Suites particulières

L'axe réel est orienté et gradué, le plan est muni d'un repère orthonormé direct.

I. Suites explicites

- **1 Def** : Une suite u est dite explicite lorsqu'on connait une expression du terme u_n en fonction de n .
- **2 Exemples**: $u_n = (-1)^n n!$ ou $u_n = \frac{1}{n^3} \sum_{k=1}^n (2k-1)(2k)$

Parmi ces suites, on trouve les suites de la forme $u_n = f(n)$ où f fonction de $\mathbb R$ dans $\mathbb R$.

- **Prop :** Soit L un réel ou un infini et u telle que : $\forall n, u_n = f(n) \ où \ f$ fonction de $\mathbb R$ dans $\mathbb R$.
- $\underline{\operatorname{Si}}L = \lim_{x \to +\infty} f(x) \operatorname{\underline{alors}} L = \lim_{n \to +\infty} u_n.$
- Si f est monotone alors u est monotone de même monotonie que f.
- Si f est bornée alors u est bornée.

4NB: pour l'étude de ces suites $u_n = f(n)$, on pourra donc étudier f. Lorsque vous définissez f, indiquer clairement que sa variable est réelle en l'appelant x et non n, de façon à être autoriser à dériver f.

5Exemple : Soit $A = \{\left(1 + \frac{1}{n}\right)^n / n \in \mathbb{N}^*\}$. Déterminer sup A et inf A.

Posons $\forall n \in \mathbb{N}^*, u_n = \left(1 + \frac{1}{n}\right)^n$ et $\forall x \in [1, +\infty[, f(x) = \left(1 + \frac{1}{x}\right)^x]^{par\ def^\circ} e^{xln\left(1 + \frac{1}{x}\right)}$ et $h(x) = xln\left(1 + \frac{1}{x}\right)$.

 $h \text{ est dérivable sur } [1,+\infty[\text{ et } \forall x \in [1,+\infty[,h'(x)=\ln\left(1+\frac{1}{x}\right)-\frac{x}{x^2}\frac{1}{1+\frac{1}{x}}=\ln\left(1+\frac{1}{x}\right)-\left(\frac{1}{1+x}\right).\text{Or, } \forall t \geq 0, \ln(1+t) \geq t-\frac{t^2}{2}.\text{ Donc, } t \geq 0$

 $\forall x \in [1, +\infty[, h'(x) \ge \frac{1}{x} - \frac{1}{2x^2} - \frac{1}{x+1} = \frac{x-1}{2x^2(x+1)} > 0. \text{ Par conséquent, } h \text{ est strictement croissante sur l'intervalle } [1, +\infty[\text{ donc } f = exp \circ h \text{ est strictement croissante sur l'intervalle }] -1, +\infty[\text{ (comme composée de fonctions strictement croissantes)}. J'en déduis que la suite <math>u$ est aussi strictement croissante. Il en découle que $\inf(A) = \min(A) = u_1 = \frac{3}{2}$, $\sup(A) = \lim_{n \to +\infty} u_n$ et enfin A n'a pas de max. Calculons $\lim_{n \to +\infty} u_n$:

$$u_n = \left(1 + \frac{1}{n}\right)^n \stackrel{car \ 1 + \frac{1}{n} > 0}{=} e^{nln\left(1 + \frac{1}{n}\right)} = e^{\frac{ln\left(1 + \frac{1}{n}\right)}{\frac{1}{n}}}. \text{ Or, } \lim_{t \to 0} \frac{\ln\left(1 + t\right)}{t} = 1 \text{ donc par composition, } \lim_{n \to +\infty} \frac{\ln\left(1 + \frac{1}{n}\right)}{\frac{1}{n}} = 1. \text{ Ainsi, } \sup(A) = \lim_{n \to +\infty} u_n = e.$$

II. Suites récurrentes

6Def: Une suite u est dite récurrente lorsqu'il existe $p \in \mathbb{N}^*$ tel que u vérifie une relation qui exprime u_{n+p} en fonction de $u_n, u_{n+1}, \dots, u_{n+p-1}$. Une telle suite est dite récurrente d'ordre p.

Dans ce cas, pour déterminer les valeurs de tous les termes u_n , il faut et il suffit de connaître les valeurs de u_0, u_1, \dots, u_{n-1} .

NB : Une suite est récurrente d'ordre p est entièrement définie par sa relation de récurrence $\underline{\text{et}}$ ses p premiers termes.

8Ex : Soit u la suite définie par : $\forall n \in \mathbb{N}^*$, $u_{n+3} - n^2 u_{n+1} + ln(n)u_n = \sqrt{n}$ et $u_1 = 0$, $u_2 = 1$, $u_3 = -1$. Calculons u_4 et u_5 . Déterminons une autre suite vérifiant la même relation de récurrence .

9Parmi ces suites récurrentes, on retrouve les suites arithmétiques, géométriques, arithmético-géométriques, récurrentes linéaires d'ordre 2, périodiques, récurrentes d'ordre 1 de la forme $u_{n+1} = f(u_n)$... Cf ci-dessous !

III. Suites arithmétiques, géométriques - arithmético-géométriques (Rappel)

10Def: (u_n) est une suite arithmétique lorsqu'il existe un réel ou complexe b tel que : $\forall n \in \mathbb{N}$, $\underbrace{u_{n+1} = u_n + b}_{}$. b est sa raison.

relation de récurrence

- **11Prop**: Soit (u_n) est une suite arithmétique de raison b. Alors $\forall n \in \mathbb{N}$, $\underbrace{u_n = u_0 + nb}_{expression \ explicite}$ et $\lim_{n \to +\infty} u_n = \begin{cases} -\infty \ si \ b \ reel \ et \ b < 0 \\ +\infty \ si \ b \ réel \ et \ b > 0 \end{cases}$
- **12Def :** (u_n) est une suite géométrique lorsqu'il existe un réel ou complexe a tel que : $\forall n \in \mathbb{N}$, $u_{n+1} = au_n$. a est sa raison .
- **13Prop** : $Soit\ (u_n)$ est une suite géométrique de raison a . Alors $\forall n\in\mathbb{N}$, $u_n=u_0a^n$

$$\lim_{n \to +\infty} u_n = \begin{cases} 0 \text{ si } |a| < 1 \\ u_0 \text{ si } a = 1 \\ sgn(u_0) \infty \text{ si a réel et } a > 1 \text{ et } u_0 \neq 0 \end{cases} \text{ et } \sum_{k=0}^n u_k = \begin{cases} \frac{1-a^{n+1}}{1-a} u_0 \text{ si } a \neq 1 \\ (n+1)u_0 \text{ si } a = 1 \end{cases}$$

13 bis Exercice Soit $\forall n, S_n = \left(\sum_{k=1}^n \frac{(-1)^k}{k}\right)$. En remarquant que $\frac{1}{k} = \int_0^1 t^{k-1} dt$, montrer que $\lim_{n \to +\infty} S_n = -\ln{(2)}$.

- **14Def**: (u_n) est une suite arithmético-géométrique lorsqu'il existe deux réels ou cpxes a et b tel que : $\forall n \in \mathbb{N}$, $u_{n+1} = au_n + b$.
- **15Méthode**: On cherche alors LE réel L tel que : L = aL + b (i.e. la suite constante qui vérifie la même relation de récurrence) puis on montre que la suite $(u_n L)$ est géométrique de raison a. On peut alors écrire que : $u_n L = a^n(u_0 L)$.

IV. Suites récurrentes linéaires d'ordre 2

6Théo (admis pour l'instant):

On cherche toutes les suites $(h_n)_{n\in\mathbb{N}}\in\mathbb{C}^{\mathbb{N}}$ vérifiant $\forall n\in\mathbb{N}, h_{n+2}+ah_{n+1}+bh_n=0$ où a et b constantes.

Suite complexe : Soit a et b deux complexes fixés. Posons $(e.c): r^2 + ar + b = 0$ équation caractéristique

Si $\Delta_{e,c} \neq 0$ i. e. (e,c) a deux solutions complexes distinctes r_1 et r_2 alors les suites $(h_n)_{n \in \mathbb{N}}$ complexes vérifiant $\forall n \in \mathbb{N}$, $h_{n+2} + ah_{n+1} + bh_n = 0$ sont les suites de la forme $(\alpha r_1^n + \beta r_2^n)_{n \in \mathbb{N}}$ telles que α et β deux constantes complexes.

Si $\Delta_{e.c} = 0$ i. e. (e.c)a une solution complexe double r_0 alors les suites $(h_n)_{n \in \mathbb{N}}$ complexes vérifiant $\forall n \in \mathbb{N}$, $h_{n+2} + ah_{n+1} + bh_n = 0$ sont les suites de la forme $((\alpha + \beta n)r_0^n)_{n \in \mathbb{N}}$ telles que α et β deux constantes complexes.

Suite réelle : Soit a et b deux réels fixés . Posons (e.c): $r^2 + ar + b = 0$.

Si $\Delta_{e,c} > 0$ i. e. (e,c) a deux solutions réelles distinctes r_1 et r_2 alors les suites $(h_n)_{n \in \mathbb{N}}$ réelles vérifiant $\forall n \in \mathbb{N}$, $h_{n+2} + ah_{n+1} + bh_n = 0$ sont les suites de la forme $(\alpha r_1^n + \beta r_2^n)_{n \in \mathbb{N}}$ telles que α et β deux constantes réelles.

Si $\Delta_{e.c} = 0$ i.e. (e.c)a une solution réelle double r_0 alors les suites $(h_n)_{n \in \mathbb{N}}$ réelles vérifiant $\forall n \in \mathbb{N}, h_{n+2} + ah_{n+1} + bh_n = 0$ sont les suites de la forme $((\alpha + \beta n)r_0^n)_{n \in \mathbb{N}}$ telles que α et β deux constantes réelles.

Si $\Delta_{e.c} < 0$ i.e. (e.c)a deux solutions complexes conjuguées $r = |r|e^{i\theta}$ et \bar{r} alors les suites $(h_n)_{n \in \mathbb{N}}$ réelles vérifiant $\forall n \in \mathbb{N}$, $h_{n+2} + ah_{n+1} + bh_n = 0$ sont les suites de la forme $((\alpha\cos{(n\theta)} + \beta\sin{(n\theta)})|r|^n)_{n \in \mathbb{N}}$ telles que α et β deux constantes réelles.

17Rque: les constantes α et β se déterminent grâce aux valeurs des deux premiers termes de la suite: h_0 et h_1 .

18Def : (u_n) est une suite récurrente linéaire d'ordre 2 à coefficients constants lorsqu'il existe deux réels a et b et une suite v telle que : $\forall n \in \mathbb{N}, u_{n+2} + au_{n+1} + bu_n = v_n$.

19**NB :** Une telle suite est entièrement définie par la relation de récurrence et ses deux premiers termes .

20 Prop : Soit deux réels a et b et une suite v. On note E l'ensemble des suites u vérifiant : $\forall n \in \mathbb{N}$, $u_{n+2} + au_{n+1} + bu_n = v_n$. S'il existe une suite t telle que : $\forall n \in \mathbb{N}$, $t_{n+2} + at_{n+1} + bt_n = v_n$ alors les suites éléments de E sont toutes les suites de la forme: $(t_n + h_n)$ où h est une suite vérifiant $\forall n \in \mathbb{N}$, $h_{n+2} + ah_{n+1} + bh_n = 0$.

- <u>21 Méthode</u> pour étudier $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^\mathbb{N}$ tq $\forall n\in\mathbb{N}$, $u_{n+2}+au_{n+1}+bu_n=v_n$.
- 1. **Limite:** si $L = \lim_{n \to +\infty} u_n$ et $L' = \lim_{n \to +\infty} v_n$ et L + aL + bL n'est pas une FI alors L + aL + bL = L'.
- 2. Expression explicite de u:
 - a. Je cherche une suite t particulière vérifiant $\forall n \in \mathbb{N}, t_{n+2} + at_{n+1} + bt_n = v_n$. Bien souvent t «ressemble» à v.
 - b. J'applique le théorème précédent pour donner toutes les suites h vérifiant : $\forall n \in \mathbb{N}, h_{n+2} + ah_{n+1} + bh_n = 0$
 - c. La suite u est alors de la forme : u = h + t. (Cf chapitre application linéaire § équations linéaires)

22Exemples

1. Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^\mathbb{N}/u_0=1$ et $u_1=1$ $\forall n\in\mathbb{N}, u_{n+2}+2u_{n+1}+4u_n=0$. Déterminer u_n en fonction de n.

Posons (e.c): $r^2+2r+4=0$. Alors $\Delta_{(e.c)}=4-16=-12=i^22^2\sqrt{3}^2=\left(2\sqrt{3}i\right)^2et$ les solutions de (e.c) sont $r_1=-1+i\sqrt{3}=2e^{i\frac{2\pi}{3}}et$ $r_2=-1-i\sqrt{3}$. Donc, il existe deux constantes réelles α et β telles que $\forall n\in\mathbb{N}, u_n=\left(\alpha\cos\left(\frac{2n\pi}{3}\right)+\beta\sin\left(\frac{2n\pi}{3}\right)\right)2^n$. De plus, $u_0=1=\alpha$ et $u_1=1=\left(\alpha\cos\left(\frac{2\pi}{3}\right)+\beta\sin\left(\frac{2\pi}{3}\right)\right)2^n$. De plus, $u_0=1=\alpha$ et $u_1=1=1$ et $u_1=1=1$ et $u_2=1$ et $u_3=1$ e

La suite u est divergente car (u_{3n}) et (u_{3n+2}) tendent respectivement vers $+\infty$ et $-\infty$.

- 2. Trouver toutes les suites réelles vérifiant : $\forall n \in \mathbb{N}, u_{n+2} + 2u_{n+1} + u_n = e^n + n$.
- Cherchons d'abord Trouver toutes les suites réelles (h_n) vérifiant : $\forall n \in \mathbb{N}, h_{n+2} + 2h_{n+1} + h_n = 0$.

Posons (e,c): $r^2+2r+1=(r+1)^2=0$. Alors les suites (h_n) recherchées sont les suites $((\alpha+\beta n)(-1)^n)_{n\in\mathbb{N}}$.

- une suite v vérifiant: $(*) \forall n \in \mathbb{N}, v_{n+2} + 2v_{n+1} + v_n = e^n$. Cherchons cette suite de la forme $v_n = ae^n$ tq a cste réelle. Alors $\forall n \in \mathbb{N}, v_{n+2} + 2v_{n+1} + v_n = ae^{n+2} + 2ae^{n+1} + ae^n = (ae^2 + 2ae + a)e^n$. Donc pour que v vérifie (*), il suffit de choisir a tel que $ae^2 + 2ae + a = 1$. Donc, $a = \frac{1}{e^2 + 2e + 1} = \frac{1}{(e+1)^2}$ convient.
- ■CCL : les solutions de notre problème initial sont toutes les suites $((\alpha + \beta n)(-1)^n + \frac{e^n}{(e+1)^2} + \frac{1}{16}(4n-3))_{n \in \mathbb{N}}$.
- 3. Déterminer toutes les fonctions $f: \mathbb{R}^{+*} \to \mathbb{R}^{+*}$ telles que : $\forall x > 0, f(f(x)) = 6x f(x)$.

Analyse: supposons qu'il existe une fonction $f: \mathbb{R}^{+*} \to \mathbb{R}^{+*}$ telles que : $\forall x > 0, f(f(x)) = 6x - f(x)$.

Soit x>0 et $u_0=x$ et $\forall n\in\mathbb{N}, u_{n+1}=f(u_n)$. On montre facilement par récurrence que $\forall n\in\mathbb{N}, u_n$ existe et $u_n>0$. Alors, $\forall n\in\mathbb{N}, f\big(f(u_n)\big)=6u_n-f(u_n)$ i. e. $u_{n+2}+u_{n+1}-6u_n=0$. Posons (e.c): $r^2+r-6=(r-2)(r+3)=0$. Donc, il existe deux constantes réelles α et β telles que $\forall n\in\mathbb{N}, u_n=\alpha 2^n+\beta (-3)^n$.

Montrons par l'absurde que $\beta=0$. Imaginons un instant que $\beta\neq 0$. Alors comme |-3|>|2|, $2^n=o_{+\infty}((-3)^n)$ et par conséquent, puisque $\beta\neq 0$, $u_n\sim_{+\infty}\beta(-3)^n$. Cela implique que u_n change sans cesse de signe quand $n\to +\infty$ puisque c'est le cas de son équivalent. Or c'est

impossible puisque $\forall n \in \mathbb{N}, u_n > 0$. J'en déduis que $\beta = 0$ et $\forall n \in \mathbb{N}, u_n = \alpha 2^n$. De plus, $\alpha = u_0 = x$ donc $\forall n \in \mathbb{N}, u_n = x 2^n$. En particulier , $f(x) = u_1 = x 2^1 = 2x$.

CCL° de l'analyse : la seule candidate solution de notre problème est la fonction $(x \mapsto 2x)$.

Synthèse: Soit $f: \binom{\mathbb{R}^{+*} \to \mathbb{R}^{+*}}{x \mapsto 2x}$. Alors $\forall x > 0, f(f(x)) = f(2x) = 2(2x) = 6x - 2x = 6x - f(x)$ OK! Donc f est solution et d'après l'analyse f est l'unique solution de notre problème.

Remarque: $\forall n \in \mathbb{N}^*, \underbrace{f \circ f \circ f \dots \circ f}_{n \text{ fois}}$ existe et est une fonction de \mathbb{R}^{+*} dans \mathbb{R}^{+*} et $\forall n \in \mathbb{N}^*, u_n = \underbrace{f \circ f \circ f \dots \circ f}_{n \text{ fois}}(x)$.

V. Suites périodiques

23Def: (u_n) est une suite périodique lorsqu'il existe un entier naturel p non nul tel que : $\forall n \in \mathbb{N}$, $u_{n+p} = u_n$. p est une période de u.

24NB: Une suite p —périodique est une suite de la forme $u = \left(a_0, a_1, a_2, \dots, a_{p-1}, a_0, a_1, a_2, \dots, a_{p-1}, a_0, a_1, a_2, \dots, a_{p-1}, \dots\right)$ i.e. $u = a_0 u^{(0)} + a_1 u^{(1)} + a_2 u^{(2)} + \dots + a_{p-1} u^{(p-1)}$ où $u^{(l)} = \left(u_n^{(l)}\right)_{n \in \mathbb{N}}$ telle que $u_n^{(l)} = \begin{cases} 1 \text{ si } n \equiv l[p] \\ 0 \text{ si } n \not\equiv l[p] \end{cases}$.

25Ex : les suites 3-périodiques sont les suites de la forme $\forall n, u_n = \begin{cases} a \ si \ n \equiv 0 [3] \\ b \ si \ n \equiv 1 [3] \ \text{i.e.de la forme} : \\ c \ si \ n \equiv 2 [3] \end{cases}$

 $u = (a, b, c, a, b, c, a, b, c, a, \dots) = au^{(0)} + bu^{(1)} + bu^{(2)}$ $où \forall n, \quad u_n^{(0)} = \begin{cases} 1 & \text{si } n \equiv 0[3] \\ 0 & \text{si } n \equiv 1[3], u_n^{(1)} = \begin{cases} 0 & \text{si } n \equiv 0[3] \\ 1 & \text{si } n \equiv 1[3], u_n^{(2)} = \begin{cases} 0 & \text{si } n \equiv 1[3] \\ 0 & \text{si } n \equiv 2[3] \end{cases} \end{cases} = \begin{cases} 0 & \text{si } n \equiv 0[3] \\ 0 & \text{si } n \equiv 1[3]. \\ 1 & \text{si } n \equiv 2[3] \end{cases}$

- **26 Propriétés** Toute suite p —périodique prend au plus p valeurs distinctes, est bornée et ne tend jamais vers l'infini .
- 27 Théorème : Une suite périodique est convergente sietssi elle est constante.

VI. Suites récurrentes vérifiant une relation de la forme : $u_{n+1} = f(u_n)$

28Soit f une fonction de $\mathbb R$ dans $\mathbb R$ définie sur D. Soit u une suite réelle telle que : $\forall n \in \mathbb N, u_{n+1} = f(u_n)$. On dit que u est une suite récurrente associée à f.

SAlors $\forall n \in \mathbb{N}$, $u_{2n+3} = f \circ f(u_{2n+1})$ et $\forall n \in \mathbb{N}$, $u_{2n+2} = f \circ f(u_{2n})$ ie. (u_{2n}) et (u_{2n+1}) sont récurrentes associées à $f \circ f$.

1) **Définition de** u**:** pour que u soit bien défini il faut et il suffit que : $\forall n \in \mathbb{N}, u_n \in D$.

Prop: Si $f(D) \subset D$ et $u_0 \in D$ alors $\forall n \in \mathbb{N}, u_n \in D$ et u est bien définie.

31Désormais, $f(D) \subset D$ et $u_0 \in D$ donc u est bien définie .

Conséquence : Si D est bornée ou f est bornée (resp. majorée, minorée) sur D alors u est bornée (resp. majorée, minorée).

2) Limites possibles de u:

32Prop: Si $L = \lim_{n \to +\infty} u_n$ et $L' = \lim_{x \to L} f(x)$ alors L = L'. En particulier. Si $\lim_{n \to L} u_n = L$ réel et f est continue en L alors L = f(L) i.e. L est un point fixe de f.

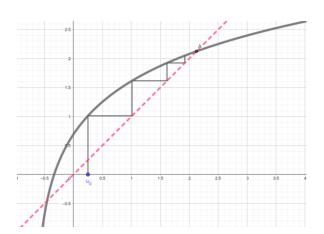
<u>3º Conséquence</u>: Si f est continue sur D et $\forall n \in \mathbb{N}$, $u_n \in D$ alors les limites possibles de u sont les points fixes de f dans D et les bords T, finis ou infinis, de D qui n'appartiennent pas à D et qui vérifient $\lim_{n \to \infty} f(x) = T$.

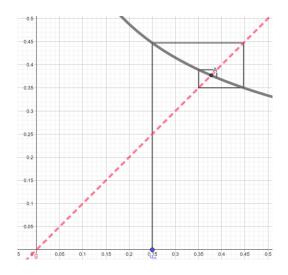
3) Monotonie de u:

34Prop: Si f est croissante alors u est monotone (croissante si $u_1 - u_0 = f(u_0) - u_0 \ge 0$ et décroissante si $u_1 - u_0 \le 0$ et lorsque u_0 n'est pas connu , on étudie le signe de g(x) = f(x) - x en fonction de x pour connaître le sens de monotonie suivant la valeur de u_0 .

35 Prop : Si f est décroissante alors les suites extraites (u_{2n}) et (u_{2n+1}) sont monotones de monotonie contraire. Lorsque la valeur de u_0 n'est pas connue, on doit étudier le signe de $h(x) = f \circ f(x) - x$ pour connaître le sens de monotonie.

36Illustration:





4) Cas où f est contractante i.e. lipschitzienne de rapport $M \in [0,1]$.

37Def: f est lipschitzienne sur D lorsqu'il un réel M tel que pour tous a et b de D, $|f(b) - f(a)| \le M|b - a|$. M est le rapport de Lipchitz de f. f est contractante sur D lorsqu'il un réel $M \in [0,1[$ tel que pour tous a et b de D, $|f(b) - f(a)| <math>\leq M|b - a|$ i.e. lorsque f est lipschitzienne de rapport strictement inférieur à 1. NB : toute fonction lipschitzienne sur D est continue sur D.

f 38A savoir démontrer : si f est f contractante sur D, de rapport M et L est un point fixe de f dans D alors L est l'unique point fixe $\operatorname{de} f \operatorname{sur} D \operatorname{et} \lim_{n \to \infty} u_n = L \operatorname{et} \forall n, |u_n - L| \leq M^n |u_0 - L|.$

Exemples:

1) Soit u une suite définie par : u_0 réel et $\forall n, u_{n+1} = \sqrt{1 + u_n^2}$. Etudiez la convergence de u et trouvez-en un équivalent simple. On miontre facilement par un récurrence simple que $\forall n \geq 1, u_n \geq 1$. De plus, $u_{n+1}^2 - u_n^2 = 1 > 0$. Donc $u_{n+1} > u_n$ et la suite u est strictement croissante. Donc u admet une limite L, réelle supérieure à 1 ou égale à $+\infty$.

Imaginons un instant que L soit réelle. Alors $L=\lim_{n\to+\infty}u_{n+1}=\lim_{n\to+\infty}\sqrt{1+u_n^{\ 2}}=\sqrt{1+L^2}$. Donc $L^2=1+L^2$ ce qui est impossible. Par conséquent, $L=+\infty$. Enfin, $\forall n\in\mathbb{N}, u_{n+1}^2-u_n^2=1$. Donc , $\forall n\in\mathbb{N}, \sum_{k=0}^{n-1}(u_{k+1}^2-u_k^2)=\sum_{k=0}^{n-1}1$ Donc, $u_n^2-u_0^2=n$. Ainsi, $u_n=\sqrt{n+u_0^2}\sim\sqrt{n}$.

2) Etudier la convergence de u telle que : $\forall n$, $u_{n+1} = u_n^2 + u_n$ et $u_0 = \alpha$ réel . Illustrer ce résultat.

 $\forall n, u_n \ existe \ et \ \forall n, \ u_{n+1} - u_n = u_n^2 \ge 0.$ Donc, (u_n) est croissante donc a une limite L réelle ou $L = +\infty$.

 $\text{Si } L \text{ est finie alors } L = \lim_{n \to +\infty} u_{n+1} = \lim_{n \to +\infty} u_n^2 + u_n = L^2 + L \text{ et par suite } L^2 = 0 \text{ donc } L = 0. \text{ Ainsi, 0 et } +\infty \text{ sont les seules limites possibles de } u.$

 $\forall n,\ u_{n+1}=u_n(u_n+1)=f(u_n)\ \text{où}\ f\colon \big(x\mapsto x(x+1)\big).$

 $f(]-\infty,-1[\cup]0,+\infty[)\subset\mathbb{R}^{+*}.\ \ \text{Donc, si}\ u_0\in]-\infty,-1[\cup]0,+\infty[,u_1\in\mathbb{R}^{+*}\ et\ \text{par cons\'equent}\ \lim_{n\to+\infty}u_n=+\infty.$

 $f(]-1,0[)\subset]-1,0[$. Donc, si $u_0\in]-1,0[$, $\forall n,\ u_n\in]-1,0[$ et par conséquent, $\lim_{n\to +\infty}u_n=0.$

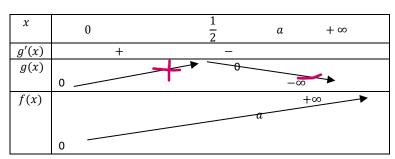
x	-8		- 1	$-\frac{1}{2}$	0		+ ∞
x + 1		-	0	+		+	
f(x)		+	0	$-\frac{1}{4}$	0	+	

Etudier la convergence de u telle que $u_0 \ge 0$ et $\forall n \in \mathbb{N}, u_{n+1} = ln(1+2u_n)$. Illustrer ce résultat.

 $\text{Soit } f\colon\! (x\mapsto \ln(1+2x)).\ f(\mathbb{R}^+) \subset \mathbb{R}^+ et\ u_0 \in \mathbb{R}^+\ \text{donc}\ \forall n\in\mathbb{N}, u_n \text{ existe et } u_n\geq 0.\ \text{Donc}\ u \text{ est minor\'ee}.$

Limites possibles de u: comme f est continue sur \mathbb{R}^+ et $\lim_{n \to \infty} f(x) = +\infty$ et $\forall n \in \mathbb{N}, u_n \in \mathbb{R}^+$, les limites possibles de u sont les points fixes de f sur \mathbb{R}^+ , s'ils existent, et $+\infty$. Cherchons les points fixes de f sur \mathbb{R}^+ . Posons g: $(x \mapsto f(x) - x)$. Alors g est continue et dérivable sur \mathbb{R}^+ et $\forall x \geq 0$, $g'(x) = \frac{2}{1+2x} - 1 = \frac{1-2x}{1+2x}$.

g s'annule donc une et une seule fois en un réel a et a > 1/2. Donc f admet un et un seul point fixe a.



f est strictement croissante (puisque $(x \mapsto 1 + 2x)$ et $\ln \log n$). Par conséquent n est monotone.

De plus, 1^{er} cas : $u_0 \in]0$, a[. Alors $g(u_0) \ge 0$ i. e. $u_1 - u_0 \ge 0$ donc u est croissante. De plus, $f(]0, a[) \subset]0$, a[. Donc $\forall n \in \mathbb{N}$, $u_n \in]0$, a[. Donc $\exists n \in \mathbb{N}$, a[. Donc $\exists n$ u est majorée et par suite u converge vers a la seule limite possible de u.

Et si $u_0 \in]a, +\infty[$ alors $g(u_0) < 0$ i. $e.u_1 - u_0 < 0$ donc u est décroissante. De plus, $f(]a + \infty[) \subset]a + \infty[$. Donc $\forall n \in \mathbb{N}, u_n \in]a + \infty[$. Donc u est minorée et par suite u converge vers a la seule limite possible de u.

si $u_0=0\;$ alors u est constante nulle. si $u_0=a\;$ alors u est constante égale à a.

Soit u la suite définie par $: u_0 \in \left[\frac{3}{4}, \frac{5}{4}\right]$ et $\forall n \in \mathbb{N}$, $u_{n+1} = 1 + \frac{1}{4}sin\frac{1}{u_n}$.

- a) Montrer que u est bien définie et que u n' a qu'une seule limite possible notée λ .
- b) Montrer que (u_{2n}) et (u_{2n+1}) sont monotones et convergentes.
- c) Prouver la convergence de la suite u.
- d) Montrer que $|u_n \lambda| \le \left(\frac{1}{2}\right)^{n+1}$
- e) Ecrire un programme en python qui prend en entrée un réel $\varepsilon > 0$ et qui retourne une valeur approchée de λ à ε près.

Soit $f: \left(x \mapsto 1 + \frac{1}{4} \sin\left(\frac{1}{x}\right)\right)$ $Df = \mathbb{R}^*$ et $f(\mathbb{R}^*) \subset \left[\frac{3}{4}, \frac{5}{4}\right]$ donc $f\left(\frac{3}{4}, \frac{5}{4}\right) \subset \left[\frac{3}{4}, \frac{5}{4}\right]$. Comme de plus, $u_0 \in \left[\frac{3}{4}, \frac{5}{4}\right]$, $\forall n \in \mathbb{N}$, u_n existe et $u_n \in \left[\frac{3}{4}, \frac{5}{4}\right]$. Donc u est bornée. Comme f est continue sur $\left[\frac{3}{4}, \frac{5}{4}\right]$, les limites possibles de u sont donc les points fixes de f dans $\left[\frac{3}{4}, \frac{5}{4}\right]$.

Posons $g: (x \mapsto f(x) - x)$. g est continue et dérivable sur $\left[\frac{3}{4}, \frac{5}{4}\right]$ et $\forall x \in \left[\frac{3}{4}, \frac{5}{4}\right]$, $g'(x) = f'(x) - 1 = -\frac{1}{4x^2}\cos\left(\frac{1}{x}\right) - 1 < 0$. Donc g est strictement décroissante sur $\left[\frac{3}{4}, \frac{5}{4}\right]$ tout comme f. De plus, $g\left(\frac{3}{4}\right) = 1 + \frac{1}{4}\sin\left(\frac{4}{3}\right) - \frac{3}{4} = \frac{1}{4}\left(1 + \sin\left(\frac{4}{3}\right)\right) > 0$ et $g\left(\frac{5}{4}\right) = 1 + \frac{1}{4}\sin\left(\frac{4}{5}\right) - \frac{5}{4} = \frac{1}{4}\left(\sin\left(\frac{4}{5}\right) - 1\right) < 0$. Donc g s'annule une et une seule fois sur $\left[\frac{3}{4}, \frac{5}{4}\right]$ en un réel λ .

Comme f est strictement décroissante sur $\left[\frac{3}{4}, \frac{5}{4}\right]$, (u_{2n}) et (u_{2n+1}) sont monotones de monotonie contraire. Comme elles sont extraites de u, elles sont bornées et par conséquent, elles sont convergentes.

Montrons que (u_{2n}) et (u_{2n+1}) convergent vers la même limite.

Comme (u_{2n}) et (u_{2n+1}) sont récurrentes associées à $f \circ f$,fonction continue sur $\left[\frac{3}{4}, \frac{5}{4}\right]$, les limites possibles de (u_{2n}) et (u_{2n+1}) sont les points fixes de $f \circ f$. Posons $h: (x \mapsto f \circ f(x) - x)$. h est continue et dérivable sur $\left[\frac{3}{4}, \frac{5}{4}\right]$ et $\forall x \in \left[\frac{3}{4}, \frac{5}{4}\right]$, h'(x) = f'(x)f'(f(x)) - 1.

Or,
$$\forall x \in \left[\frac{3}{4}, \frac{5}{4}\right]$$
, $|f'(x)| = \left|-\frac{1}{4x^2}\cos\left(\frac{1}{x}\right)\right| \le \frac{1}{4x^2} \le \frac{1}{4\left(\frac{3}{4}\right)^2} = \frac{4}{9}$. Donc, $|f'(x)f'(f(x))| \le \frac{16}{81}$ i.e. $-\frac{16}{81} \le f'(x)f'(f(x)) \le \frac{16}{81}$ et par conséquent, $h'(x) < \frac{1}{4}$

0. Donc h est strictement décroissante sur $\left[\frac{3}{4}, \frac{5}{4}\right]$. Donc h s'annule au plus une fois sur $\left[\frac{3}{4}, \frac{5}{4}\right]$. Or, $h(\lambda) = f(f(\lambda)) - \lambda = f(\lambda) - \lambda = 0$. Donc λ est l'unique point fixe de $f \circ f$ et donc l'unique limite possible de (u_{2n}) et de (u_{2n+1}) . Comme ces deux suites convergent, (u_{2n}) et (u_{2n+1}) converge vers λ .

$$\begin{aligned} |u_{n+1}-\lambda| &= |f(u_n)-f(\lambda)| = \left|\frac{1}{4}\sin\left(\frac{1}{u_n}\right) - \frac{1}{4}\sin\left(\frac{1}{\lambda}\right)\right| = \frac{1}{4}\left|\sin\left(\frac{1}{u_n}\right) - \sin\left(\frac{1}{\lambda}\right)\right| = \frac{1}{4}\left|2\sin\left(\frac{1}{2u_n} - \frac{1}{2\lambda}\right)\cos\left(\frac{1}{2u_n} + \frac{1}{2\lambda}\right)\right| \\ |u_{n+1}-\lambda| &= \frac{1}{2}\left|\sin\left(\frac{1}{2u_n} - \frac{1}{2\lambda}\right)\right|\left|\cos\left(\frac{1}{2u_n} + \frac{1}{2\lambda}\right)\right| \leq \frac{1}{2}\left|\sin\left(\frac{1}{2u_n} - \frac{1}{2\lambda}\right)\right| = \frac{1}{2}\left|\sin\left(\frac{\lambda-u_n}{2\lambda u_n}\right)\right| \leq \frac{1}{2}\left|\frac{\lambda-u_n}{2\lambda u_n}\right| = \frac{1}{4\lambda}\frac{1}{|u_n|} \quad |u_n-\lambda| \\ |u_{n+1}-\lambda| &\leq \frac{16}{4\times 9} \quad |u_n-\lambda| \leq \frac{4}{9} \quad |u_n-\lambda| \leq \frac{1}{2}|u_n-\lambda|. \end{aligned}$$

Alors, par récurrence, on montre alors $\forall n, |u_n - \lambda| \leq \underbrace{\frac{1}{2^n}|u_0 - \lambda|}_{\varepsilon_n} \leq \frac{1}{2^{n+1}}$. Comme $\left|\frac{1}{2}\right| < 1$, $\lim_{n \to +\infty} \frac{1}{2^n} = 0$ donc, $\lim_{n \to +\infty} \varepsilon_n = 0$ et par conséquent, on

retrouve bien $\lim_{n\to+\infty}u_n=\lambda$.

Programme de Python donnant une valeur approchée de la limite à e près :

from math import*

def approximation(e):

s=1 i=0

While 1/(2^i)>e:

s=1+sin(1/s)/4

i=i+1

print(s,i)

VII. Suites implicites

40 Déf : Une suite implicite est une suite dont le terme de rang n , u_n , est la solution d'une équation $\varphi_n(x)=0$ dans un intervalle I_n donné . u_n est alors entièrement défini par : $\begin{cases} \varphi_n(u_n)=0 \\ u_n \in I_n \end{cases}$.

41Exemples:

- **1**. Soit $n \ge 2$ et (E_n) l'équation $\sum_{k=1}^n x^k = 1$ d'inconnue x réelle.
 - a. Justifier que : pour tout $n \ge 2$, l'équation (E_n) admet une unique solution positive. On note λ_n cette solution.
 - b. Montrer que la suite (λ_n) est monotone et convergente.
 - c. Déterminer la limite de la suite (λ_n) .
 - a. Soit $n \geq 2$. φ_n : $(x \mapsto (\sum_{k=1}^n x^k) 1)$ est polynomiale donc continue et même de classe C^∞ sur \mathbb{R}^+ . De plus, φ_n est la somme de fonctions strictement croissantes : $(x \mapsto x 1), (x \mapsto x^2), \dots, (x \mapsto x^n)$. Donc φ_n est strictement croissante sur l'intervalle \mathbb{R}^+ . Donc, le TBCSM assure que φ_n est bijective de \mathbb{R}^+ sur $f(\mathbb{R}^+) = [f(0), \lim_{t \to \infty} f[t] = [-1, +\infty[t]]$. Alors comme $0 \in [-1, +\infty[t]]$, 0 admet un unique antécédent par φ_n . Ainsi, l'équation (E_n) admet une unique solution positive. Notons λ_n cette solution positive. De plus $\varphi_n(0) = -1$ et $\varphi_n(1) = n 1 > 0$. Donc $0 < \lambda_n < 1$.

Alors pour tout $n \ge 2$, $0 < \lambda_n < 1$ et $\sum_{k=1}^n (\lambda_n)^k = 1$ i. e. $\varphi_n(\lambda_n) = 0$. Ainsi, la suite (λ_n) existe et est bornée.

a. Soit $n \geq 2$. $\varphi_n(\lambda_n) = 0$ et $\varphi_{n+1}(\lambda_{n+1}) = 0$ i. e. $\sum_{k=1}^{n+1} (\lambda_{n+1})^k = 1$.

 $\text{Alors, } \varphi_n(\lambda_{n+1}) = [\sum_{k=1}^n (\lambda_{n+1})^k] - 1 = [\sum_{k=1}^{n+1} (\lambda_{n+1})^k] - \lambda_{n+1}^{-n+1} - 1 = \varphi_{n+1}(\lambda_{n+1}) - \lambda_{n+1}^{-n+1} = -\lambda_{n+1}^{-n+1} < 0 \ car \ 0 \leq \lambda_{n+1} < 1.$ Donc, $\varphi_n(\lambda_{n+1}) < \varphi_n(\lambda_n)$. Comme φ_n est strictement croissante sur \mathbb{R}^+ , $\lambda_{n+1} < \lambda_n$. Ainsi, la suite (λ_n) est strictement décroissante et bornée donc convergente. Notons L la limite de la suite (λ_n) . b. Soit $n \ge 2$. $\forall x \in [0,1[,\varphi_n(x)=(\sum_{k=1}^n x^k)-1=x\frac{1-x^n}{1-x}-1=\frac{-1+2}{1-x}]$ $\operatorname{Donc} \frac{-1 + 2\lambda_n - (\lambda_n)^{n+1}}{1 - \lambda_n} = 0 \text{ et par suite, } \operatorname{comme} \lambda_n > 0, \quad \frac{-1 + 2\lambda_n - e^{(n+1)\ln{(\lambda_n)}}}{1 - \lambda_n} = 0 \text{ et par suite } 2\lambda_n - 1 = e^{(n+1)\ln{(\lambda_n)}}; \text{ j'en déduis que } 1 > \lambda_n > 0, \quad \frac{-1 + 2\lambda_n - e^{(n+1)\ln{(\lambda_n)}}}{1 - \lambda_n} = 0$ 1/2 et comme la suite suite (λ_n) est décroissante, $1 > L \ge \frac{1}{2}$. Alors, $\lim_{n\to +\infty} (n+1)\ln(\lambda_n) = -\infty$ et ^par passage à la limite dans (**), $0 = \lim_{n\to +\infty} 2\lambda_n - 1e^{(n+1)\ln(\lambda_n)} = 2L - 1$ et ainsi, $L = \frac{1}{2}$. On définit la suite u par : pour tout entier naturel n, u_n est l'unique solution de l'équation $\tan(x) = x$ dans $\left| -\frac{\pi}{2} + n\pi, \frac{\pi}{2} + n\pi \right|$.

Justifier que $\forall n, u_n$ est bien défini. Représenter la suite u.

Etudier la monotonie et la limite de la suite u.

Montrer que $u_n - n\pi \sim_{+\infty} \frac{\pi}{2}$. c.

Déterminer des réels a, b et c tels que : $u_n = an + b + \frac{c}{n} + o_{+\infty} \left(\frac{1}{n}\right)$. d.

a. Soit $\varphi(x) = \tan(x) - x$. φ est continue et dérivable sur chaque intervalle $I_n = \left[-\frac{\pi}{2} + n\pi, \frac{\pi}{2} + n\pi \right]$.

 $\forall x \in I_n, \varphi'(x) = 1 + tan^2(x) - 1 = tan^2(x) \ge 0 \ et \ \varphi'(x) = 0 \Leftrightarrow x = n\pi. \ \text{Donc} \ \varphi' \ \text{ne s'annule qu'au point isolé} \ n\pi \ \text{de l'intervalle} \ I_n. \ \text{Donc} \ \varphi' \ \text{ne s'annule} \ \text{ne s'annule} \ \text{ne point isolé} \ n\pi \ \text{de l'intervalle} \ I_n. \ \text{Donc} \ \varphi' \ \text{ne s'annule} \ \text{ne point isolé} \ n\pi \ \text{de l'intervalle} \ I_n. \ \text{Donc} \ \varphi' \ \text{ne point isolé} \ n\pi \ \text{ne$ est continue et strictement croissante sur chaque intervalle $\,I_n.\,$

Donc φ est bijective de $I_n = \left] - \frac{\pi}{2} + n\pi, \frac{\pi}{2} + n\pi \right[\sup \varphi(I_n) = \lim_{\left(-\frac{\pi}{2} + n\pi\right)^+} \varphi$, $\lim_{\left(\frac{\pi}{2} + n\pi\right)^-} \varphi \right[= \mathbb{R}$. Alors 0 a un unique antécédent u_n par φ dans caque intervalle I_n . Ainsi, $\forall n, u_n$ est défini par : $\left\{ \begin{aligned} \tan(u_n) &= u_n \\ u_n &\in \left] - \frac{\pi}{2} + n\pi, \frac{\pi}{2} + n\pi \right[\end{aligned} \right\}.$

b. Soit $n \in \mathbb{N}$. $u_n \in \left] -\frac{\pi}{2} + n\pi, \frac{\pi}{2} + n\pi\right[$ et $u_{n+1} \in \left] -\frac{\pi}{2} + (n+1)\pi, \frac{\pi}{2} + (n+1)\pi\right[= \left] \frac{\pi}{2} + n\pi, \frac{3\pi}{2} + n\pi\right[$ Donc, $u_n < \frac{\pi}{2} + n\pi < u_{n+1}$. Ainsi, (u_n) est une suite strictement croissante. Et $\forall n, -\frac{\pi}{2} + n\pi < u_n$, comme $\lim_{n \to +\infty} -\frac{\pi}{2} + n\pi = +\infty$, $\lim_{n \to +\infty} u_n = +\infty$

 $\mathbf{c.} \ tan(u_n) = u_n \ et \ u_n \in \left] -\frac{\pi}{2} + n\pi, \frac{\pi}{2} + n\pi \right[\ donc \ . \ tan(u_n - n\pi) = u_n \ et \ u_n - n\pi \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right]. \ \text{Par conséquent, } u_n - n\pi = 0 \ \text{Par$

 $Arctan(u_n)$. Comme $\lim_{n \to +\infty} u_n = +\infty$, $\lim_{n \to +\infty} Arctan(u_n) = \frac{\pi}{2} \in \mathbb{R}^*$. J'en déduis que $u_n - n\pi \sim_{+\infty} \frac{\pi}{2}$.

d. Alors $u_n - n\pi = \frac{\pi}{2} + o_{+\infty}(1)$ donc $u_n = n\pi + \frac{\pi}{2} + o_{+\infty}(1)$ i.e. $u_n = n\pi + \frac{\pi}{2} + \varepsilon_n$ et $\lim_{n \to +\infty} \varepsilon_n = 0$.

Cherchons un équivalent de ε_n quand $n \to +\infty$.

 $u_n - n\pi = Arctan\left(n\pi + \frac{\pi}{2} + o_{+\infty}(1)\right) = \frac{\pi}{2} - Arctan\left(\frac{1}{n\pi + \frac{\pi}{2} + o_{+\infty}(1)}\right). \text{ Et } \frac{1}{n\pi + \frac{\pi}{2} + o_{+\infty}(1)} \sim_{+\infty} \frac{1}{n\pi} \underset{n \to +\infty}{\longrightarrow} 0 \text{ et } Arctan(t) \sim_{t \to 0} t \text{ donce} t \text{ donce$ $Arctan\left(\frac{1}{n\pi+\frac{\pi}{2}+o_{+\infty}(1)}\right) \sim_{n \to +\infty} \frac{1}{n\pi+\frac{\pi}{2}+o_{+\infty}(1)} \sim_{+\infty} \frac{1}{n\pi}. \text{ Donc, } Arctan\left(\frac{1}{n\pi+\frac{\pi}{2}+o_{+\infty}(1)}\right) = \frac{1}{n\pi} + o_{n \to +\infty}\left(\frac{1}{n\pi}\right) = \frac{1}{n\pi} + o_{n \to +\infty}\left(\frac{1}{n\pi$ Ainsi, $u_n - n\pi = \frac{\pi}{2} - \frac{1}{n\pi} + o_{n \to +\infty} \left(\frac{1}{n}\right)$ i.e. $u_n = \underbrace{\pi}_{=a} n + \underbrace{\frac{\pi}{2}}_{=b} + \underbrace{\left(\frac{-1}{\pi}\right)}_{=b} \frac{1}{n} + o_{n \to +\infty} \left(\frac{1}{n}\right).$

42Méthode: Etude d'une telle suite:

Définition: on fixe n arbitrairement, on écrit l'équation donnée sous la forme $\varphi_n(x) = 0$ et on vérifie que cette équation a bien une et une seule solution dans l'intervalle I_n : on étudie φ_n et on prouve que φ_n s'annule une et une seule fois sur I_n grâce au TVI et à la stricte monotonie ... (TBCSM).

On justifie ainsi que la suite (u_n) est bien définie .

NB: φ_n est parfois bijective sur I_n alors $0=\varphi_n(u_n)$ s'écrit $u_n=\varphi_n^{-1}(0)$. Il suffit alors d'étudier φ_n^{-1} au voisinage de 0.

- 2) **Monotonie:** a) les intervalles I_n permettent parfois de conclure directement. Sinon. b) on cherche le signe de $\varphi_n(u_{n+1})$ (en utilisant $\varphi_{n+1}(u_{n+1})=0$) et on utilise la monotonie de φ_n pour conclure . Si par exemple $\varphi_n(u_{n+1}) > 0 = \varphi_n(u_n)$ et φ_n décroissante alors $u_n > u_{n+1}$ et la suite (u_n) est décroissante .
- **Bornée :** a) les intervalles I_n permettent parfois de conclure directement . Sinon.
 - b) Par le TVI appliqué à φ_n entre deux valeurs bien choisies, on peut encadrer la suite .
- 4) Convergence: a) les intervalles I_n permettent parfois de conclure directement. b)Si l'on sait que u a une limite (parce que u monotone par exemple), on passe à la limite dans la relation $\varphi_n(u_n)=0$, il est parfois utile de la transformer et d'utiliser les propriétés de la suite (u_n) et notamment son caractère borné.
- Développement asymptotique : le plus souvent on l'obtient en plusieurs étapes :
 - a) On obtient un équivalent α_n de u_n pour n au voisinage de $+\infty$ en utilisant des développements limités et équivalents usuels dans la relation $\varphi_n(u_n) = 0$. On pose alors :

 $u_n = \alpha_n + \varepsilon_n$ tel que $\varepsilon_n = o_{+\infty}(\alpha_n)$

b) On obtient un équivalent δ_n de ε_n pour n au voisinage de $+\infty$ en réinjectant dans $\varphi_n(\alpha_n + \varepsilon_n) = 0$ utilisant des développements limités et équivalents usuels dans la relation $\varphi_n(u_n) = 0$ On pose alors :

 $\varepsilon_n = \delta_n + \mu_n \text{ tel que } \mu_n = o_{+\infty}(\varepsilon_n)$

Et on recommence !!!!

NB: D'autres méthodes sont souvent suggérées par l'énoncé. Laissez-vous guider.