Programme de colle 4

CHAP 2 : Inégalités et premières fonctions réelles.

VI Fonctions polynomiales réelles.

- Fonction polynomiale de degré 2 : $P(x) = ax^2 + bx + c$ où a, b, et c réels et $a \neq 0$.
 - o Factorisation dans \mathbb{R} , racine(s) réelle(s) et signe. Allure de la courbe.
 - Somme et produit des racines réelles.
 - Résolution d'un système NON linéaire de la forme $\begin{cases} x + y = \alpha \\ xy = \beta \end{cases}$
 - Méthodes de factorisation :
 - \checkmark Factorisation évidente (exemples : c = 0 ou identité remarquable).
 - ✓ Recherche d'une racine x_1 évidente parmi les réels -2, -1,0,1,2 puis de l'autre racine x_2 en utilisant $x_1 + x_2 = -\frac{b}{a}$ ou $x_1x_2 = \frac{c}{a}$.
 - \checkmark Recherche de deux réels x_1 et x_2 (souvent entiers) tels que $x_1 + x_2 = -\frac{b}{a}$ ou $x_1x_2 = \frac{c}{a}$.
 - ✓ Utilisation de Δ
- Fonction polynomiale de degré n (résultats admis)
 - o Définition (forme développée), coefficients, degré, racines
 - o Théorème de division euclidienne polynomiale.
 - O Théorème de factorisation connaissant une racine.

VII Fonctions rationnelles réelles.

- Définition comme quotient $\frac{A}{B}$ de deux fonctions polynomiales A et B. Définition de la partie entière : quotient de la division euclidienne de A par B. Ecrire que $\frac{A}{B} = Q + \frac{R}{B}$ où degR < degB
- Décomposition en éléments simples de $\frac{R}{B}$ avec $où 0 \le degR < degB \le 4$.
- Application au calcul d'une somme.

CHAP 3: Trigonométrie.

I Fonctions paires, impaires et périodiques.

- Définition d'une fonction paire, d'une fonction impaire et d'une fonction périodique.
- Propriétés :
 - o fonctions impaires : f(0) = 0 si f(0) existe.
 - o fonctions périodiques : une fonction T-périodique, où $T \in \mathbb{R}^{+*}$, est aussi kT —périodique pour tout $k \in \mathbb{N}$ (resp. $k \in \mathbb{Z}$ lorsque Df n'est ni minoré, ni majoré)
- Réduction du domaine d'étude des propriétés des fonctions paires , impaires (f(0) = 0 si f(0) existe) ou périodiques.
- Produit, quotient, combinaison linéaire des deux fonctions paires (resp. impaires, resp. périodiques).
- Relation entre la courbe de f et la courbe de g dans les cas suivants (α désigne un réel non nul) :
 - $\circ \quad g(x) = f(x) + a$
 - \circ g(x) = f(a+x)
 - $\circ \quad g(x) = f(-x)$
 - $\circ \quad g(x) = -f(x)$
 - $\circ \quad g(x) = |f(x)|$
 - $\circ \quad g(x) = f(a x)$
 - $\circ \quad g(x) = af(x)$
 - $\circ \quad g(x) = f(ax)$

II Sinus et cosinus

- Définition du sinus et cosinus d'un réel à partie du cercle trigonométrie.
- Premières formules de trigonométrie liées aux définitions de cos, sin.
- Valeurs particulières.
- Equations et inéquations trigonométriques ; définition de Arccos(m) et de Arcsin(m) d'un réel $m \in [-1,1]$.
- Autres formules de trigonométrie : formules d'addition, d'angle double.
- Formules à savoir retrouver : formules de factorisation et de linéarisation.
- Si a et b sont deux réels tq $a^2 + b^2 = 1$ alors il existe un réel θ (unique si $\theta \in]-\pi;\pi]$) tel que $cos\theta = a$ et $sin\theta = b$. Savoir exprimer θ . En fonction de Arccos(a) ou Arcsin(b) ou $Arctan\left(\frac{b}{a}\right)$)
- Méthode pour écrire $Acos(\omega t) + Bsin(\omega t)$ sous la forme $Ccos(\omega t + \varphi)$.
- Fonctions sinus et cosinus: parité, périodicité, continuité, dérivabilité, courbe.

III Tangente

- Définition de la tangente d'un réel distinct des valeurs $\frac{\pi}{2}+k\pi$ tel que $k\in\mathbb{Z}$. Représentation.
- Valeurs particulières.
- Formules de trigonométrie dont formules d'addition, d'angle double, relation entre $tan^2(x)$ et $cos^2(x)$ puis entre tan(x) et $tan(\frac{\pi}{2}-x)$.
- Equations et inéquations trigonométriques ; définition de Arctan(m) d'un réel m.
- Fonction tangente : parité, périodicité, continuité, dérivabilité, courbe.

CHAP 4 Nombres complexes

I Forme algébrique

- <u>Ensemble ℂ</u>:
 - o définition, forme algébrique (existence et unicité), partie réelle, partie imaginaire, imaginaire pur
 - Règles de calculs : égalité de deux complexes, parties réelle et imaginaire d'une somme de nombres complexes.
- Représentation d'un nombre complexe :
 - o Définition de l'affixe d'un point, d'un vecteur, images ponctuelle et vectorielle d'un complexe
 - \circ Affixe de $\alpha \vec{u} + \beta \vec{v}$, affixe de $\overline{MM'}$. Caractérisation par les complexes de deux points symétriques par rapport à O.
- Conjugué d'un nombre complexe :
 - o définition et image ponctuelle du conjugué
 - o propriétés :
 - √ écriture des parties réelle et imaginaire de z à l'aide de z et de son conjugué
 - ✓ caractérisation d'un réel ou d'un imaginaire pur grâce au conjugué.
 - ✓ conjugué d'une somme, d'un produit ou d'un quotient de nombres complexes
 - ✓ le produit d'un complexe par son conjugué.

II Forme trigonométrique

• <u>Module</u>: 4 <u>définitions équivalentes</u>: par les parties réelle et imaginaire - par le conjugué - par une distance - par une norme de vecteur.

Propriétés du module :

- o module d'un réel
- o comparaison entre |Re(z)| et |z|, entre |Im(z)| et |z|
- o module de l'inverse d'un complexe, d'un produit, d'un quotient, d'une puissance de complexes
- o module de $\frac{z}{|z|}$
- o inégalités triangulaires, cas d'égalité dans la première inégalité triangulaire.
- Applications « géométriques » Distance entre deux points . Description par les complexes d'un cercle et d'une médiatrice.
- Exponentielle imaginaire.
 - Définition
 - Caractérisation (écriture) des complexes de module 1.
 - Propriétés :
 - √ égalité de deux exponentielles imaginaires
 - ✓ produit et quotient d'exponentielle imaginaire
 - √ formules de Moivre
 - ✓ Formule d'Euler
 - ✓ Identités du losange.
- La forme trigonométrique et les arguments d'un nombre complexe non nul :
 - o Définition (géométrique) d'un argument d'un complexe non nul
 - o Forme trigonométrique d'un complexe non nul : existence et unicité.
 - o Caractérisation de l'égalité de deux complexes non nuls.
 - Forme quasi-trigonométrique
 - O Propriétés des arguments : arg(zz'), $arg(\frac{1}{z})$, $arg(\frac{z'}{z})$, $arg(z^n)$ où $n \in \mathbb{Z}$, $arg(\bar{z})$.
- Applications « algébriques »
 - o Identités du losange généralisées : $e^{i\theta} + e^{i\theta'}$ et $e^{i\theta} e^{i\theta'}$.
 - Quotient et puissance de complexes
 - o Linéarisation d'un produit de sinus et cosinus
 - O Calcul de $\sum_{k=0}^{n} e^{ik\theta}$, $\sum_{k=0}^{n} cos(k\theta)$ et $\sum_{k=0}^{n} sin(k\theta)$.

TOUS LES ENONCES DES DEFINITIONS, PROPRIETES ET THEOREMES DOIVENT ETRE CONNUS.

Enoncer et démontrer les résultats suivants:

- 1) Relations entre $tan^2(x)$ et $cos^2(x)$ puis entre tan(x) et $tan\left(\frac{\pi}{2}-x\right)$.
- 2) La formule d'addition de la fonction tangente

3)
$$\forall (z, z^2) \in \mathbb{C}^2, \frac{z+\overline{z}}{2} = Re(z) \ et \ \frac{z+\overline{z}}{2i} = Im(z), \quad \overline{z+z'} = \overline{z} + \overline{z'} \ et \ \overline{z \times z'} = \overline{z} \times \overline{z'} \ et \ si \ z \neq 0, \ \overline{\left(\frac{1}{z}\right)} = \frac{1}{\overline{z}}.$$

4)
$$\forall (z,z') \in \mathbb{C}^2$$
, $|z \times z'| = |z| \times |z'|$ et si $z \neq 0$, $\left|\frac{1}{z}\right| = \frac{1}{|z|}$ et $\left|\frac{z'}{z}\right| = \frac{|z'|}{|z|}$.

- 5) Les deux inégalités triangulaires: $\forall (z,z') \in \mathbb{C}^2, \ \left| |z| |z'| \right| \leq |z \pm z'| \leq |z| + |z'|$.
- 6) Formule d'Euler et identités du losange.

Rappeler soigneusement le résultat avant de le démontrer.