DS 5

4 heures et calculatrice interdite.

En cas de doute sur le sujet, n'hésitez pas à m'en faire part.

Encadrer vos résultats en couleurs (pas de fluo car interdit au concours).

Soigner l'écriture et la présentation.

EXERCICE 1 Reste de division euclidienne

Déterminons le reste R de la division euclidienne de $P = X^n$ par $B = (X - 1)^2(X + 2)$.

EXERCICE 2 Intégrales à paramètres

Soient Φ et Ψ les fonctions définies par : $\Phi(x) = \int_0^1 \frac{e^{-(1+t^2)x}}{1+t^2} dt$ et $\Psi(x) = \int_0^1 e^{-(1+t^2)x} dt$.

1. Justifier que $D_{\Phi}=D_{\Psi}=\mathbb{R}$.

2. Etude de la fonction Φ

- 2.1 Calculer $\Phi(0)$.
- 2.2 Montrer que : $\forall x > 0, \frac{\pi}{4}e^{-2x} \le \Phi(x) \le \frac{\pi}{4}e^{-x}$. En déduire la limite de Φ en $+\infty$.
- 2.3 Faire de même en $-\infty$.
- 2.4 Etudier les variations de Φ .

3. Nous démontrerons dans la question 4. que Φ est dérivable sur $\mathbb R$ et que: $\forall x \in \mathbb R$, $\Phi'(x) = -\Psi(x)$. Nous admettons et utilisons ce résultat cette question 3.

On pose
$$G(x) = \int_0^x e^{-\frac{t^2}{2}} dt$$
 et $F(x) = 2\Phi\left(\frac{x^2}{2}\right) + (G(x))^2$.

- 3.1 Justifier que F est dérivable sur \mathbb{R} .
- 3.2 Montrer que : $\forall x \in \mathbb{R}, F'(x) = 0$.
- 3.3 En déduire que : $\lim_{x \to +\infty} G(x) = \sqrt{\frac{\pi}{2}}$.

4. Etude de la dérivabilité de Φ

- 4.1 En appliquant Taylor-Lagrange, montrer que : $\forall h \in [-1;1], \forall x>0, \left|e^{-hx}-1+hx\right| \leq \frac{h^2x^2}{2}e^x$.
- 4.2 Soit $a \in \mathbb{R}$. Démontrer que : $\forall h \in [-1; 1], \left| \frac{\phi(a+h) \phi(a)}{h} + \Psi(a) \right| \leq \left| \int_0^1 \frac{1+t^2}{2} e^{\left(1+t^2\right)(1-a)} dt \right| |h|$.
- 4.3 En déduire que Φ est dérivable sur \mathbb{R} et que $\forall a \in \mathbb{R}, \Phi'(a) = -\Psi(a)$

EXERCICE 3 Théorèmes classiques et applications.

Les parties A, B et C sont indépendantes.

A. Critère de classe C^1 et théorème de Rolle

Soit a et b réels tels que a < b et $g: [a, b] \to \mathbb{R}$, de classe C^2 telle que g(a) = g(b) = 0 et g'(a) = 0.

On pose $\varphi(x) = \begin{cases} \frac{g(x)}{x-a} & \text{si } x \in]a, b] \\ 0 & \text{si } x = a \end{cases}$.

- 1. Enoncer le critère de classe C^1 .
- 2. Montrer que φ est de classe C^1 sur [a,b] et déterminer $\varphi'(x)$ pour $x \in [a,b]$. (indication: utiliser le $DL_2(0)$ de g)
- 3. Enoncer le théorème de Rolle.
- 4. Montrer, en utilisant φ , qu'il existe un réel $c \in]a,b[$ tel que : $g'(c)=\frac{g(c)}{c-a}$. Interpréter géométriquement ce résultat.

B. Accroissements finis.

Soit $f: \mathbb{R}^+ \to \mathbb{R}$, dérivable sur \mathbb{R}^+ telle que f' est strictement décroissante et positive sur \mathbb{R}^+ .

- 5. Enoncer le théorème d'égalité des accroissements finis.
- 6. Montrer que $\forall x \in [1, +\infty[, f(x+1) f(x) < f'(x) < f(x) f(x-1)]$.
- 7. Soit $(s_n)_{n\in\mathbb{N}^*}$ la suite réelle définie par : $\forall n\in\mathbb{N}^*$, $s_n=\sum_{k=1}^n f'(k)$.

Montrer que : $(s_n)_{n\in\mathbb{N}^*}$ est convergente <u>si et seulement si</u> f a une limite finie en $+\infty$.

8. **Application**: étudier la convergence des suites u et v définies par :

$$\forall n \in \mathbb{N}^*, u_n = \sum_{k=1}^n \frac{1}{1+k^2} \ et \ v_n = \sum_{k=1}^n \frac{1}{\sqrt{1+k}}.$$

C. Une nouvelle formule de Taylor.

Soit $g: \mathbb{R} \to \mathbb{R}$, une fonction de classe C^{n+1} et a et b des réels fixés tels a < b.

On définit $\varphi: \mathbb{R} \to \mathbb{R}$ par : $\forall x \in \mathbb{R}$, $\varphi(x) = g(b) - \left[\sum_{k=0}^{n} \frac{(b-x)^k}{k!} g^{(k)}(x)\right] + V \frac{(b-x)^{n+1}}{(n+1)!}$ où V est une constante réelle (que vous choisirez à la question 10.)

- 9. Montrer que φ est dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}$, $\varphi'(x) = -\frac{(b-x)^n}{n!} [g^{(n+1)}(x) + V]$.
- 10. En choisissant « judicieusement » la constante V, montrer l'existence d'un réel $c \in [a, b]$ tel que :

$$g(b) = \sum_{k=0}^{n} \frac{(b-a)^k}{k!} g^{(k)}(a) + \frac{(b-x)^{n+1}}{(n+1)!} g^{(n+1)}(c)$$
. (une nouvelle formule de Taylor).

- 11. Justifier que $M=\max_{[a,b]}g^{(n+1)}$ et $m=\min_{[a,b]}g^{(n+1)}$ existent.
- 12. Montrer que : $m \frac{(b-a)^{n+1}}{(n+1)!} \le \int_a^b \frac{(b-u)^n}{n!} g^{(n+1)}(u) du \le M \frac{(b-a)^{n+1}}{(n+1)!}$.
- 13. En déduire qu'il existe un réel $c \in [a,b]$ tel que $\int_a^b \frac{(b-u)^n}{n!} g^{(n+1)}(u) du = \frac{(b-a)^{n+1}}{(n+1)!} g^{(n+1)}(c)$.

. Fin .

14. Montrer, par récurrence sur n, que pour toute fonction $f: \mathbb{R} \to \mathbb{R}$ de classe C^{n+1} ,

$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^k + \int_a^b \frac{(b-u)^n}{n!} f^{(n+1)}(u) du$$
. (formule de Taylor reste-intégral).

15. Retrouver le résultat obtenu à la question 10.