Corrigé du TD Limites et continuité

I De la technique

Ex 1 Etudier l'existence de la limite de f en a et le cas échéant, la valeur de cette limite dans les cas suivants :

1.
$$f(x) = [2x - 3], a \in \mathbb{R}$$
.

2.
$$f(x) = x \left| \frac{1}{x} \right|, \ a = +\infty \ puis \ a = 0$$

2.
$$f(x) = x \left| \frac{1}{x} \right|$$
, $a = +\infty$ puis $a = 0$.
3. $f(x) = \frac{|x^3 - (a+1)x + a|}{\sqrt{x} - \sqrt{a}}$, $a \in \mathbb{R}^+$

4.
$$f(x) = \sin\left(x\left|\frac{\pi}{x}\right|\right)$$
, $a = 0$

5.
$$f(x) = (-1)^{|x|}, a = +\infty$$

6.
$$f(x) = \sin \sqrt{x+1} - \sin \sqrt{x}, \ \alpha = +\infty$$

7.
$$f(x) = Arctan(x) \cos\left(\frac{1}{x+1}\right)$$
, $a = -1$

8.
$$f(x) = (x^2 - 4)\cos(\ln(2 - x))$$
, $\alpha = 2$

7.
$$f(x) = \operatorname{Arctan}(x) \cos\left(\frac{1}{x+1}\right), \ a = -1$$

8. $f(x) = (x^2 - 4) \cos(\ln(2 - x)), \ a = 2$
4. $f(x) = \sin(x \lfloor \pi/x \rfloor) \ \forall x \neq 0, \frac{\pi}{x} - 1 < \left\lfloor \frac{\pi}{x} \right\rfloor \leq \frac{\pi}{x}$

e limite dans les cas suivants :

9.
$$f(x) = \frac{\cos^n x - n\cos(x) + n - 1}{Arcsin^4 x}$$
 et $a = 0$ où $n \in \mathbb{N} \setminus \{0,1\}$

10. $(2^x + 3^x - 12)^{tan\frac{\pi x}{4}}$, $a = 2$

11. $\frac{a^x - x^a}{x^x - a^a}$, $a \in \mathbb{R}^{+*}$

10.
$$(2^x + 3^x - 12)^{\tan \frac{\pi x}{4}}$$
, $a = 2$

11.
$$\frac{a^x-x^a}{x^x-a^a}$$
, $a \in \mathbb{R}^{+*}$

12.
$$f(x) = \frac{x^x}{|x|^{|x|}}, \ a = +\infty$$

12.
$$f(x) = \frac{x^x}{|x|^{|x|}}, a = +\infty$$

13. $\frac{Arctan(2sinx) - \frac{\pi}{4}}{\cos(3x)}, a = \frac{\pi}{6}$

Donc, si x > 0 alors $\pi - x < x \left\lfloor \frac{\pi}{x} \right\rfloor \le \pi$ et par conséquent, $\lim_{x \to 0^+} x \left\lfloor \frac{\pi}{x} \right\rfloor = \pi$ $donc \lim_{x \to 0^+} \sin \left(x \left\lfloor \frac{\pi}{x} \right\rfloor \right)$ $\stackrel{car \sin est}{=} \sin(\pi) = 0$.

Et, si x < 0 alors $\pi - x > x \left\lfloor \frac{\pi}{x} \right\rfloor \ge \pi$ et par conséquent, $\lim_{x \to 0^-} x \left\lfloor \frac{\pi}{x} \right\rfloor = \pi \ donc \ \lim_{x \to 0^-} \sin \left(x \left\lfloor \frac{\pi}{x} \right\rfloor \right) \overset{\text{continue on } \pi}{\cong} \sin(\pi) = 0.$

J'en conclus que $\lim_{x\to 0} \sin\left(x \left\lfloor \frac{\pi}{x} \right\rfloor\right) = 0$.

$$6. f(x) = \sin \sqrt{x+1} - \sin \sqrt{x} = 2 \sin \left(\frac{\sqrt{x+1} - \sqrt{x}}{2}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{x+1-x}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{x+1} + \sqrt{x}\right) = 2 \sin$$

 $6. f(x) = \sin \sqrt{x+1} - \sin \sqrt{x} = 2 \sin \left(\frac{\sqrt{x+1} - \sqrt{x}}{2}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{x+1-x}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin \left(\frac{\sqrt{x+1} + \sqrt{x}}{2}\right) = 2 \sin$ conclure que $\lim \sin \sqrt{x+1} - \sin \sqrt{x} = 0$.

12.Soit
$$x > 1$$
. $Donc[x] \ge 1$ et $\ln(x)$ et $\ln(\lfloor x \rfloor)$ existent.
Alors $f(x) = \frac{x^x}{|x|^{|x|}} = \frac{e^{x \ln(x)}}{e^{|x| \ln(|x|)}} = e^{x \ln(x) - \lfloor x \rfloor \ln(\lfloor x \rfloor)}$. Posons $h(x) = x \ln(x) - \lfloor x \rfloor \ln(\lfloor x \rfloor)$. $\forall n \in \mathbb{N}^*, h(n) = n \ln(n) - n \ln(n) = 0$ et par suite $\lim_{n \to +\infty} f(n) = 1$.

Et
$$h\left(n+\frac{3}{4}\right) = \left(n+\frac{3}{4}\right) ln\left(\left(n+\frac{3}{4}\right)\right) - nln(n) = \left(n+\frac{3}{4}\right) ln\left(n\left(1+\frac{3}{4n}\right)\right) - nln(n) = nln(n) + \left(n+\frac{3}{4}\right) ln\left(1+\frac{3}{4n}\right) + \frac{3}{4} ln(n) - nln(n) = \left(n+\frac{3}{4}\right) ln\left(1+\frac{3}{4n}\right) + \frac{3}{4} ln(n)$$
. Or, $\left(n+\frac{3}{4}\right) \sim_{+\infty} n$ et $ln\left(1+\frac{3}{4n}\right) \sim_{+\infty} \frac{3}{4n}$. Donc, $\left(n+\frac{3}{4}\right) ln\left(1+\frac{3}{4n}\right) \sim_{+\infty} \frac{3}{4}$.

Par conséquent, $\lim_{n \to +\infty} h\left(n + \frac{3}{4}\right) = +\infty$ et par suite $\lim_{n \to +\infty} f\left(n + \frac{3}{4}\right) = +\infty$.

Comme $\lim_{n \to +\infty} \left(n + \frac{3}{4}\right) = \lim_{n \to +\infty} n = +\infty$ et $\lim_{n \to +\infty} f\left(n + \frac{3}{4}\right) = +\infty \neq 1 = \lim_{n \to +\infty} f(n)$, nous pouvons conclure que f n'a pas de limite en $+\infty$.

 $13.f(x) = \frac{Arctan(2\sin(x)) - \frac{\pi}{4}}{\cos(3x)}, \text{ limite en } a = \frac{\pi}{6}.$

Posons $N(x) = Arctan(2\sin(x)) - \frac{\pi}{4}$ et $D(x) = \cos(3x)$. N et D sont dérivables en $\frac{\pi}{6}$ et $N'\left(\frac{\pi}{6}\right) = \frac{2\cos\left(\frac{\pi}{6}\right)}{1+4\sin^2\left(\frac{\pi}{6}\right)} = \frac{\sqrt{3}}{2} \neq 0$ et $D'\left(\frac{\pi}{6}\right) = \frac{\pi}{6}$

$$-3\sin\left(3\frac{\pi}{6}\right) = -3 \neq 0. \text{ Donc } N(x) = N(x) - N\left(\frac{\pi}{6}\right) \sim \frac{\pi}{6} \frac{\sqrt{3}}{2} \left(x - \frac{\pi}{6}\right) \text{ et } D(x) = D(x) - D\left(\frac{\pi}{6}\right) \sim \frac{\pi}{6} - 3\left(x - \frac{\pi}{6}\right).$$

Ainsi, $f(x) \sim \frac{\pi}{6} \frac{\frac{\sqrt{3}}{2}}{-3} et \lim_{x \to \frac{\pi}{2}} \frac{Arctan(2\sin(x)) - \frac{\pi}{4}}{\cos(3x)} = \frac{1}{-2\sqrt{3}}$

II Définition et propriétés de la limite, de la continuité

Ex 2 Soit $f: \mathbb{R}^+ \to \mathbb{R}$ telle que :

- ■il existe un réel a tel que $\lim_{x \to +\infty} e^{ax} f(x) = 0$
- ■il existe un réel b tel que $(x \mapsto e^{bx}f(x))$ ne tend pas vers 0 quand $x \to +\infty$.
- Justifier l'existence du réel $\lambda = \sup\{c \in \mathbb{R} / \lim_{x \to +\infty} e^{cx} f(x) = 0\}$.
- Montrer que $\forall \varepsilon > 0$, $\lim_{x \to +\infty} e^{(\lambda \varepsilon)x} f(x) = 0$
- Montrer que $\forall \varepsilon > 0$, $(x \mapsto e^{(\lambda + \varepsilon)x}|f(x)|)$ n'est majorée sur aucun voisinage de $+\infty$. **1.** Soit $E = \{c \in \mathbb{R} / \lim_{x \to +\infty} e^{cx} f(x) = 0\}$. E est non vide d'après \blacksquare . Montrons que E majore E. Soit E so it E

Alors $e^{cx}f(x)=e^{(c-b)x}e^{bx}f(x)$. Comme (c-b)>0, $\lim_{x\to +\infty}e^{(c-b)x}=+\infty$.

Comme $(x \mapsto e^{bx} f(x))$ ne tend pas vers 0 quand $x \to +\infty$, il existe un réel $\varepsilon > 0$ tel que : $\forall A > 0$, $\exists x \ge A/\left|e^{bx} f(x)\right| > \varepsilon$ et par conséquent $\forall A > 0, \exists x \ge A/e^{(c-b)x}e^{bx}|f(x)| > e^{(c-b)x}\varepsilon > \varepsilon$. Cela prouve que $e^{cx}f(x) = e^{(c-b)x}e^{bx}f(x)$ ne tend pas vers 0 quand $x \to +\infty$. Donc

Ainsi, tout élément de E est inférieur à b. Donc E est majoré par b.

J'en déduis que $\lambda = \sup\{c \in \mathbb{R} / \lim_{x \to \infty} e^{cx} f(x) = 0\}$ existe et est finie.

Soit $\varepsilon > 0$. $\lambda - \varepsilon$, étant inférieur à λ , le plus petit majorant de E, ne majore pas E. Donc il existe $c \in E$ tel que $\lambda - \varepsilon < c$. Alors $e^{(\lambda-\varepsilon)x}f(x) = \underbrace{e^{(\lambda-\varepsilon-c)x}}_{\underset{x\to 0}{\longrightarrow} 0} \underbrace{e^{cx}f(x)}_{\underset{x\to 0}{\longrightarrow} 0} \xrightarrow[x\to 0]{0}.$

3. Soit $\varepsilon > 0$. Alors $\lambda + \frac{\varepsilon}{2} > \lambda$ donc $\lambda + \frac{\varepsilon}{2} \notin E$. Donc, $\left(x \mapsto e^{\left(\lambda + \frac{\varepsilon}{2}\right)x} f(x)\right)$ ne tend pas tend vers 0 quand $x \to +\infty$.

Imaginons un instant que $(x \mapsto e^{(\lambda + \varepsilon)x} |f(x)|)$ soit majorée par un réel M sur un voisinage V de $+\infty$.

Alors, $\forall x \in V, e^{(\lambda + \varepsilon)x} |f(x)| = e^{\left(\frac{\varepsilon}{2}\right)x} e^{\left(\lambda + \frac{\varepsilon}{2}\right)x} |f(x)| \le M \ donc \ 0 \le e^{\left(\lambda + \frac{\varepsilon}{2}\right)x} |f(x)| \le M e^{-\left(\frac{\varepsilon}{2}\right)x}$. Comme $\lim_{x \to +\infty} e^{-\left(\frac{\varepsilon}{2}\right)x} = 0 \ \left(car \frac{\varepsilon}{2} > e^{\left(\lambda + \frac{\varepsilon}{2}\right)x} |f(x)| \le M e^{-\left(\frac{\varepsilon}{2}\right)x} = 0$

0), $\lim_{x\to 0} e^{\left(\lambda + \frac{\varepsilon}{2}\right)x} |f(x)| = 0$ et par suite $\lim_{x\to 0} e^{\left(\lambda + \frac{\varepsilon}{2}\right)x} f(x) = 0$ ce qui est exclu. Donc, $(x \mapsto e^{(\lambda + \varepsilon)x} | f(x) |)$ n'est majorée sur aucun voisinage V de $+\infty$.

Ex 3 Soit f une fonction de classe C^1 sur \mathbb{R}^+ et telle que $\lim_{x \to +\infty} f(x) + f'(x) = 0$.

- 1. On pose h(x) = f(x) + f'(x). f est donc solution sur \mathbb{R}^+ de l'edl1 (E): y' + y = h(x). Montrer qu'il existe une constante réelle c telle que : $\forall x \ge 0, f(x) = e^{-x} \int_0^x h(t)e^t dt + ce^{-x}$.
- En déduire que $\lim_{x\to +\infty} f(x) = 0$. (NB : si φ est continue sur [a,b] alors $\left|\int_a^b \varphi(t)dt\right| \leq \int_a^b |\varphi(t)|dt$).
- Les solutions de (EH)sont toutes les fonctions $(x \mapsto ce^{-x})$ tq c constante réelle. De plus, h est continue sur \mathbb{R}^+ donc g: $(t \mapsto h(t)e^t)$ l'est aussi et par conséquent, $G: (x \mapsto \int_0^x h(t)e^t dt)$ est la primitive de g sur \mathbb{R}^+ qui s'annule en 0 et est donc de classe C^1 sur \mathbb{R}^+ . Par conséquent, $B: (x \mapsto e^{-x}G(x))$ est de classe C^1 sur \mathbb{R}^+ et $\forall x \ge 0, B'(x) = -e^{-x}G(x) + e^{-x}G'(x) = -B(x) + e^{-x}g(x) = -B(x) + h(x)$. J'en conclus que B est une solution particulière de (E). Ainsi, f est de la forme $(x \mapsto B(x) + ce^{-x})$ tq c constante réelle. Autrement dit, il existe une constante réelle c telle que : $\forall x \ge 0, f(x) = e^{-x} \int_0^x h(t)e^t dt + ce^{-x}$.
 - 2. Soit $\varepsilon \in \mathbb{R}^{+*}$.

 $\forall x \geq 0, |f(x)| = \left|e^{-x} \int_0^x h(t)e^t dt + ce^{-x}\right| \leq \left|e^{-x} \int_0^x h(t)e^t dt\right| + \left|ce^{-x}\right| = e^{-x} \left|\int_0^x h(t)e^t dt\right| + e^{-x}|c| \leq e^{-x} \int_0^x |h(t)e^t| dt + e^{-x}|c|.$ Comme $\lim_{x\to +\infty} h(x) = 0$, il existe un réel A tel que : $\forall t \geq A$, $|h(t)| \leq \frac{\varepsilon}{2}$. Alors, $\forall t \geq A$, $|h(t)|e^t \leq \frac{\varepsilon}{2}e^t$ et par croissance de l'opérateur intégral, $\textstyle \int_A^x |h(t)| e^t \, dt \leq \int_A^x \frac{\varepsilon}{2} e^t \, dt = \frac{\varepsilon}{2} [e^x - e^A] \leq \frac{\varepsilon}{2} e^x \, et \text{ enfin, } e^{-x} \int_A^x |h(t)e^t| dt \leq \frac{\varepsilon}{2}.$ $e^{-x} \int_0^x |h(t)e^t| dt + e^{-x} |c| = e^{-x} \left[\int_0^A |h(t)e^t| dt + \int_A^x |h(t)e^t| dt \right] + e^{-x} |c| \le e^{-x} \left[\int_0^A |h(t)e^t| dt + |c| \right] + \frac{\varepsilon}{2}.$ $\mathsf{Comme}\left[\int_0^A |h(t)e^t|dt + |c|\right] \text{ est une constante (indépendante de } x), \lim_{x \to +\infty} e^{-x}\left[\int_0^A |h(t)e^t|dt + |c|\right] = 0. \text{ Donc il existe un réel } B > 0 \text{ tel que le position of the properties of$ $\forall x \geq B, e^{-x} \left[\int_0^A |h(t)e^t| dt + |c| \right] \leq \frac{\varepsilon}{2}. \text{ Alors } \forall x \geq \max(A,B), e^{-x} \int_0^x |h(t)e^t| dt + e^{-x} |c| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \text{ } et \text{ } ainsi, |f(x)| \leq \varepsilon.$

Ex 4 Soit f et g deux fonctions continues sur [-1,1]. On définit, pour tout réel x, $M(x) = \sup \{f(t) + xg(t)/t \in [-1,1]\}$.

- Expliciter M(x) lorsque $f(t) = \sqrt{1 t^2}$ et g(t) = t.
- Montrer que $M: \mathbb{R} \to \mathbb{R}$ est bien définie.
- Montrer que $\forall h > 0, \forall x \in \mathbb{R}, \ M(x) + h \times inf_{[-1,1]}g \leq M(x+h) \leq M(x) + h \times sup_{[-1,1]}g.$
- En déduire que M est continue sur \mathbb{R} .
 - 1. Soit x un réel positif et φ : $(t \mapsto \sqrt{1-t^2} + xt)$. φ est définie et continue sur [-1,1] et φ est au moins dérivable sur]-1,1[.

Et
$$\forall t \in]-1,1[,\varphi'(t)=-\frac{t}{\sqrt{1-t^2}}+x=\frac{x\sqrt{1-t^2}-t}{\sqrt{1-t^2}}.$$

$$\operatorname{Donc}, \varphi'(t) > 0 \Leftrightarrow x\sqrt{1-t^2} - t > 0 \Leftrightarrow x\sqrt{1-t^2} > t \overset{\operatorname{car} \, x \geq 0}{\Longleftrightarrow} \begin{cases} tjs \, \operatorname{vrai} \, \operatorname{si} \, t \in] -1,0[\\ x^2(1-t^2) > t^2 \operatorname{si} \, t \in [0,1[]] \end{cases}$$

 $\text{J'en d\'eduis que } M(x) = \sup \ \left\{ \varphi(t)/t \in [-1,1] \right\} = \max_{[-1,1]} \varphi = \varphi\left(\frac{x}{\sqrt{1+x^2}}\right) = \sqrt{1-\frac{x^2}{1+x^2}} + \frac{x^2}{\sqrt{1+x^2}} = \frac{1}{\sqrt{1+x^2}} (1+x^2) = \sqrt{1+x^2}.$

Soit x un réel strictement négatif .

$$M(x) = \sup \left\{ \sqrt{1 - t^2} + xt/t \in [-1, 1] \right\} \underset{t' = -t}{\overset{en \, posant}{=}} \sup \left\{ \sqrt{1 - (-t')^2} - xt'/t' \in [-1, 1] \right\}$$

$$M(x) = \sup\{\sqrt{1 - t'^2} - xt'/t' \in [-1,1]\} = M(-x) = \sqrt{1 + (-x)^2} = \sqrt{1 + x^2}.$$

$$donc on peut appliquer$$

$$le résultat précédent$$

 $CCL: \forall x \in \mathbb{R}, M(x) = \sqrt{1 + x^2}$

Soit x un réel positif et φ_x : $(t \mapsto f(t) + xg(t))$. f et g étant continue sur [-1,1], la combinaison linéaire $\varphi_x = f + xg$ est aussi continue sur le segment [-1,1]. Par conséquent, φ_x est bornée et atteint ses bornes sur [-1,1]. Ainsi $\sup_{j=1,1}\varphi_x$ existe, est finie et $\sup_{[-1,1]} \varphi_x = \max_{[-1,1]} \varphi_x = \varphi_x(c) \text{ où } c \in [-1,1].$

 $\mathsf{Remarque}: sup_{[-1,1]}g = \ max_{[-1,1]}g \ et \ inf_{[-1,1]}g = \ min_{[-1,1]}g \ \text{existent de la même façon et de même pour } f.$

- Soit $x \in \mathbb{R}$ *et* $h \in \mathbb{R}^{+*}$. 3.
- $\forall t \in [-1,\!1] \text{ , } \inf_{[-1,\!1]} g \leq g(t) \leq \sup_{[-1,\!1]} g \text{ . Donc } h \times \inf_{[-1,\!1]} g \leq h \times g(t) \leq h \times \sup_{[-1,\!1]} g \text{ . }$ $et \ f(t) + x \times g(t) + h \times inf_{[-1,1]}g \leq f(t) + x \times g(t) + h \times g(t) \leq f(t) + x \times g(t) + h \times sup_{[-1,1]}g \leq f(t) + x \times g(t) + h \times sup_{[-1,1]}g \leq f(t) + x \times g(t) + h \times sup_{[-1,1]}g \leq f(t) + x \times g(t) + h \times g(t) \leq f(t) + x \times g(t) + h \times sup_{[-1,1]}g \leq f(t) + x \times g(t) + h \times g(t) \leq f(t) + x \times g(t) + h \times sup_{[-1,1]}g \leq f(t) + x \times g(t) + h \times g(t) \leq f(t) + x \times g(t) + h \times sup_{[-1,1]}g \leq f(t) + x \times g(t) + h \times g(t) \leq f(t) + x \times g(t) + h \times sup_{[-1,1]}g \leq f(t) + x \times g(t) + h \times sup_{[-1,1]}g \leq f(t) + x \times g(t) + h \times sup_{[-1,1]}g \leq f(t) + x \times g(t) + h \times g(t) \leq f(t) + x \times g(t) + h \times sup_{[-1,1]}g \leq f(t) + x \times g(t) + h \times g(t) \leq f(t) + x \times g(t) + h \times sup_{[-1,1]}g \leq f(t) + x \times g(t) + h \times sup_{[-1,1]}g \leq f(t) + x \times g(t) + h \times sup_{[-1,1]}g \leq f(t) + x \times g(t) + h \times sup_{[-1,1]}g \leq f(t) + x \times g(t) + h \times sup_{[-1,1]}g \leq f(t) + x \times g(t) + h \times g(t) + h \times g(t) \leq f(t) + x \times g(t) + h \times g(t) + h \times g(t) \leq f(t) + x \times g(t) + h \times g(t) + h \times g(t) \leq f(t) + x \times g(t) + h \times g(t) + h \times g(t) \leq f(t) + x \times g(t) + h \times g(t) + h \times g(t) \leq f(t) + h \times g(t) + h \times g(t) + h \times g(t) \leq f(t) + h \times g(t) + h \times g(t) + h \times g(t) + h \times g(t) \leq f(t) + h \times g(t) + h \times g($ Donc, $\forall t \in [-1,1] \ \varphi_{x}(t) + h \times inf_{[-1,1]}g \le \varphi_{x+h}(t) \le \varphi_{x}(t) + h \times sup_{[-1,1]}g$

D'une part, $\forall t \in [-1,1], \varphi_x(t) \leq M(x)$ (puisque M(x) est un majorant de φ_x).

Alors, $\forall t \in [-1,1]$, $\varphi_{x+h}(t) \leq M(x) + h \times \sup_{[-1,1]} g$. Cela signifie que le réel $M(x) + h \times \sup_{[-1,1]} g$, réel indépendant de t, est un majorant sur [-1,1] de la fonction φ_{x+h} : $(t \mapsto f(t) + (x+h) \times g(t))$. Comme M(x+h) est par définition le plus petit majorant de φ_{x+h} sur [-1,1], nécessairement, $M(x + h) \le M(x) + h \times \sup_{[-1,1]} g$.

 $\text{D'autre part, } \forall t \in [-1,1], \varphi_{x+h}(t) \leq M(x+h) \text{ donc, } \forall t \in [-1,1], \varphi_x(t) + h \times \inf_{[-1,1]} g \\ \leq M(x+h) \text{ } et \text{ } \varphi_x(t) \leq M(x+h) - 1 \text{ } et \text{ } \varphi_x(t) \\ \leq M(x+h) \text{ }$ $h imes inf_{[-1,1]}g$. Cela signifie que le réel $M(x+h)-h imes inf_{[-1,1]}g$ est un majorant de φ_x : $(t \mapsto f(t)+xg(t))$ sur [-1,1]. Donc nécessairement ce majorant est supérieur au plus petit majorant M(x) de φ_x sur [-1,1]. Autrement dit, $M(x) \le M(x+h) - h \times inf_{[-1,1]}g$. Ainsi $M(x) + h \times inf_{[-1,1]}g \le M(x+h)$.

4. Soit $x \in \mathbb{R}$ fixé.

<u>A droite:</u> $\forall h > 0, M(x) + h \times inf_{[-1,1]}g \leq M(x+h) \leq M(x) + h \times sup_{[-1,1]}g$. Appliquons le théorème de limite par encadrement quand $h \to 0^+$, $\lim_{h \to 0^+} M(x) + h \times \sup_{[-1,1]} g = M(x) = \lim_{h \to 0^+} M(x) + h \times \inf_{[-1,1]} g$, j'en déduis que $\lim_{h \to 0^+} M(x+h) = M(x)$. Cela signifie que M est continue à droite en x.

<u>A gauche</u>: on montre de même que: $\forall h < 0, M(x) + h \times sup_{[-1,1]}g \le M(x+h) \le M(x) + h \times inf_{[-1,1]}g$ et par encadrement, $\lim_{h\to 0^-} M(x+h) = M(x)$. Cela signifie que M est continue à gauche en x.

J'en conclus que f est continue en x. Et ainsi f est continue sur \mathbb{R} .

III Caractérisation séquentielle

Ex 5 Soit $f: \left(x \mapsto \begin{cases} x - 1 \text{ si } x \in \mathbb{Q} \\ x + 1 \text{ si } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}\right)$. Montrer que f est bijective et discontinue en tout point. Décrire f^{-1} .

 $\blacksquare Si \ x \in \mathbb{Q} \ \text{alors} \ f(x) = x - 1 \in \mathbb{Q} \ ; \ \text{si} \ x \in \mathbb{R} \setminus \mathbb{Q} \ \text{alors} \ f(x) = x + 1 \ \in \mathbb{R} \setminus \mathbb{Q}. \ \text{Par conséquent} \ ,$

Si
$$y \in \mathbb{Q}$$
 alors $f(x) = y \Leftrightarrow \begin{cases} x - 1 = y \\ x \in \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x - 1 = y \\ x \in \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = y \\ x \in \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = x \\ x \in \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = x \\ x \in \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = x \\ x \in \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = x \\ x \in \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = x \\ x \in \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = x \\ x \in \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = x \\ x \in \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = x \\ x \in \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = x \\ x \in \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = x \\ x \in \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = x \\ x \in \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = x \\ x \in \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = x \\ x \in \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = x \\ x \in \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = x \\ x \in \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = x \\ x \in \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = x \\ x \in \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = x \\ x \in \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1 = x \\ x \in \mathbb{Q} \end{cases} \Leftrightarrow \begin{cases} x + 1$

■ Soit a un réel . Montrons que f n'est pas continue en a.

 $\underline{1}^{er}$ cas : $\underline{a} \in \mathbb{Q}$. Alors le cours assure qu'il existe une suite \underline{u} de nombres irrationnels qui converge vers \underline{a} .

 $\forall n, u_n \in \mathbb{R} \setminus \mathbb{Q} \text{ donc } f(u_n) = u_n + 1. \text{ Comme} \lim_{n \to +\infty} u_n = a \text{ ,} \lim_{n \to +\infty} f(u_n) = a + 1. \text{ } 0 \text{ } r, a + 1 \neq a - 1 = f(a). \text{ J'en déduis par le } TCSL \text{ que le }$ f n'est pas continue en a.

 $\underline{2}^{\text{eme}}$ cas: $\underline{\alpha} \in \mathbb{R} \setminus \mathbb{Q}$. Alors le cours assure qu'il existe une suite v de nombres rationnels qui converge vers a.

 $\forall n, v_n \in \mathbb{Q} \text{ donc } f(v_n) = v_n - 1. \text{ Comme} \lim_{n \to +\infty} v_n = a, \lim_{n \to +\infty} f(v_n) = a - 1. \text{ } 0 \text{ } r, a - 1 \neq a + 1 = f(a). \text{ J'en déduis par le } TCSL \text{ que } f \text{ n'est le } 1 \text{ } 0 \text{ } 1 \text{$ pas continue en a.

En conclusion, f n'est continue en aucun point de $\mathbb R$

Ex 6

- Montrer que si f et g sont continues de \mathbb{R} dans \mathbb{R} et coïncident sur \mathbb{Q} alors f = g sur \mathbb{R} . 1.
- Soient f et g fonctions de de \mathbb{R} dans \mathbb{R} continues et telles que : $\forall x \in \mathbb{Q}$, f(x) < g(x).
 - a. Montrer que $f \leq g$.
 - b. Montrer qu'on n'a pas nécessairement $\forall x \in \mathbb{R}, f(x) < g(x)$.
- Soit $f:\mathbb{R}\to\mathbb{R}$ continue telle que $f_{/\mathbb{Q}}$ est strictement croissante sur \mathbb{Q} . Montrer que f est strictement croissante sur \mathbb{R} .
 - 4. Soit f et g deux fonctions de $\mathbb R$ dans $\mathbb R$ continues et qui coïncident sur $\mathbb Q$ i.e. $\forall r \in \mathbb Q$, f(r) = g(r). Pour prouver que f = g, il suffit de montrer que , $\forall x \in \mathbb{R} \backslash \mathbb{Q}$, f(x) = g(x).

Soit $x \in \mathbb{R} \setminus \mathbb{Q}$. Le cours assure qu'il existe une suite (r_n) de nombres rationnels qui convergent vers x (Cf chapitre 3 paragraphe Partie Entière) Alors, $\forall n \in \mathbb{N}$, $f(r_n) = g(r_n)$. Or f et g sont continue en x donc, $\lim_{n \to +\infty} f(r_n) = f(x)$ et $\lim_{n \to +\infty} g(r_n) = g(x)$. Alors par unicité de la limite, f(x) = g(x). Et ainsi, f = g.

- 5. Soit f et g deux fonctions de \mathbb{R} dans \mathbb{R} continues et qui coïncident sur \mathbb{Q} i.e. $\forall r \in \mathbb{Q}$, f(r) < g(r). Soit $x \in \mathbb{R} \setminus \mathbb{Q}$. Il existe une suite (r_n) de nombres rationnels qui convergent vers x. Alors, $\forall n \in \mathbb{N}$, $f(r_n) < g(r_n)$ (*).Or f et g sont continue en x donc, $\lim_{n \to +\infty} f(r_n) = f(x)$ et $\lim_{n \to +\infty} g(r_n) = g(x)$. Alors par passage à la limite dans l'inégalité (*), j'obtiens : $f(x) \le g(x)$. Et ainsi, $f \le g$. Prenons $f(x) = -|x - \sqrt{2}|$ et $g(x) = |x - \sqrt{2}|$. Alors f et g sont continues sur \mathbb{R} , $\forall x \neq \sqrt{2}$, f(x) < 0 < g(x) et $f(\sqrt{2}) = g(\sqrt{2}) = 0$. Ce contre-exemple prouve que l'on n' a pas nécessairement $\forall x \in \mathbb{R}, f(x) < g(x)$ même si $\forall x \in \mathbb{Q}, f(x) < g(x)$.
- 6. Soit $f: \mathbb{R} \to \mathbb{R}$ continue telle que $f_{/\mathbb{Q}}$ est strictement croissante sur \mathbb{Q} i.e. $\forall (r,s) \in \mathbb{Q}^2$, $(r < s \Rightarrow f(r) < f(s))$. Soit x et y deux réels tels que x < y. Il existe deux suites (r_n) et (s_n) de nombres rationnels qui convergent vers respectivement x et y. Comme x < y, le cours assure qu'il existe un entier naturel n_0 tel que : $\forall n \ge n_0, r_n < s_n$ (la contraposée du théorème de passage à la limite dans une inégalité). Alors, par stricte monotonie de f sur \mathbb{Q} , $f(r_n) < f(s_n)$ (**). Comme f est continue en x et en y, $\lim_{n \to \infty} f(r_n) = f(s_n)$ f(x) et $\lim_{n \to +\infty} f(s_n) = f(x)$. Alors par passage à la limite dans l'inégalité (**), je peux affirmer que $f(x) \le f(y)$. Je peux à ce stade conclure que f est croissante.

Montrons maintenant par l'absurde que f est strictement croissante. Imaginons un instant qu'il existe deux réels x et y tels que x < y et f(x) = f(y). Entre ces deux réels, il existe une infinité de nombres rationnels (Cf chapitre 3 paragraphe Partie Entière) . Soit r et s deux nombres rationnels tels que x < r < s < y. Alors ,comme f est croissante, $f(x) \le f(s) \le f(y)$. De plus, f(x) = f(y). Donc f(r) = f(s) = f(x) = f(y).nécessairement, cela contredit

la stricte monotonie de f sur Q

J'en déduis que de tels réels x et y n'existent pas et ainsi, f est strictement croissante sur \mathbb{R} .

IV Fonction lispchitzienne

Ex 7 Montrer que la fonction $f:(x \mapsto x^2)$ est lipschitzienne sur [0,1] mais pas sur \mathbb{R} .

 $\forall (x,y) \in [0,1]^2, |x^2-y^2| = |x-y||x+y| \le (|x|+|y|)|x-y| \le 2|x-y|$. J'en déduis que f est 2-lipschitzienne sur [0,1]. Imaginons un instant que f soit lischitzienne sur \mathbb{R} . Alors il esiste un réel f tel que : $\forall (x,y) \in \mathbb{R}^2, |x^2-y^2| \le M|x-y|$. Alors, $\forall x \in \mathbb{R}, |x|^2 = |x^2-y^2| \le M|x-y|$. Donc $\forall x \in \mathbb{R}^*, |x| \le M$; cela signifie que la fonction f est bornée sur f equie est faux puisque f est 2-lipschitzienne sur f

V Fonction monotone

Ex 8 Soit $f: \mathbb{R}^{+*} \to \mathbb{R}$, croissante et telle que $g: \left(x \mapsto \frac{f(x)}{x}\right)$ soit décroissante. Montrer que f est continue.

Soit a un réel strictement positif.

Comme f est croissante, f admet une limite à gauche et une limite à droite en a et $\lim_{n \to \infty} f \le f(a) \le \lim_{n \to \infty} f$ (*).

Comme g est décroissante, g admet une limite à gauche et une limite à droite en a et $\lim_{a^+} g \leq g(a) \leq \lim_{a^-} g$ (**).

Or,
$$\lim_{x \to a^{+}} g(x) = \lim_{x \to a^{+}} \frac{f(x)}{x} = \lim_{pas \ de \ FI} \frac{1}{a} \lim_{x \to a^{+}} f(x)$$
 idem en a^{-} . Alors (**) s' écrit: $\frac{1}{a} \lim_{x \to a^{+}} f(x) \le \frac{f(a)}{a} \le \frac{1}{a} \lim_{x \to a^{-}} f(x)$. Et ensuite, comme $a > 0$, $\lim_{x \to a^{+}} \frac{1}{a} \lim_{x \to a^{+}} f(x) = \lim_{x \to a^{+}} \frac{f(x)}{x} = \lim_{x \to a^{+}} \frac{1}{a} \lim_{x \to a^{+}} f(x)$.

 $\lim_{a^+} f \leq f(a) \leq \lim_{a^-} f \text{ (***)}. \text{ Alors (*) et (***) permettent d'affirmer que } \lim_{a^+} f \leq f(a) \leq \lim_{a^+} f \text{ donc } \lim_{a^+} f = f(a) \text{ et de même } \lim_{a^-} f \leq f(a) \leq \lim_{a^-} f \text{ donc } \lim_{a^-} f = f(a). \text{ Ainsi, nous pouvons conclure que } \frac{f}{f} \text{ est continue en } \frac{f}{f} = f(a).$

Ex 9 Pour tout $n\in\mathbb{N}$, on pose : pour $n\in\mathbb{N}$ et pour $x\in[0,1[$, $f_n(x)=\int_0^x\frac{t^n}{\sqrt{1-t^2}}dt$

- 1. Soit $n \in \mathbb{N}$ fixé.
 - a) Justifier que f_n est bien définie sur [0,1[.
 - b) Calculer f_0 et sa limite I_0 en 1^- .
 - c) Montrer que la fonction f_n est majorée par I_0 .
 - d) En déduire l'existence de la limite I_n de f_n en 1⁻.
- 2. a) Montrer que la suite (I_n) est monotone et convergente.
 - b) Trouver une relation entre f_n et f_{n-2} , pour $n \in \mathbb{N} \setminus \{0,1\}$
 - c) En déduire la relation $nI_n=(n-1)\ I_{n-2}$ valable pour tout entier naturel $n\geq 2$.
 - d) Montrer que $\forall n \in \mathbb{N}$, $I_n = \int_0^{\frac{\pi}{2}} \sin^n(u) du$ par deux méthodes.
 - 1a) Posons $g_n(t) = \frac{t^n}{\sqrt{1-t^2}}$. g_n est continue sur l'intervalle [0,1[donc d'après le cours, f_n est la primitive de g_n sur [0,1[qui s'annule en 0. Ainsi, f_n est définie et dérivable donc continue sur [0,1[et $f_n' = g_n$ sur [0,1[.

1b)
$$\forall x \in [0,1[, f_0(x)] = \int_0^x \frac{1}{\sqrt{1-t^2}} dt = Arcsin(x)$$
. Donc, $I_0 = \lim_{x \to 1^-} f_0(x) = \frac{\pi}{2}$.

1c) $Soit \ x \in [0,1[.\ \forall t \in [0,x],\ 0 \le \frac{t^n}{\sqrt{1-t^2}} \le \frac{1}{\sqrt{1-t^2}}.$ Donc, par croissance de l'opérateur intégral, $0 \le \int_0^x \frac{t^n}{\sqrt{1-t^2}} dt \le \int_0^x \frac{1}{\sqrt{1-t^2}} dt$. Donc, $0 \le f_n(x) \le Arcsin(x) \le \frac{\pi}{2}$. Ainsi, la fonction f_n est majorée par I_0 .

1d) $\forall t \in [0,1[,f_n'(t)=g_n(t)\geq 0 \ et \ f_n'(t) \ ne \ s'annule \ qu'en0$. Donc, f_n est strictement croissante sur [0,1[. Alors le théorème de limite d'une fonction monotone, f_n a une limite I_n en 1 finie ou infinie. Comme f_n est majorée, cette limite I_n est finie.

2a) Soit
$$n \in \mathbb{N}$$
. $I_n = \lim_{x \to 1^-} f_n(x)$ et $I_{n+1} = \lim_{x \to 1^-} f_{n+1}(x)$.

 $\forall x \in [0,1[, \forall t \in [0,x], t \in [0,1] \ donc, 0 \leq t^{n+1} \leq t^n \ et \ 0 \leq \frac{t^{n+1}}{\sqrt{1-t^2}} \leq \frac{t^n}{\sqrt{1-t^2}} \ ; \ alors, 0 \leq \int_0^x \frac{t^{n+1}}{\sqrt{1-t^2}} dt \leq \int_0^x \frac{t^n}{\sqrt{1-t^2}} dt \ J' \text{en d\'eduis que} : \\ \forall x \in [0,1[, 0 \leq f_{n+1}(x) \leq f_n(x) \leq \frac{\pi}{2}. \ Donc, \ par \ passage \ \grave{a} \ la \ limite \ quand \ x \rightarrow 1^-, 0 \leq I_{n+1}(x) \leq I_n(x) \leq \frac{\pi}{2}.$

La suite (I_n) est donc décroissante et minorée donc convergente.

2b) Soit $n \in \mathbb{N} \setminus \{0,1\}$.

$$\forall x \in [0,1[, f_n(x)] = \int_0^x \frac{t^n}{\sqrt{1-t^2}} dt = -\int_0^x t^{n-1} \frac{1}{2} \frac{(-2t)}{\sqrt{1-t^2}} dt = -\left\{ \left[t^{n-1} \sqrt{1-t^2} \right]_0^x - \int_0^x (n-1) t^{n-2} \sqrt{1-t^2} dt \right\}$$

$$f_n(x) = x^{n-1}\sqrt{1-x^2} + (n-1)\int_0^x t^{n-2} \frac{(1-t^2)}{\sqrt{1-t^2}} dt = x^{n-1}\sqrt{1-x^2} + (n-1)\int_0^x \frac{t^{n-2}}{\sqrt{1-t^2}} - \frac{t^n}{\sqrt{1-t^2}} dt$$

$$f_n(x) = x^{n-1}\sqrt{1-x^2} + (n-1)[f_{n-2}(x) - f_n(x)]$$

Ainsi,
$$\forall x \in [0,1[, nf_n(x) = x^{n-1}\sqrt{1-x^2} + (n-1)f_{n-2}(x)]$$
.

2c) Donc, par passage à la limite quand $x \to 1^-$, $nI_n = 0 + (n-1)I_{n-2}$. Ainsi, $I_n = \frac{(n-1)}{n}I_{n-2}$.

2d) <u>1^{ère} méthode</u> : Effectuons une récurrence double pour prouver que $\forall n \in \mathbb{N}, \ I_n = W_n$.

$$I_0 = W_0$$

$$\forall x \in [0,1[,f_1(x)=\int_0^x \frac{t}{\sqrt{1-t^2}}dt=-\int_0^x \frac{1}{2}\frac{-2t}{\sqrt{1-t^2}}dt=-\left[\sqrt{1-t^2}\right]_0^x=1-\sqrt{1-x^2}. \text{ Donc, } I_1=\lim_{t\to 1^-}f_1(x)=1=W_1.$$

Soit $n\in\mathbb{N}$. Je suppose que $W_n=I_n$ et $W_{n+1}=I_{n+1}$. Alors, $I_{n+2}=\frac{(n+1)}{n+2}I_n=\frac{(n+1)}{n+2}W_n=W_{n+2}$.

CCL : le théorème de récurrence double assure alors que $\forall n \in \mathbb{N}, \ I_n = W_n$.

2ème méthode : Effectuons un changement de variable

Donc,
$$I_n = \lim_{x \to 1^-} f_n(x) = F\left(\frac{\pi}{2}\right) - F(0) = \int_0^{\frac{\pi}{2}} sin^n(u) du = W_n$$
.

VI Continuité sur un intervalle

Ex 10 Soit
$$f: \binom{]0,1[\to \mathbb{R}]}{x \mapsto \frac{1}{x} + \frac{1}{x-1}}$$
.

- Déterminer $\lim_{n \to +\infty} f^{-1}(2^{-n})$ puis trouver deux réels a et b tels que : $f^{-1}(2^{-n}) = a + \frac{b}{2^n} + o(\frac{1}{2^n})$. 2.
- 3. Déterminer une expression de f^{-1} .
- f est dérivable sur]0,1[et $\forall x \in$]0,1[, $f'(x) = -\frac{1}{x^2} \frac{1}{(x-1)^2} < 0$. Par conséquent, f est strictement décroissante et continue sur l'intervalle]0,1[. Alors le TBCSM assure que $f(]0,1[)=]\lim_{t\to 0}f$, $\lim_{t\to 0}f[=]-\infty$, $+\infty[$ et f est bijective de]0,1[\sup \mathbb{R} .
- $\lim_{n\to +\infty} 2^{-n} = 0$. De plus, le TBCSM assure que f^{-1} est continue sur \mathbb{R} . Par conséquent, $\lim_{n\to +\infty} f^{-1}(2^{-n}) = f^{-1}(0)$.

Posons
$$t = f^{-1}(0)$$
. Alors $f(t) = 0$ i. $e \cdot \frac{1}{t} + \frac{1}{t-1} = 0$. Donc, $1 - t = t$ donc $t = \frac{1}{2}$. Ainsi, $f^{-1}(0) = \frac{1}{2}$ et $\lim_{n \to +\infty} f^{-1}(2^{-n}) = \frac{1}{2}$.

Cherchons le $DL_1(0)$ de f^{-1}

f est dérivable sur]0,1[et $\forall x \in$]0,1[, $f'(x) \neq 0$. Alors le TDBR assure que f^{-1} est dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}$, $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$. En particulier, $(f^{-1})'(0) = \frac{1}{f'(f^{-1}(0))} = \frac{1}{f'(\frac{1}{2})} = -\frac{1}{8}$.

Par conséquent, TY assure que $f^{-1}(x) = f^{-1}(0) + (f^{-1})'(0)x + o_0(x) = \frac{1}{2} - \frac{1}{8}x + o_0(x)$. Alors comme $\lim_{n \to +\infty} 2^{-n} = 0$, $f^{-1}(2^{-n}) = \frac{1}{2} - \frac{1}{8}x + o_0(x)$.

$\frac{1}{2}2^{-n} + o_{+\infty}(2^{-n}).$

Soit y un réel non nul. Notons $x \in]0,1[$ son antécédent par f. Alors $\frac{1}{x} + \frac{1}{x-1} = y$ donc $yx^2 + (-y-2)x + 1 = 0$. Posons $\Delta = (y+2)^2 - 4y = y^2 + 4 > 0$ et $x_1 = \frac{y+2+\sqrt{y^2+4}}{2y}$ et $x_2 = \frac{y+2-\sqrt{y^2+4}}{2y}$.

Posons
$$\Delta = (y+2)^2 - 4y = y^2 + 4 > 0$$
 et $x_1 = \frac{y+2+\sqrt{y^2+4}}{2y}$ et $x_2 = \frac{y+2-\sqrt{y^2+4}}{2y}$.

Posons
$$\Delta = (y+2)^2 - 4y = y^2 + 4 > 0$$
 et $x_1 = \frac{y+2+\sqrt{y^2+4}}{2y}$ et $x_2 = \frac{y+2-\sqrt{y^2+4}}{2y}$.

Donc, $f^{-1}(y) = x = \frac{y+2+\sqrt{y^2+4}}{2y}$ ou $f^{-1}(y) = x = \frac{y+2-\sqrt{y^2+4}}{2y}$. Comme y a un unique antécédent, seule l'une de ces égalités est vraie.

Or, $\frac{y+2+\sqrt{y^2+4}}{2y}$ $\underbrace{\begin{array}{c} 0 \\ car \\ x \to 0 \end{array}}_{x\to 0} \frac{4}{2y} = \frac{2}{y}$. Alorss $\lim_{y\to 0^+} \frac{y+2+\sqrt{y^2+4}}{2y} = +\infty$ tandis que $\lim_{x\to 0} f^{-1}(0) = \frac{1}{2}$. Donc, $f^{-1}(y) \neq \frac{y+2+\sqrt{y^2+4}}{2y}$ et ainsi, , $\lim_{x\to 0} y+2+\sqrt{y^2+4}=4$

$$f^{-1}(y) = \frac{y+2-\sqrt{y^2+4}}{2y}. \text{ J'en conclus que } f^{-1}(y) = \begin{cases} \frac{y+2-\sqrt{y^2+4}}{2y} & \text{si } y \neq 0 \\ \frac{1}{2} & \text{si } y = 0 \end{cases}.$$

Ex 11 Soit f et g deux fonctions continues sur un intervalle I telles que : $\forall x \in I, |f(x)| = |g(x)|$ et $f(x) \neq 0$.

Montrer que f = g ou f = -g.

$$\forall x \in I, |f(x)| = |g(x)| \text{ donc } \forall x \in I, f(x) = g(x) \text{ ou } f(x) = -g(x).$$

 $\forall x \in I, f(x) \neq 0 \text{ donc } |f(x)| \neq 0 \text{ et } |g(x)| = |f(x)| \neq 0 \text{ et par conséquent}, \forall x \in I, g(x) \neq 0. \text{ f et g étant continues sur l'interavlle } I \text{ et ne}$ s'annulant pas sur ${\it I}$, ${\it f}$ et ${\it g}$ gardent un signe constant sur ${\it I}$.

Ou bien $\forall x \in I, f(x) > 0$ et g(x) > 0 alors nécéssairement $\forall x \in I, f(x) = g(x)$.

Ou bien $\forall x \in I, f(x) < 0$ et g(x) < 0 alors nécéssairement $\forall x \in I, f(x) = g(x)$.

Ou bien $\forall x \in I, f(x) < 0$ et g(x) > 0 alors nécéssairement $\forall x \in I, f(x) = -g(x)$.

Ou bien $\forall x \in I, f(x) > 0$ et g(x) < 0 alors nécéssairement $\forall x \in I, f(x) = -g(x)$.

J'en conclus que : ou bien f = g ou bien f = -g.

Ex 12 Déterminer les fonctions continues sur un $\mathbb R$ et prenant un nombre fini de valeurs.

Toute fonction constante est solution.

Soit $f: \mathbb{R} \to \mathbb{R}$ continue sur \mathbb{R} et prenant un nombre fini de valeurs distinctes: y_0, y_1, \dots, y_n telles que $y_0 < y_1 < \dots < y_n$. Comme \mathbb{R} est un intervalle et f est continue sur cet intervalle, $f(\mathbb{R})$ est un intervalle. Or par hypothèse, $f(\mathbb{R}) = \{y_0, y_1, ..., y_n\}$.

Imaginons un instant que $n \ge 1$. Alors y_0 et y_1 sont deux réels distincts appartenant à l'intervalle $f(\mathbb{R})$. Mais le réel $\frac{y_0 + y_1}{2}$ coincé entre y_0 et y_1 n'appartient pas à $f(\mathbb{R})$. Cela contredit la définition d'un intervalle. J'en déduis que n=0 i.e $f(\mathbb{R})=\{y_0\}$. Aitrement dit, la fonction f est constante égale à y_0 .

Ainsi, les solutions de notre problème sont les fonctions constantes.

```
f(x_1) = f(x_2) et x_1 - x_2 = \frac{1}{2}.
Soit g: \left(x \mapsto f\left(x + \frac{1}{2}\right) - f(x)\right). Dg = \left[0, \frac{1}{2}\right] et g est continue sur Dg.
g(0) = f\left(\frac{1}{2}\right) - f(0) et g\left(\frac{1}{2}\right) = f(1) - f\left(\frac{1}{2}\right) = f(0) - f\left(\frac{1}{2}\right). Donc, g\left(\frac{1}{2}\right) et g(0) sont de signes opposés. Alors le TVI assure que g(0)
s'annule au moins une fois sur \left[0,\frac{1}{2}\right]. Donc il existe un réel c \in \left[0,\frac{1}{2}\right] tel que f\left(c+\frac{1}{2}\right)-f(c)=0 i.e. f\left(c+\frac{1}{2}\right)=f(c).
Donc, x_1 = c + \frac{1}{2} et x_2 = c conviennent.
Ex 14 1. Soit \alpha et \beta deux réels tels que \alpha \leq \beta. Montrer que [\alpha,\beta]=\{t\alpha+(1-t)\beta/t\in[0,1]\}=\left\{\frac{p}{p+q}\alpha+\frac{q}{p+q}\beta/p,q\in\mathbb{R}^+et\ p+q\neq 0\right\}.
Soit f une application continue sur [a,b] et p et q deux réels positifs . Démontrer qu'il existe un réel c de [a,b] tel que : pf(a)+qf(b)=
(p+q)f(c).
Soit \varphi: (t \mapsto t\alpha + (1-t)\beta). Montrons que \varphi est bijective de [0,1] sur [\alpha,\beta].
\varphi est continue et dérivable sur [0,1] et \forall t \in [0,1], \varphi'(t) = \alpha - \beta < 0. Donc, \varphi est strictement décroissante sur [0,1]. J'en déduis que \varphi est
\text{bijective de } [0,1] \text{ sur } [\varphi(1),\varphi(0)] = [\alpha,\beta]. \text{ En particulier, } \{t\alpha + (1-t)\beta/t \in [0,1]\} = \varphi([0,1]) = [\alpha,\beta].
De plus, soit p,q\in\mathbb{R}^+et p+q\neq 0 . Posons t=\frac{p}{p+q} . Alors comme 0\leq p\leq p+q , t\in[0,1] et 1-t=1-\frac{p}{p+q}=\frac{q}{p+q} . Réciproquement soit
t \in [0,1]. Posons p=t et q=1-t. Alors p,q \in \mathbb{R}^+ et p+q=1 \neq 0 et t=\frac{p}{p+q} et 1-t=\frac{q}{p+q}.
                                                       \stackrel{\text{pet et } q=1-t}{\underset{en \ posant}{\bigoplus}} \left\{ \frac{p}{p+q} \alpha + \frac{q}{p+q} \beta \ / p, q \in \mathbb{R}^+ et \ p+q \neq 0 \right\}. 
J'en déduis que \{t\alpha+(1-t)\beta/t\in[0,1]\}
2. Soit f une application continue sur [a, b] et p et q deux réels positifs.
Si p + q = 0 alors p = q = 0 et pour tout réel c de [a, b], pf(a) + qf(b) = 0 = (p + q)f(c)
Si p+q\neq 0 alors d'après 1., \frac{pf(a)+qf(b)}{p+q} est un réel compris entre f(a) et f(b). Comme f est continue sur [a,b], le TVI assure que
\frac{pf(a)+qf(b)}{a} \text{ admet un antécédent par } f; \text{ autrement dit, il existe un réel } c \text{ de } [a,b] \text{ tel que} : pf(a)+qf(b)=(p+q)f(c) \ .
Ex 15 Soit f et g deux applications de \mathbb R dans \mathbb R, l'une bornée , l'autre continue. Montrer que f \circ g et g \circ f sont bornées.
Supposons f bornée et g continue sur \mathbb{R}.
      ■ Il existe un réel M \in \mathbb{R}^{+*} tel que : \forall x \in \mathbb{R}, |f(x)| \leq M. Donc, f(\mathbb{R}) \subset [-M, M].
g étant continue sur \mathbb{R}, g est bornée sur le segment [-M,M]. Il existe donc un réel M' tel que, \forall t \in [-M,M], |g(t)| \leq M'.
Alors comme \forall x \in \mathbb{R}, f(x) \in [-M, M], \forall x \in \mathbb{R}, |g(f(x))| \leq M'. Cela signifie que g \circ f est bornée.
      ■ \forall x \in \mathbb{R}, f(x) \in \mathbb{R} donc |f(g(x))| \leq M. Cela signifie que f \circ g est bornée.
Ex 16 Soit f et g deux applications de [0,1] dans \mathbb{R}, continues et telles que : \forall x \in [0,1], f(x) < g(x). Montrer qu'il existe un réel m > 0 tel
que : \forall x \in [0,1], f(x) + m \le g(x).
Posons h: (x \mapsto g(x) - f(x)).
h est continue sur le segment [0,1]. Donc h admet un maximum et un minimum sur ce segment. Ainsi, il existe a et b dans [0,1] tel que :
\forall x \in [0,1], h(a) \le h(x) \le h(b). \text{ Donc, } \forall x \in [0,1], f(x) + h(a) \le g(x).
Or, par hypothèse, \forall x \in [0,1], f(x) < g(x) \text{ donc } h(x) > 0. \text{ Donc } h(a) > 0.
Ainsi, en posant m = h(a), on a : m > 0 et \forall x \in [0,1], f(x) + m \le g(x).
Ex 17 Un train parcourt 120 km en 3 heures . Montrer qu'il existe un intervalle d'une heure durant laquelle ce train a parcouru 40 km
exactement.
On considère que le train part à l'instant t = 0.
Posons f:[0,3] \to [0,120] telle que: f(t) = nombre\ de\ kilomètres\ effectués\ par\ le\ train\ à l'instant\ t.
Posons maintenant g(t) = f(t+1) - f(t) = nbre de km parcourus entre les instants <math>t et t+1. Alors Dg = [0,2].
On cherche à montrer qu'il existe c \in [0,2] tel que g(c) = 40.
f est continue sur [0,3] donc g est continue sur [0,2]. Par conséquent, g([0,2]) = [m,M] où m = min_{[0,2]}g et M = max_{[0,2]}g.
         (g(2) = f(3) - f(2) = 120 - f(2) \in [m, M]
                                                                Alors \frac{g(0)+g(1)+g(2)}{3} \in [m, M]. Or, \frac{g(0)+g(1)+g(2)}{3} = \frac{120}{3} = 40.
                   g(1) = f(2) - f(1) \in [m, M]
             g(0) = f(1) - f(0) = f(1) \in [m, M]
Ainsi, 40 \in [m, M] = g([0,2]). Il existe donc un réel c \in [0,2] tel que g(c) = 40.
Ex 18 Soit f: (\mathbb{R} \to \mathbb{R}) continue.
      Montrer que si f a une limite finie en +\infty et en -\infty alors f est bornée. Atteint-elle ses bornes ?
      Montrer que si f tend vers +\infty en +\infty et en -\infty alors f admet un minimum global.
      1. Supposons que f admette une limite finie en +\infty et un limite finie en -\infty.
Alors f est bornée au voisinage de +\infty et au voisinage -\infty. Il existe donc deux réels positifs M et M' et deux réels A>0 et B<0 tels que :
\forall x \geq A, |f(x)| \leq M et \forall x \leq B, |f(x)| \leq M'. De plus, f et continue sur le segment [B,A] donc est bornée sur ce segment. Il existe donc un
réel M'' tel que : \forall x \in [B,A], |f(x)| \leq M''. Alors \forall x \in \mathbb{R}, |f(x)| \leq \max(M,M',M''). Ainsi, f est bornée. Mais f n'atteint pas forcément ses
```

Ex 13 Soit $f:([0,1]\to\mathbb{R})$ continue et telle que f(0)=f(1). Montrer qu'il existe deux réels x_1 et $x_2\in[0,1]$ tels que :

Alors, il existe deux réels A > 0 et B > 0 tels que : $\forall x \ge A, |f(x)| \ge f(0)$ et $\forall x \le B, |f(x)| \ge f(0)$.

1. Supposons que f tende vers $+\infty$ en $+\infty$ et en $-\infty$.

De plus, f et continue sur le segment [B,A] donc est bornée sur ce segment et atteint ses bornes sur ce segment (les bornes sont alors locales). Il existe donc un réel c et d dans [B,A] tel que : $\forall x \in [B,A], f(c) \le f(d)$. En particulier $0 \in [B,A]$ donc $f(c) \le f(0)$. Alors

 $\forall x \geq A, f(x) \geq f(c)$ et $\forall x \leq B, f(x) \geq f(c)$. Donc finalement, $\forall x \in \mathbb{R}, f(c) \leq f(x)$. Ainsi, $f(c) = min_{\mathbb{R}}f$.

bornes comme le prouve la fonction $Arctan: \frac{\pi}{2} = sup_{\mathbb{R}}Arctan$ mais $\forall x \in \mathbb{R}, Arctan(x) < \frac{\pi}{2}$.

Ex 19 Soit f une fonction continue sur [a,b] où a et b réels tels que a < b.

Montrer qu'il existe un réel
$$c \in [a,b]$$
 tel que :
$$\underbrace{\frac{1}{b-a} \int_a^b f(x) dx}_{moyenne \ de \ f} = f(c).$$

Ex 20 Soit f une fonction continue, positive sur [a,b]. Montrer que : $\exists c \in [a,b]/f(c) > 0 \Rightarrow \int_a^b f(x)dx > 0$. Compléter, par contraposée, le théorème suivant : « Une fonction continue, positive et d'intégrale nulle sur [a,b] est

Ex 21 Soit f une fonction continue sur [0,1]. Montrer que $\lim_{x \to \infty} \int_0^1 x^n f(x) dx = 0$.

Ex 22 Soit f une fonction continue sur [0,1]. Montrer que $\lim_{n \to +\infty} \int_0^1 f(x^n) dx = f(0)$. En déduire un équivalent simple en $+\infty$ de $u_n = \int_0^1 f(x^n) dx = f(0)$. $\int_0^1 \frac{x^n}{1+x^n} dx$. (on pourra faire une I.P.P).

VIII Des éguations fonctionnelles avec hypothèses de continuité

Ex 23 Déterminons toutes les applications continues sur \mathbb{R} et telles que : $\forall x \in \mathbb{R}, f^2(x) = f(x)$

Ex 24 Déterminons toutes les applications continues en 0 et en 1 et telles que : $\forall x \in \mathbb{R}, f(x^2) = f(x)$.

Les fonctions constantes sont solutions.

Soit f une solution de notre problème. Alors, f est continue en 0 et en 1 et $\forall x \in \mathbb{R}, [f(x^2) = f(x)]^{(*)}$.

$$\forall X \in \mathbb{R}, \left[f(X) = f\left(\sqrt{X}\right) = f\left(X^{\frac{1}{2}}\right) \right]_{\text{appliance à } X = \sqrt{X}}^{(**)}$$

Soit f une solution de notre problème. Alors, f est continue en 0 et en 1 et $\forall x \in \mathbb{R}, [f(x^2) = f(x)]^{(*)}$.

Je remarque tout d'abord que f est paire car $\forall x \in \mathbb{R}, f(-x)$ $= f((-x)^2) = f(x^2) = f(x)$. $f((-x)^2) = f(x^2) = f(x)$. $f(x) = f(x^2)$ $f(x) = f(x^2)$

Conjecture : $\forall n \in \mathbb{N}, f(x) = f\left(x^{\frac{1}{2^n}}\right)$. Donc la suite $\left(f\left(x^{\frac{1}{2^n}}\right)\right)$ est consatnte égale à f(x) et tend donc vers f(x) quand $n \to +\infty$.

Mais, comme $\lim_{n \to +\infty} x^{1/2^n} = \lim_{n \to +\infty} e^{\frac{1}{2^n} \ln{(x)}} = 1$ et f est contiue en 1, $\lim_{n \to +\infty} f(x^{1/2^n}) = f(1)$. Alors par unicité de la limite d'une suite, $f(x) = \frac{1}{2^n} \ln{(x)}$

Ainsi, f est constante sur \mathbb{R}^{+*} .

Ainsi, f est constante sur \mathbb{R}^{+*} . De plus, f est continue en 0 donc $f(0) = \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} f(1) = f(1)$. Donc f est constante sur \mathbb{R}^+ . Enfin f est paire car $\forall x \in \mathbb{R}$, $f(-x) = f((-x)^2) = f(x^2) = f(x)$. Par conséquent, $\forall x < 0, f(x) = f(-x)$

Ainsi, f est constante sur $\mathbb R$.

J'en conclus que les fonctions constantes sont les solutions de notre problème.

Ex 25 Déterminons toutes les applications continues sur [0,1] et telles que : $\forall x \in [0,1], f(x^2) \le f(x)$ et f(0) = f(1).

Les fonctions constantes sont solutions.

Soit $x \in]0,1[$. $\forall n \in \mathbb{N}, f(x^{2^n}) \le f(x) \le f\left(x^{\frac{1}{2^n}}\right) = f\left(e^{\frac{1}{2^n}\ln(x)}\right)$. De plus, comme $\lim_{n \to +\infty} x^{2^n} = 0$ et $\lim_{n \to +\infty} x^{1/2^n} = 1$ et f est contineu en 0 et en 1, $\lim_{n \to +\infty} f(x^{2^n}) = f(0)$ et $\lim_{n \to +\infty} f(x^{1/2^n}) = f(1)$. Alors par passage à la limite quand $n \to +\infty$ dans l'inégalité, $f(0) \le f(x) \le f(x)$ f(1). Enfinc, comme f(0) = f(1), f(x) = f(1) = f(0). Donc f est constante. J'en conclus que les fonctions constantes sont les solutions de notre problème.

Ex 26Soit f continue sur \mathbb{R} telle que : $\forall x \in \mathbb{R}$, $f(2x) = f(x)\cos(x)$ et f(0) = 1.

- a. Montrer que $\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}, f(x) = f\left(\frac{x}{2^n}\right) \prod_{k=1}^n \cos\left(\frac{x}{2^k}\right)$.
- b. En déduire que: $\forall x \in \mathbb{R}^*, f(x) = \frac{\sin(x)}{x}$. Est-ce cohérent avec la continuité de f?

Ex 27 Soit $a \in \mathbb{R}$ et u la suite définie par : $u_0 = a$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{u_n}{1 + u_{n-2}}$. Etudier la convergence de la suite u. En déduire les applications f définies et continues sur $\mathbb R$ telles que : $\forall x \in \mathbb R$, $f(x) = f\left(\frac{x}{1+x^2}\right)$.

1. $\forall n, u_{n+1} = \frac{u_n}{1+u_{n^2}} = f(u_n)$ où $f(x) = \frac{x}{1+x^2}$. $Df = \mathbb R$ donc $\forall n, u_n$ existe. De plus, f(0) = 0 et $f(\mathbb R^{+*}) \subset \mathbb R^{+*}$ et $f(\mathbb R^{-*}) \subset \mathbb R^{-*}$. Donc si

- croissante. J'en déduis que u a toujours une limite.
- Comme f est continue sur \mathbb{R} , les limites possibles de u sont $+\infty$, $-\infty$ et les réels L tels que f(L)=L.

Mais comme $\lim_{x\to +\infty} f(x)=0$, il est impossible que u tend vers $\pm \infty$ (en effet, si $\lim_{n\to +\infty} u_n=\pm \infty$ alros $\pm \infty=\lim_{n\to +\infty} u_{n+1}=0$

$$\lim_{n\to +\infty} f(u_n) = 0 \text{ ce qui est absurde.} \text{ one plus, } f(L) = L \Leftrightarrow L = \frac{L}{1+L^2} \Leftrightarrow L - \frac{L}{1+L^2} = 0 \Leftrightarrow \frac{L^3}{1+L^2} = 0 \Leftrightarrow L = 0.$$

J'en conclus que 0 est la seule limite possible de u et comme cette limite existe, nécessairement $\lim_{n\to +\infty}u_n=0$.

4. Déterminons toutes les applications f définies et continues sur \mathbb{R} telles que : $\forall x \in \mathbb{R}$, $f(x) = f\left(\frac{x}{1+x^2}\right)$. Je remarque que toute fonction constante est solution.

Analyse: Soit f une solution de notre problème. Alors f est continue sur \mathbb{R} et $\forall x \in \mathbb{R}$, $f(x) = f\left(\frac{x}{1+x^2}\right)$.

Soit x un réel et u la suite définie par : $u_0 = x$ et $\forall n \in \mathbb{N}, u_{n+1} = \frac{u_n}{1 + u_{n^2}}$. Alors d'après ce qui précède $\lim_{n \to +\infty} u_n = 0$, donc, par continuité de f

en 0,
$$\lim_{n\to +\infty} f(u_n) = f(0)$$
. De plus, $\forall n\in \mathbb{N}, f(u_n) = f\left(\frac{u_n}{1+u_{n^2}}\right) = f(u_{n+1})$. Donc, la suite $(f(u_n))$ est constante. Alors, $\forall n\in \mathbb{N}, f(u_n) = f(u_n) = f(u_n) = f(u_n)$. Par conséquent, $\lim_{n\to +\infty} f(u_n) = f(x)$. Je conclus que $f(x) = f(0)$ en vertu de l'unicité de la limite. Cela signifie que f est constante.

Cette analyse a prouvé que seules les fonctions constantes sont candidates solutions à notre problème. Comme ces fonctions constantes sont effectivement solutions, je peux conclure que les fonctions constantes sont les solutions de notre problème.

Ex 28 Nous allons déterminer toutes les applications continues sur $\mathbb R$ et telles que :

$$\forall (x,y) \in \mathbb{R}^2, f(x+y) = f(x) + f(y).$$

- a. Trouver une solution « évidente » à notre problème.
- b. **ANALYSE**: Soit f I'une des solutions.
 - i. Calculer f(0).
 - ii. Montrer que f est impaire.
 - iii. Montrer que $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, f(nx) = nf(x)$.
 - iv. En déduire que $\forall \beta \in \mathbb{Q}$, $f(\beta) = \beta f(1)$.
 - v. Montrer que $\forall x \in \mathbb{R}$, f(x) = xf(1).
- c. **SYNTHESE**. Donner toutes les solutions de notre problème.
- d. Déterminer toutes les applications continues sur \mathbb{R} et telles que : $\forall (x,y) \in \mathbb{R}^2$, f(x+y)=f(x)f(y).
- e. Déterminer toutes les applications continues sur \mathbb{R}^{+*} et telles que : $\forall (x,y) \in \mathbb{R}^{+*^2}$, f(xy) = f(x) + f(y).

Ex 29 On note E l'ensemble de toutes les applications f de $\mathbb R$ dans $\mathbb R$, continues et telles que :

$$\forall (x,y) \in \mathbb{R}^2, f(x+y)f(x-y) = (f(x)f(y))^2.$$

- a. Montrer que E est non vide.
- b. Soit $f \in E$.
 - i. Trouver les valeurs possibles de f(0).
 - ii. Montrer que : $f(0) = 0 \Rightarrow f = 0$. On suppose désormais que $f(0) \neq 0$.
 - iii. Imaginons un instant que: $\exists x_0 \in \mathbb{R}/f(x_0) = 0$. Montrer que $\forall n \in \mathbb{N}, f\left(\frac{x_0}{2n}\right) = 0$ et aboutir à une contradiction.
 - iv. En déduire que f est de signe constant. On suppose désormais que $\forall x, f(x) > 0$.
- c. On pose $\forall x \in \mathbb{R}, g(x) = \ln(f(x))$.
 - i. Montrer que g(0) = 0, g est paire et continue sur \mathbb{R} .
 - ii. Montrer que $\forall x \in \mathbb{R}, \forall n \in \mathbb{N}, g(nx) = n^2 g(x)$.
 - iii. En déduire que $\forall n \in \mathbb{Z}$, $g(n) = n^2 g(1)$.
 - iv. Montrer que $\forall n \in \mathbb{N}^*, g\left(\frac{1}{n}\right) = \frac{1}{n^2}g(1)$ puis que $\forall r \in \mathbb{Q}, g(r) = r^2g(1)$.
 - v. En déduire que $\forall x \in \mathbb{Q}, g(x) = x^2 g(1)$.
- d. Déterminer tous les éléments de E.

Ex 30 Soit $f: \left(x \to x sin\left(\frac{1}{1-x}\right)\right)$ et I = [0,1[. Déterminer f(I) .

f est continue sur l'intervalle I=[0,1[donc f(I) est un intervalle dont je ne connais pas la nature (ouvert , fermé , semi-ouvert ???) mais dont je connais les extrémités qui sont $inf_{[0,1[}f$ et $sup_{[0,1[}f$ éventuellement infinies.

Or, f est bornée sur I car $\forall x \in [0,1[,0 \le x < 1 \ et - 1 \le \sin(x) \le 1 \ donc - 1 < f(x) < 1$. Par conséquent, $\inf_{[0,1[}f \ et \ sup_{[0,1[}f \ sont \ finies.]$ Montrons que $\sup_{[0,1[}f = 1]] = \sup_{f(I)} \underbrace{\{f(x)/x \in [0,1[]\}\}}_{f(I)}$. Je sais que 1 majore f(I). Montrons que 1 est la limite d'une

suite d'éléments de f(I). Je cherche alors une suite (u_n) d'éléments de I telle que $\lim_{n \to +\infty} f(u_n) = 1$.

Si une telle suite (u_n) existe alors $u_n < 1$ $et \sin\left(\frac{1}{1-u_n}\right) \le 1$ donc pour que $f(u_n) = u_n \sin\left(\frac{1}{1-u_n}\right)$ tende vers 1, je vais construire une suite (u_n) telle que : $\lim_{n \to \infty} u_n = 1^-$ et $\sin\left(\frac{1}{1-u_n}\right) = 1$

$$(u_n)$$
 telle que : $\lim_{n \to +\infty} u_n = 1^-$ et $\sin\left(\frac{1}{1 - u_n}\right) = 1$.

Or,
$$\sin\left(\frac{1}{1-u_n}\right) = 1 \Longleftrightarrow \frac{1}{1-u_n} = \frac{\pi}{2} + 2n\pi \Longleftrightarrow 1 - u_n = \frac{1}{\frac{\pi}{2} + 2n\pi} \Longleftrightarrow u_n = 1 - \frac{1}{\frac{\pi}{2} + 2n\pi}$$

Posons
$$\forall n, u_n = 1 - \frac{1}{\frac{\pi}{2} + 2n\pi}$$
. Alors, $\forall n \in \mathbb{N}, u_n \in [0,1[$ $et \lim_{n \to +\infty} u_n = 1^ et \sin\left(\frac{1}{1 - u_n}\right) = 1$.

Donc,
$$f(u_n) = u_n \sin\left(\frac{1}{1-u_n}\right) = u_n \xrightarrow[n \to +\infty]{} 1$$
. Ainsi, $\sup_{[0,1]} f = 1$.

 $\underline{\text{Montrons que } inf_{[0,1[}f=-1.\text{ Par d\'efinition, } inf_{[0,1[}f=\inf\underbrace{\{f(x)/x\in[0,1[]\}}_{f(I)}.\text{ Je sais que }-1\text{ minore }f(I).\text{ Montrons que }-1\text{ est la limite }d'\text{une suite d'\'el\'ements de }f(I).\text{ Je cherche alors une suite }(v_n)\text{ d'\'el\'ements de }I\text{ telle que }\lim_{n\to+\infty}f(v_n)=-1.$

Si une telle suite (v_n) existe alors $v_n < 1$ $et \sin\left(\frac{1}{1-v_n}\right) \ge -1$ donc pour que $f(v_n) = v_n \sin\left(\frac{1}{1-v_n}\right)$ tende vers -1, je vais construire une suite

$$(\nu_n) \ \mathrm{telle} \ \mathrm{que} : \lim_{n \to +\infty} \nu_n = 1^- \ \mathrm{et} \ \sin \left(\tfrac{1}{1 - \nu_n} \right) = -1.$$

Or,
$$\sin\left(\frac{1}{1-v_n}\right) = -1 \Longleftrightarrow \frac{1}{1-v} = -\frac{\pi}{2} + 2n\pi \Longleftrightarrow 1 - v_n = \frac{1}{-\frac{\pi}{2} + 2n\pi} \Longleftrightarrow v_n = 1 - \frac{1}{-\frac{\pi}{2} + 2n\pi}.$$

Posons
$$\forall n \geq 1$$
, $v_n = 1 - \frac{1}{\frac{\pi}{2} + 2n\pi}$. Alors, $\forall n \geq 1$, $v_n \in [0,1[$, $\lim_{n \to +\infty} v_n = 1^-$ et $\sin\left(\frac{1}{1 - v_n}\right) = -1$.

Donc,
$$f(v_n) = v_n \sin\left(\frac{1}{1-v_n}\right)^2 = -v_n \xrightarrow[n \to +\infty]{} -1$$
. Ainsi, $\inf_{[0,1[}f = -1]$. De plus, $\forall x \in [0,1[,-1 < f(x) < 1 \text{ donc} -1 \text{ } et \text{ } 1 \text{ n'appartiennent pas à } f(I)$. J'en conclus que $f(I) = [-1,1[]$.