JOUR 11 Corrigé

BUT : Montrer que l'équation $\tan(x)=x$ admet une seule solution u_n dans chaque intervalle $I_n=]-\frac{\pi}{2}+n\pi,\frac{\pi}{2}+n\pi$ [où $n\in\mathbb{N}$. Déterminer $\lim_n u_n$.

- a. Sait-on résoudre algébriquement l'équation $\tan(x) = x$? Quelle méthode va-t-on alors appliquer pour résoudre cette équation ?Montrer que l'équation $\tan(x) = x$ admet une seule solution u_n dans chaque intervalle I_n .
- b. Trouver un encadrement de u_n qui permet d'en déduire sa limite.
- a. Non on ne sait pas résoudre algébriquement... on va étudier la fonction différence des deux membres dans le but de connaitre son signe.

Posons $f(x)=\tan(x)-x$. f est bien définie, continue et dérivable sur chaque intervalle $I_n=]-\frac{\pi}{2}+n\pi,\frac{\pi}{2}+n\pi[$. Soit nun entier naturel. $\forall x\in I_n, f'(x)=1+\tan^2(x)-1=\tan^2(x)\geq 0$. f' est positive sur l'intervalle I_n et ne s'annule qu'au poitn isolé $n\pi$. J'en déduis que f est strictement croissante sur I_n . Comme de plus, f est continue sur l'intervalle I_n . Donc , le TBCSM assure que $f(I_n)=]\lim_{x\to \left(\frac{\pi}{2}+n\pi\right)^+}f(x)$, $\lim_{x\to \left(\frac{\pi}{2}+n\pi\right)^-}f(x)$ [= $\mathbb R$ et f est bijective de I_n sur $\mathbb R$. Donc 0 admet un unique

antécédent u_n dans I_n par f. J'en conclus que l'équation $\tan(x) = x$ admet une seule solution u_n dans chaque intervalle I_n .

b. $\forall n, u_n \in I_n \text{ i. e.} -\frac{\pi}{2} + n\pi < u_n < \frac{\pi}{2} + n\pi$. Comme $\lim_{n \to +\infty} -\frac{\pi}{2} + n\pi = +\infty$, j'en déduis que $\lim_{n \to +\infty} u_n = +\infty$.

Dérivée $de f(x) = x \sin (Arctan(x))$

 $Df = \mathbb{R}, f$ est continue et dérivable sur \mathbb{R} (car son expression).

$$\mathsf{Et}\,\forall x,f'(x) = \underbrace{g(x) = \sin\bigl(\mathit{Arctan}(x)\bigr)} g(x) + xg'(x) = \sin\bigl(\mathit{Arctan}(x)\bigr) + x\mathit{Arctan}'(x)\mathit{sin}'\bigl(\mathit{Arctan}(x)\bigr)$$

$$f'(x) = \sin\left(Arctan(x)\right) + x\frac{1}{1+x^2}\cos\left(Arctan(x)\right) = \sin\left(Arctan(x)\right) + \frac{x}{1+x^2}\cos\left(Arctan(x)\right)$$

Or,
$$cos^2(t) = \frac{1}{1 + tan^2(t)}$$
 donc $cos^2(Arctan(x)) = \frac{1}{1 + tan^2(Arctan(x))} = \frac{1}{1 + x^2}$; et comme $Arctan(x) \in \left] - \frac{\pi}{2}, \frac{\pi}{2} \right[$, $cos(Arctan(x)) > 0$ et finalement $cos(Arctan(x)) = \frac{1}{\sqrt{1 + x^2}}$.

$$\mathsf{Enfin}\, \sin(t) = \tan(t) \times \cos(t) \, \mathsf{donc}\, \sin\bigl(\mathit{Arctan}(x)\bigr) = \tan(\mathit{Arctan}(x)) \times \cos(\mathit{Artan}(x)) = \frac{x}{\sqrt{1+x^2}}$$

Donc
$$f'(x) = \frac{x}{\sqrt{1+x^2}} + \frac{x}{1+x^2} \frac{1}{\sqrt{1+x^2}} = \frac{x}{\sqrt{1+x^2}} \left(\frac{2+x^2}{1+x^2}\right).$$