ . Donc  $\lim_{x\to 2} (x+2)g(x) = \frac{16}{12} = w$ . Donc,  $w = \frac{4}{3}$ . que  $\forall x \in \mathbb{R} \setminus \{1,2,-2\}, f(x) = (x+1) + \left(-\frac{1}{3}\right)\frac{1}{x-1} + \frac{4}{x-2} + \frac{4}{3}\frac{1}{x+2}$ .

que 
$$\forall x \in \mathbb{R} \setminus \{1, 2, -2\}, f(x) = (x+1) + \left(-\frac{1}{3}\right) \frac{1}{x-1} + \frac{4}{x-2} + \frac{4}{3} \frac{1}{x+2}.$$

2. Prenons 
$$f(x) = \frac{2x+1}{x^3 \mp x}$$
.

2. Prenons 
$$f(x) = \frac{2x+1}{x^3+x}$$
.  
Comme  $\deg(2x+1) < \deg(x^3+x^2)$ ,  $2x+1 = \underbrace{0}_{quotient} \times (x^3+x) + \underbrace{(2x+1)}_{reste}$ .  
Le peux donc directement décomposer  $f$  en éléments simples (ici,  $f=a$ ):

Je peux donc directement décomposer f en éléments simples ( ici, f=g

comme 
$$x^3 + x^2 = x(x^2 + 1)$$
, il existe trois réels u,v,et w tels que :  $\forall x \in \mathbb{R}^*$ ,  $f(x) = \frac{2x+1}{(x^2+1)x} = \frac{u}{x} + \frac{vx+w}{x^2+1}$ 

 $\forall x \in \mathbb{R}^*, x f(x) = \frac{2x+1}{x^2+1} = u + x \frac{vx+w}{x^2+1}. \text{ Donc } \lim_{x \to 0} x f(x) = 1 = u. \text{ Donc } u = 1. \text{ Et }; \lim_{x \to +\infty} x f(x) = 0 = u + v. \text{ Donc } v = -u = -1.$  Enfin,  $f(1) = \frac{3}{2} = u + \frac{v+w}{2} = 1 + \frac{-1+w}{2}. \text{ Donc, } w = 2.$  Ainsi,  $\forall x \in \mathbb{R}^*, f(x) = \frac{2x+1}{(x^2+1)x} = \frac{1}{x} + \frac{2-x}{x^2+1}.$ 

Enfin, 
$$f(1) = \frac{3}{2} = u + \frac{v+w}{2} = 1 + \frac{-1+w}{2}$$
. Donc,  $w = 2$ 

Ainsi, 
$$\forall x \in \mathbb{R}^*, f(x) = \frac{2x+1}{(x^2 + 1)x} = \frac{1}{x} + \frac{2-x}{x^2 + 1}$$

3. Prenons 
$$f(x) = \frac{1}{(x^2 + x + 1)(x^2 - x + 1)}$$
.

Comme  $deg(1) < deg((x^2 + x + 1)(x^2 - x + 1))$ , la partie entière de f est nulle et on peut directement décomposer f en éléments simples. Comme les deux trinôme du dénominateur de f ont des discriminants strictement négatifs, il existe donc 4 uniques réels u, v, w et s tels que :  $\forall x \in \mathbb{R}$ ,

$$f(x) = \frac{1}{(x^2 + x + 1)(x^2 - x + 1)} = \frac{ux + v}{(x^2 + x + 1)} + \frac{wx + s}{(x^2 - x + 1)}.$$

 $f(x) = \frac{1}{(x^2 + x + 1)(x^2 - x + 1)} = \frac{ux + v}{(x^2 + x + 1)} + \frac{wx + s}{(x^2 - x + 1)}.$ Tout d'abord, Alors,  $xf(x) = \frac{x}{(x^2 + x + 1)(x^2 - x + 1)} = \frac{ux^2 + vx}{(x^2 + x + 1)} + \frac{wx^2 + s^2}{(x^2 - x + 1)}.$  Donc,  $\lim_{x \to +\infty} xf(x) = 0 = u + w(*).$ 

Ensuite, 
$$f(0) = 1 = v + s$$
 (\*\*).

Puis, f est paire (il suffit de vérifier que  $\forall x \in \mathbb{R}$ ,  $f(-x) = \frac{1}{((-x)^2 - x + 1)((-x)^2 + x + 1)} = f(x)$ ). Alors,  $\forall x \in \mathbb{R}$ ,

 $f(x) = f(-x) = \frac{-ux+v}{(x^2-x+1)} + \frac{-wx+s}{(x^2+x+1)}.$  Par unicité de cette décomposition en éléments simples, -u = w et v = s.

J'en déduis par (\*\*) que 2v = 1 et par suite,  $v = s = \frac{1}{2}$ .

Enfin, 
$$f(1) = \frac{1}{3} = \frac{u + \frac{1}{2}}{3} + w + \frac{1}{2}$$
. Donc, comme  $u = -w$ ,  $\frac{1}{3} = \frac{2w}{3} + \frac{2}{3}$  et ainsi,  $w = -\frac{1}{2}$  et  $u = \frac{1}{2}$ . J'en conclus que  $f(x) = \frac{1}{(x^2 + x + 1)(x^2 - x + 1)} = \frac{1}{2} \frac{x + 1}{(x^2 + x + 1)} + \frac{1}{2} \frac{1 - x}{(x^2 - x + 1)}$ .

J'en conclus que 
$$f(x) = \frac{1}{(x^2 + x + 1)(x^2 - x + 1)} = \frac{1}{2} \frac{x + 1}{(x^2 + x + 1)} + \frac{1}{2} \frac{1 - x}{(x^2 - x + 1)}$$

## 97. Applications aux calculs de somme, de dérivées nièmes et au calcul intégral.

**98.** Exercice: Montrer que la suite  $(S_N)tq$   $S_N = \sum_{n=1}^N \frac{1}{n^2(n+1)}$  a une limite finie quand  $N \to +\infty$  et calculer cette limite.