CORRIGE DL 10

EXERCICE 3 Fonctions convexes, sommes de Riemann et intégrales

- Une nouvelle inégalité de convexité.
- Soit φ une fonction convexe sur un intervalle ouvert I .
 - 1.1 Rappeler sans démonstration la propriété de continuité vérifiées par φ .
 - 1.2 Démontrer par récurrence sur $n \in \mathbb{N}^*$, la propriété H(n): "pour tout $(x_1, x_2, ..., x_n) \in I^n$, $\varphi\left(\frac{x_1 + x_2 + ... + x_n}{n}\right) \leq \frac{\varphi(x_1) + \varphi(x_2) + ... + \varphi(x_n)}{n}$ ". (indication : on remarquera que $\frac{x_1+x_2+\cdots+x_{n+1}}{n+1}=\left(1-\frac{1}{n+1}\right)\left[\left(\frac{1}{n}\right)(x_1+x_2+\cdots+x_n)\right]+\frac{x_{n+1}}{n+1}$ Soit f une fonction continue sur un intervalle f tel que $f(f)\subset I$. Soit f soit f une fonction continue sur un intervalle f tel que f because f determiner la limite de $\lim_{n\to+\infty}\frac{1}{n}\sum_{k=1}^n f\left(a+\frac{k(b-a)}{n}\right)$ et justifier que cette limite appartient à f.
- - 2.2 Déterminer la limite de $\lim_{n\to+\infty} \frac{1}{n} \sum_{k=1}^{n} \varphi\left(f\left(a + \frac{k(b-a)}{n}\right)\right)$.
 - 2.3 Déduire de tout ce qui précède que $\varphi\left(\frac{1}{b-a}\int_a^b f(t)dt\right) \leq \frac{1}{b-a}\int_a^b \varphi\circ f(t)dt$ (indication : on choisira judicieusement x_k).
 - 2.4 Enoncer un résultat analogue au 2.2 dans le cas où φ est une fonction concave sur I .
- 1.1 φ étant une fonction convexe sur un intervalle ouvert I, φ est continue en tout point intérieur à I donc en tout point de I puisque I est

1.2 Soit H(n) la propriété : pour tout $(x_1, x_2, \dots, x_n) \in I^n$, $\varphi\left(\frac{x_1+x_2+\dots+x_n}{n}\right) \leq \frac{\varphi(x_1)+\varphi(x_2)+\dots+\varphi(x_n)}{n}$. Initialisation : H(1) est vraie car pour tout $x_1 \in I$, $\varphi\left(\frac{x_1}{1}\right) = \varphi(x_1) = \frac{\varphi(x_1)}{1} \leq \frac{\varphi(x_1)}{1}$. Propagation : Soit n un entier naturel non nul. Je suppose que H(n) est vraie. Soit $(x_1, x_2, \dots, x_n, x_{n+1}) \in I^{n+1}$. Montrons que $\varphi\left(\frac{x_1 + x_2 + \dots + x_{n+1}}{n+1}\right) \le \frac{\varphi(x_1) + \varphi(x_2) + \dots + \varphi(x_{n+1})}{n+1}$

 $\text{Je remarque que } \frac{x_1 + x_2 + \dots + x_{n+1}}{n+1} = \left(\frac{n}{n+1}\right) \left[\left(\frac{1}{n}\right) \left(x_1 + x_2 + \dots + x_n\right)\right] + \frac{x_{n+1}}{n+1} = \left(1 - \frac{1}{n+1}\right) \left[\left(\frac{1}{n}\right) \left(x_1 + x_2 + \dots + x_n\right)\right] + \frac{x_{n+1}}{n+1}. \\ \text{Donc, } \left(\frac{1}{n}\right) \left(x_1 + x_2 + \dots + x_n\right) = \frac{x_{n+1}}{n+1} \left[\frac{1}{n}\right] \left(\frac{1}{n}\right) \left(x_1 + x_2 + \dots + x_n\right) = \frac{x_{n+1}}{n+1}. \\ \text{Donc, } \left(\frac{1}{n}\right) \left(x_1 + x_2 + \dots + x_n\right) = \frac{x_{n+1}}{n+1} \left[\frac{1}{n}\right] \left(\frac{1}{n}\right) \left(x_1 + x_2 + \dots + x_n\right) = \frac{x_{n+1}}{n+1}. \\ \text{Donc, } \left(\frac{1}{n}\right) \left(x_1 + x_2 + \dots + x_n\right) = \frac{x_{n+1}}{n+1} \left[\frac{1}{n}\right] \left(\frac{1}{n}\right) \left(x_1 + x_2 + \dots + x_n\right) = \frac{x_{n+1}}{n+1}. \\ \text{Donc, } \left(\frac{1}{n}\right) \left(x_1 + x_2 + \dots + x_n\right) = \frac{x_{n+1}}{n+1} \left[\frac{1}{n}\right] \left(\frac{1}{n}\right) \left(x_1 + x_2 + \dots + x_n\right) = \frac{x_{n+1}}{n+1}. \\ \text{Donc, } \left(\frac{1}{n}\right) \left(x_1 + x_2 + \dots + x_n\right) = \frac{x_{n+1}}{n+1}. \\ \text{Donc, } \left(\frac{1}{n}\right) \left(x_1 + x_2 + \dots + x_n\right) = \frac{x_{n+1}}{n+1}. \\ \text{Donc, } \left(\frac{1}{n}\right) \left(x_1 + x_2 + \dots + x_n\right) = \frac{x_{n+1}}{n+1}. \\ \text{Donc, } \left(\frac{1}{n}\right) \left(x_1 + x_2 + \dots + x_n\right) = \frac{x_{n+1}}{n+1}. \\ \text{Donc, } \left(\frac{1}{n}\right) \left(x_1 + x_2 + \dots + x_n\right) = \frac{x_{n+1}}{n+1}. \\ \text{Donc, } \left(\frac{1}{n}\right) \left(x_1 + x_2 + \dots + x_n\right) = \frac{x_{n+1}}{n+1}. \\ \text{Donc, } \left(\frac{1}{n}\right) \left(x_1 + x_2 + \dots + x_n\right) = \frac{x_{n+1}}{n+1}. \\ \text{Donc, } \left(\frac{1}{n}\right) \left(x_1 + x_2 + \dots + x_n\right) = \frac{x_{n+1}}{n+1}. \\ \text{Donc, } \left(\frac{1}{n}\right) \left(x_1 + x_2 + \dots + x_n\right) = \frac{x_{n+1}}{n+1}. \\ \text{Donc, } \left(\frac{1}{n}\right) \left(x_1 + x_2 + \dots + x_n\right) = \frac{x_{n+1}}{n+1}. \\ \text{Donc, } \left(\frac{1}{n}\right) \left(x_1 + x_2 + \dots + x_n\right) = \frac{x_{n+1}}{n+1}. \\ \text{Donc, } \left(\frac{1}{n}\right) \left(x_1 + x_2 + \dots + x_n\right) = \frac{x_{n+1}}{n+1}. \\ \text{Donc, } \left(\frac{1}{n}\right) \left(x_1 + x_2 + \dots + x_n\right) = \frac{x_{n+1}}{n+1}. \\ \text{Donc, } \left(\frac{1}{n}\right) \left(x_1 + x_2 + \dots + x_n\right) = \frac{x_{n+1}}{n+1}. \\ \text{Donc, } \left(\frac{1}{n}\right) \left(x_1 + x_2 + \dots + x_n\right) = \frac{x_{n+1}}{n+1}.$ $\varphi\left(\frac{x_1 + x_2 + \dots + x_{n+1}}{n+1}\right) = \varphi\left[\left(1 - \frac{1}{n+1}\right)\left[\left(\frac{1}{n}\right)(x_1 + x_2 + \dots + x_n)\right] + \frac{x_{n+1}}{n+1}\right]. \text{ Comme } \varphi \text{ est convexe et } t = \frac{1}{n+1} \in [0,1] \text{ et } a_{n+1} \in I \text{ et } a_{n$

 $\left(\frac{1}{n}\right)(x_1+x_2+\cdots+x_n)\in I$ ($car\left(\frac{1}{n}\right)(x_1+x_2+\cdots+x_n)$ est la moyenne des x_1,x_2,\ldots,x_n , éléments de I, donc se trouve entre le $\max(x_1, x_2, \dots, x_n)$ et $le \min(x_1, x_2, \dots, x_n)$ donc dans I),

 $\varphi\left[\left(1-\frac{1}{n+1}\right)\left[\left(\frac{1}{n}\right)(x_1+x_2+\cdots+x_n)\right]+\frac{x_{n+1}}{n+1}\right]\leq \left(1-\frac{1}{n+1}\right)\varphi\left[\left(\frac{1}{n}\right)(x_1+x_2+\cdots+x_n)\right]+\frac{1}{n+1}\varphi(x_{n+1}). \text{ De plus, H(n) assure que } \varphi\left[\left(\frac{1}{n}\right)(x_1+x_2+\cdots+x_n)\right]\leq \frac{\varphi(x_1)+\varphi(x_2)+..+\varphi(x_n)}{n}.$

 $\begin{array}{l} \text{Donc } 1 - \frac{1}{n+1} \varphi \left[\left(\frac{1}{n} \right) (x_1 + x_2 + \dots + x_n) \right] \leq \left(1 - \frac{1}{n+1} \right) \frac{\varphi(x_1) + \varphi(x_2) + \dots + \varphi(x_n)}{n} = \frac{\varphi(x_1) + \varphi(x_2) + \dots + \varphi(x_n)}{n+1}. \text{ Et ainsi,} \\ \varphi \left(\frac{x_1 + x_2 + \dots + x_{n+1}}{n+1} \right) \leq \frac{\varphi(x_1) + \varphi(x_2) + \dots + \varphi(x_n)}{n+1} + \frac{1}{n+1} \varphi(x_{n+1}) = \frac{\varphi(x_1) + \varphi(x_2) + \dots + \varphi(x_{n+1})}{n+1}. \text{ OK } ! ! ! \\ \text{J'en conclus que } \forall n \geq 1, H(n) \text{ est } vraie. \end{array}$

 $2.1\,f$ est continue sur l'intervalle J donc sur [a,b]. Alors le théorème des sommes de Riemann assure que :

$$\lim_{n\to+\infty}\frac{b-a}{n}\sum_{k=1}^n f\left(a+\frac{k(b-a)}{n}\right)=\int_a^b f(t)dt. \text{Donc}, \ \lim_{n\to+\infty}\frac{1}{n}\sum_{k=1}^n f\left(a+\frac{k(b-a)}{n}\right)=\frac{1}{b-a}\int_a^b f(t)dt.$$

 $\lim_{n\to+\infty}\frac{b-a}{n}\sum_{k=1}^nf\left(a+\frac{k(b-a)}{n}\right)=\int_a^bf(t)dt. \text{Donc}, \ \lim_{n\to+\infty}\frac{1}{n}\sum_{k=1}^nf\left(a+\frac{k(b-a)}{n}\right)=\frac{1}{b-a}\int_a^bf(t)dt.$ f étant continue sur J, $\frac{1}{b-a}\int_a^bf(t)dt\in \left[\min_Jf,\max_Jf\right]$ d'après le théorème de la moyenne. Or, il existe $c\in J$ tel que f(c)=1 $min_{J}f$.Comme $f(J)\subset I$, $min_{J}f=f(c)\in I$ \mathbb{I} . De même , $max_{J}f\in I$. Comme I est un intervalle, je peux alors affirmer que $[min_I f, max_I f] \subset I$. J'en déduis que $\frac{1}{h-a} \int_a^b f(t) dt \in I$.

2.2 f est continue sur l'intervalle J et φ est continue sur l'intervalle I et $f(J) \subset I$ donc $\varphi \circ f$ est continue sur J donc sur [a,b]. Alors le théorème des sommes de Riemann assure que $\lim_{n \to +\infty} \frac{b-a}{n} \sum_{k=1}^n \varphi\left(f\left(a + \frac{k(b-a)}{n}\right)\right) = \int_a^b \varphi(f(t)) dt$.

Donc,
$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^n \varphi\left(f\left(a + \frac{k(b-a)}{n}\right)\right) = \frac{1}{b-a} \int_a^b \varphi(f(t)) dt$$
.

2.3 Posons $\forall k \in [\![1,n]\!], a_k = a + \frac{k(b-a)}{n}$ et $x_k = f(a_k)$. Alors, a_1,a_2,\ldots,a_n sont des éléments de J. Donc, x_1,x_2,\ldots,x_n sont des éléments de

Alors d'après 1. , $\varphi\left(\frac{x_1+\cdots+x_n}{n}\right) \leq \frac{\varphi(x_1)+\ldots+\varphi(x_n)}{n}$ i.e. $\varphi\left(\frac{1}{n}\sum_{k=1}^n f\left(a+\frac{k(b-a)}{n}\right)\right) \stackrel{(**)}{\leq} \frac{\sum_{k=1}^n \varphi\left(f\left(a+\frac{k(b-a)}{n}\right)\right)}{n}$. Comme φ est continue sur I , φ est continue en $\frac{1}{b-a}\int_a^b f(t)dt$ et par conséquent, $\lim_{n\to+\infty} \ \varphi\left(\frac{1}{n}\sum_{k=1}^n f\left(a+\frac{k(b-a)}{n}\right)\right) = \varphi\left(\frac{1}{b-a}\int_a^b f(t)dt\right)$.

Alors, par passage à la limite dans l'inégalité (**), je peux conclure que $\varphi\left(\frac{1}{h-a}\int_a^b f(t)dt\right) \le \frac{1}{h-a}\int_a^b \varphi \circ f(t)dt$

2.4 Si φ est concave sur I et f est continue sur J et $f(J) \subset Ialors \varphi\left(\frac{1}{b-a}\int_a^b f(t)dt\right) \ge \frac{1}{b-a}\int_a^b \varphi \circ f(t)dt$.

PROBLEME 1 Encore du Wallis

Pour tout $n \in \mathbb{N}$, on pose : pour $n \in \mathbb{N}$ et pour $x \in [0,1[$, $f_n(x) = \int_0^x \frac{t^n}{\sqrt{1-t^2}} dt$.

- Démontrer que $\lim_{n\to\infty} \int_0^{\frac{\pi}{2}} sin^n(t) dt = 0.$
- 2. Soit $n \in \mathbb{N}$.
 - a) Justifier que f_n est bien définie sur [0,1[.
 - b) Calculer f_0 et sa limite I_0 en 1^- .
 - c) Montrer que la fonction f_n est majorée par I_0 .

- d) En déduire l'existence de la limite I_n de f_n en $\mathbf{1}^{\text{-}}$.
- 3. a) Montrer que la suite (I_n) est monotone et convergente.
 - b) Trouver une relation entre f_n et f_{n-2} pour $n \in \mathbb{N} \setminus \{0,1\}$.
 - c) En déduire la relation $nI_n = (n-1) I_{n-2}$ valable pour tout entier naturel $n \ge 2$.
 - d) Montrer que (nI_nI_{n-1}) est une suite constante et déterminer cette constante.
 - e) Montrer que $I_n \sim_{n \to +\infty} \sqrt{\frac{\pi}{2n}}$ et $\lim_{n \to +\infty} I_n = 0$.
 - f) Montrer que $\forall n \in \mathbb{N}$, $I_n = \int_0^{\frac{\pi}{2}} sin^n(t) dt$ par deux méthodes.

1a) Ici n est fixé. Posons $g_n(t) = \frac{t^n}{\sqrt{1-t^2}}$. g_n est continue sur l'intervalle [0,1[donc d'après le cours, f_n est la primitive

de g_n sur [0,1[qui s'annule en 0. Ainsi, f_n est définie et dérivable donc continue sur [0,1[et $f_n'=g_n$ sur [0,1[...]

1b)
$$\forall x \in [0,1[, f_0(x) = \int_0^x \frac{1}{\sqrt{1-t^2}} dt = Arcsin(x). Donc, I_0 = \lim_{x \to 1^-} f_0(x) = \frac{\pi}{2}.$$

1c) $Soit \ x \in [0,1[.\ \forall t \in [0,x],\ 0 \le \frac{t^n}{\sqrt{1-t^2}} \le \frac{1}{\sqrt{1-t^2}}.$ Donc, par croissance de l'opérateur intégral, $0 \le \int_0^x \frac{t^n}{\sqrt{1-t^2}} dt \le \int_0^x \frac{1}{\sqrt{1-t^2}} dt$. Donc, $0 \le f_n(\mathbf{x}) \le Arcsin(x) \le \frac{\pi}{2}$. Ainsi, la fonction f_n est majorée par I_0 .

1d) $\forall t \in [0,1[,f_n'(t)=g_n(t)\geq 0 \ et \ f_n'(t) \ ne \ s'annule \ qu'en0$. Donc, f_n est strictement croissante sur [0,1[. Alors le théorème de limite d'une fonction monotone, f_n a une limite I_n en 1^- finie ou infinie. Comme f_n est majorée, cette limite I_n est finie.

2a) Soit
$$n \in \mathbb{N}$$
. $I_n = \lim_{x \to 1^-} f_n(x)$ et $I_{n+1} = \lim_{x \to 1^-} f_{n+1}(x)$.

 $\forall x \in [0,1[, \forall t \in [0,x], t \in [0,1] \ donc, 0 \le t^{n+1} \le t^n \ et \ 0 \le \frac{t^{n+1}}{\sqrt{1-t^2}} \le \frac{t^n}{\sqrt{1-t^2}} \ ; \ \mathsf{alors}, 0 \le \int_0^x \frac{t^{n+1}}{\sqrt{1-t^2}} dt \le \int_0^x \frac{t^n}{\sqrt{1-t^2}} dt \le \int_0$

J'en déduis que : $\forall x \in [0,1[, 0 \le f_{n+1}(x) \le f_n(x) \le \frac{\pi}{2}]$. Donc, par passage à la limite quand $x \to 1^-$,

 $0 \le I_{n+1}(x) \le I_n(x) \le \frac{\pi}{2}$. La suite (I_n) est donc décroissante et minorée donc convergente.

2b) Soit $n \in \mathbb{N} \setminus \{0,1\}$.

$$\forall x \in [0,1[,f_n(x)] = \int_0^x \frac{t^n}{\sqrt{1-t^2}} dt = -\int_0^x t^{n-1} \frac{1}{2} \frac{(-2t)}{\sqrt{1-t^2}} dt = -\left\{ \left[t^{n-1} \sqrt{1-t^2} \right]_0^x - \int_0^x (n-1) t^{n-2} \sqrt{1-t^2} dt \right\}$$

$$f_n(x) = x^{n-1}\sqrt{1-x^2} + (n-1)\int_0^x t^{n-2}\frac{(1-t^2)}{\sqrt{1-t^2}}dt = x^{n-1}\sqrt{1-x^2} + (n-1)\int_0^x \frac{t^{n-2}}{\sqrt{1-t^2}} - \frac{t^n}{\sqrt{1-t^2}}dt$$

$$f_n(x) = x^{n-1}\sqrt{1-x^2} + (n-1)[f_{n-2}(x) - f_n(x)]$$

Ainsi,
$$\forall x \in [0,1[, nf_n(x) = x^{n-1}\sqrt{1-x^2} + (n-1)f_{n-2}(x)].$$

2c) Donc, par passage à la limite quand $x \to 1^-$, $nI_n = 0 + (n-1)I_{n-2}$. Ainsi, $I_n = \frac{(n-1)}{n}I_{n-2}$.

2d) <u>1ère méthode</u> : Effectuons une récurrence double pour prouver que $\forall n \in \mathbb{N}, \ I_n = W_n$. $I_0 = W_0$.

$$\forall x \in [0,1[,f_1(x)=\int_0^x \frac{t}{\sqrt{1-t^2}}dt=-\int_0^x \frac{1}{2}\frac{-2t}{\sqrt{1-t^2}}dt=-\left[\sqrt{1-t^2}\right]_0^x=1-\sqrt{1-x^2}. \text{ Donc, } I_1=\lim_{x\to 1^-}f_1(x)=1=W_1.$$

Soit $n \in \mathbb{N}$. Je suppose que $W_n = I_n$ et $W_{n+1} = I_{n+1}$. Alors, $I_{n+2} = \frac{(n+1)}{n+2} I_n = \frac{(n+1)}{n+2} W_n = W_{n+2}$.

CCL : le théorème de récurrence double assure alors que $\forall n \in \mathbb{N}, \ I_n = W_n$.

2ème méthode: Effectuons un changement de variable

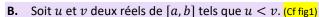
$$\forall x \in [0,1[,f_n(x)=\int_0^x \frac{t^n}{\sqrt{1-t^2}}dt \underset{c \in [0,x] \subset [0,1[}{\overset{-}{\underset{c \in [0,x] \subset [0,x]}{\overset{-}{\underset{c \in [0,x] \smile [0,x]}{\overset{-}{\underset{c \in [0,x] \smile [0,x]}{\overset{-}{\underset{c \in [0,x]}{\overset{-}}{\underset{c \in [0,x]}{\overset{-}{\underset{c \in [0,x]}{\overset{-}{\underset{c \in [0,x]}{\overset{-}{\underset{c \in [0,x]}{\overset{-}}{\underset{c \in [0,x]}{\overset{-}{\underset{c \in [0,x]}{\overset{-}{\underset{c \in [0,x]}{\overset{-}{\underset{c \in [0,x]}{\overset{-}}{\underset{c \in [0,x]}{\overset{-}{\underset{c \in [0,x]}{\overset{-}}{\underset{c \in [0,x]}{\overset{-}{\underset{c \in [0,x]}{\overset{-}}{\underset{c \in [0,x]}{\overset{-}{\underset{c \in [0,x]}{\overset{-}{\underset{c \in [0,x]}{\overset{-}}{\underset{c \in [0,x]}{\overset{-}}{\underset{c \in [0,x]}{\overset{-}}{\underset{c \in [0,x]}{\overset{-}{\underset{c \in [0,x]}{\overset{-}}{\underset{c \in [0,x]$$

Donc,
$$I_n = \lim_{x \to 1^-} f_n(x) = F\left(\frac{\pi}{2}\right) - F(0) = \int_0^{\frac{\pi}{2}} \sin^n(u) du$$
.

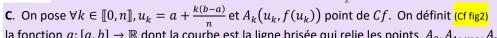
PROBLEME 2 Méthode des trapèzes d'approximation d'une intégrale

Soit a et b deux réels tels que a < b et f une fonction de classe C^2 sur [a, b].

A. Justifier que $M = \sup_{[a,b]} |f''|$ existe et est finie.



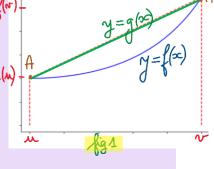
- Donner l'expression de la fonction $g: [u, v] \to \mathbb{R}$ dont la courbe est le segment d'extrémités A(u, f(u)) et A'(v, f(v)).
 - Soit $x \in [u, v]$. On pose h(t) = f(t) g(t) + K(t u)(t v) où K est une constante.
 - 2.1 Choisissez K de sorte qu'il existe $\alpha \in]u,x[$ et $\beta \in]x,v[$ tel que $:h'(\alpha)=0=h'(\beta)$
 - 2.2 En déduire qu'il existe $c_x \in]u, v[$ tel que $: f(x) g(x) = f''(c_x) \frac{(x-u)(x-v)}{2}$.
 - 2.3 Montrer que $\forall x \in [u, v], |f(x) g(x)| \le M \frac{(x-u)(v-x)}{2}$.

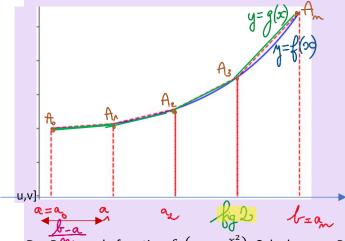


- la fonction $g:[a,b] \to \mathbb{R}$ dont la courbe est la ligne brisée qui relie les points A_0,A_1,\ldots,A_n .

 3. Montrer que $\int_a^b |f(x)-g(x)| dx \le M \sum_{k=0}^{n-1} \int_{u_k}^{u_{k+1}} \frac{(x-u_k)(u_{k+1}-x)}{2} dx$.

 4. En déduire que $\left|\int_a^b [f(x)-g(x)] dx\right| \le \frac{M(b-a)^3}{12n^2}$.





- D. Prenons la fonction $f:(x\mapsto e^{x^2})$. Calculer avec Python une valeur approchée de l'intégrale de f sur [0,1] à la précision 0,01 en utilisant la méthode des trapèzes.
 - A. f'' est continue sur le segment [a, b] donc |f''| est continue sur le segment [a, b]. Par conséquent, |f''| est bornée et atteint ses bornées sur ce segment. Ainsi, $M = \sup_{[a,b]} |f''| = \max_{[a,b]} |f''|$ existe et est fini.
 - B. $1. \forall t \in [u, v], g(t) = \frac{f(u) f(v)}{u v}(t u) + f(u) = \frac{f(u) f(v)}{u v}t + f(u) u\frac{f(u) f(v)}{u v}$

2.1 Soit $x \in [u, v]$. On pose h(t) = f(t) - g(t) + K(t - u)(t - v) où K est une constante.

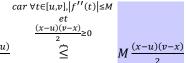
h est de classe C^2 sur [u,v] car f et g et $(t\mapsto (t-u)(t-v))$ le sont. De plus, h(u)=0=h(v). Choisissons K de sorte que h(x) = 0. Prenons donc $K = \frac{g(x) - f(x)}{(x - u)(x - v)}$

Alors le théorème de Rolle s'applique entre u et x et entre x et v. Il existe donc $\alpha \in]u,x[$ et $\beta \in]x,v[$ tq $h'(\alpha)=0=h'(\beta)$. 2.2 Comme h' est de classe \mathcal{C}^1 sur [u,v] donc sur $[\alpha,\beta]$ et $h'(\alpha)=0=h'(\beta)$, le théorème de Rolle qu'il existe $c_x\in]\alpha,\beta[$ tel

que $h''(c_x) = 0$. Or, $\forall t \in [u, v], h''(t) = f''(t) - g''(t) + 2K$ $\stackrel{\frown}{=}$ f''(t) + 2K Donc, $f''(c_x) = -2K = -2\frac{g(x) - f(x)}{(x - u)(x - v)}$

Ainsi, $f(x) - g(x) = f''(c_x) \frac{(x-u)(x-v)}{2}$

 $2.3 \forall x \in [u, v],$



$$|f(x) - g(x)| = \left| f''(c_x) \frac{(x - u)(x - v)}{2} \right| = \frac{|f''(c_x)|}{2} |x - u| |x - v| = |f''(c_x)| \frac{(x - u)(v - u)}{2}$$

C. On pose $\forall k \in [0,n]$, $u_k = a + \frac{k(b-a)}{n}$ et $A_k(u_k,f(u_k))$ point de Cf. On définit la fonction $g:[a,b] \to \mathbb{R}$ dont la courbe est la ligne brisée qui relie les points A_0,A_1,\ldots,A_n .

3. $\int_{a}^{b} |f(x) - g(x)| dx = \sum_{k=0}^{n-1} \int_{u_{k}}^{u_{k+1}} |f(x) - g(x)| dx. \text{ Or, } \forall x \in [u_{k}, u_{k+1}], |f(x) - g(x)| \leq M \frac{(x-u_{k})(u_{k+1}-x)}{2}. \text{ Donc par croissance de l'opérateur intégral sur } [u_{k}, u_{k+1}],$ $\int_{u_{k}}^{u_{k+1}} |f(x) - g(x)| dx \leq \int_{u_{k}}^{u_{k+1}} M \frac{(x-u_{k})(u_{k+1}-x)}{2} dx = M \int_{u_{k}}^{u_{k+1}} \frac{(x-u_{k})(u_{k+1}-x)}{2} dx$ $\text{Alors, } \sum_{k=0}^{n-1} \int_{u_{k}}^{u_{k+1}} |f(x) - g(x)| dx \leq \sum_{k=0}^{n-1} M \int_{u_{k}}^{u_{k+1}} \frac{(x-u_{k})(u_{k+1}-x)}{2} dx = M \sum_{k=0}^{n-1} \int_{u_{k}}^{u_{k+1}} \frac{(x-u_{k})(u_{k+1}-x)}{2} dx.$ $\text{4. Alors } \left| \int_{a}^{b} [f(x) - g(x)] dx \right| \lesssim \int_{a}^{b} |f(x) - g(x)| dx \leq M \sum_{k=0}^{n-1} \int_{u_{k}}^{u_{k+1}} \frac{(x-u_{k})(u_{k+1}-x)}{2} dx.$

$$\int_{u_k}^{u_{k+1}} |f(x) - g(x)| dx \le \int_{u_k}^{u_{k+1}} M \frac{(x - u_k)(u_{k+1} - x)}{2} dx = M \int_{u_k}^{u_{k+1}} \frac{(x - u_k)(u_{k+1} - x)}{2} dx$$

$$\text{Or, } \sum_{k=0}^{n-1} \int_{u_k}^{u_{k+1}} \frac{(x-u_k)(u_{k+1}-x)}{2} dx = \sum_{k=0}^{n-1} \int_{u_k}^{u_{k+1}} \frac{-x^2 + (u_{k+1}+u_k)x - u_k u_{k+1}}{2} dx = \sum_{k=0}^{n-1} \frac{1}{2} \left[\frac{-x^3}{3} + \frac{(u_{k+1}+u_k)x^2}{2} - u_k u_{k+1} x \right]_{u_k}^{u_{k+1}} \right]$$

$$\begin{split} &=\sum_{k=0}^{n-1}\frac{1}{2}\left[\frac{-u_{k+1}^{3}}{3}+\frac{(u_{k+1}+u_{k})u_{k+1}^{2}}{2}-u_{k}u_{k+1}^{2}+\frac{u_{k}^{3}}{3}-\frac{(u_{k+1}+u_{k})u_{k}^{2}}{2}+u_{k}^{2}u_{k+1}\right]\\ &=\sum_{k=0}^{n-1}\frac{1}{2}\left[\frac{u_{k}^{3}-u_{k+1}^{3}}{3}+\frac{(u_{k+1}+u_{k})(u_{k+1}^{2}-u_{k}^{2})}{2}+(u_{k}-u_{k+1})u_{k}\;u_{k+1}\right]\\ &=\sum_{k=0}^{n-1}\frac{1}{2}\left[\frac{(u_{k}-u_{k+1})(u_{k}^{2}+u_{k}u_{k+1}+u_{k+1}^{2})}{3}-\frac{(u_{k+1}+u_{k})^{2}(u_{k}-u_{k+1})}{2}+(u_{k}-u_{k+1})u_{k}\;u_{k+1}\right]\\ &=\sum_{k=0}^{n-1}\frac{(u_{k}-u_{k+1})}{2}\left[\frac{(u_{k}^{2}+u_{k}u_{k+1}+u_{k+1}^{2})}{3}-\frac{(u_{k+1}+u_{k})^{2}}{2}+u_{k}\;u_{k+1}\right]\\ &=\sum_{k=0}^{n-1}\frac{(u_{k}-u_{k+1})}{2}\left[-\frac{u_{k}^{2}+u_{k+1}^{2}-2u_{k}u_{k+1}}{6}\right]=\sum_{k=0}^{n-1}\frac{(u_{k}-u_{k+1})}{12}\left[-(u_{k}-u_{k+1})^{2}\right]=\sum_{k=0}^{n-1}\frac{(u_{k+1}-u_{k})^{3}}{12}=\\ &\sum_{k=0}^{n-1}\frac{\left(\frac{b-a}{n}\right)^{3}}{12n^{3}}\sum_{k=0}^{n-1}1=\frac{(b-a)^{3}}{12n^{2}}. \end{split}$$

Ainsi, Alors $\left| \int_a^b [f(x) - g(x)] dx \right| \le \frac{M(b-a)^3}{12n^2}$

D.f: $\left(x\mapsto e^{x^2}\right)$ est de classe C^2 sur [0,1]. Et $\forall x\in[0,1], |f''(x)|=(2+4x^2)e^{x^2}\leq 6e$. Donc, en définissant g comme si dessus, $\left|\int_0^1 f(x)dx-\int_0^1 g(x)dx\right|=\left|\int_0^1 [f(x)-g(x)]dx\right|\leq \frac{6e}{12n^2}$. Pour que $\int_0^1 g(x)dx$ soit une valeur approchée de $\int_0^1 f(x)dx$ à $\frac{10^{-2} \text{près}}{10^{-2}}$, il suffit de choisir n tel que $\frac{6e}{12n^2}\leq 10^{-2}$ i.e. $n\geq \sqrt{50e}$. Alors n=12 convient. Calculons alors grâce à Python, $\int_0^1 g(x)dx$ lorsque n=1360. L'aire d'un trapèze T rectangle est $(h+H)*\frac{b}{2}$ où

main.py

t to main.py

from math import*

s s of for k in range (0,12):
 s = s + (exp(((k+1)**2)/(144))+exp((k**2)/144))/24

