Corrigé du TD 6 : Applications, injections, surjections et bijections.

Ex 1 Pour chacune des fonctions f suivantes et des ensembles A et B proposés,

- **A.** Décrire géométriquement f(A) et $f^{-1}(B)$.
- Préciser si f est injective et/ou surjective et/ou bijective de Df sur un domaine F à préciser et le cas échéant déterminer f^{-1} .
- 1. $f: \mathbb{R}^2 \to \mathbb{R}$ telle que : f(a, b) = 2a + 3b et $B = \{5\}$ et $A = \{(x, y) \in \mathbb{R}^2 / x = 2y\}$.
- 2. $f: \mathbb{R}^3 \to \mathbb{R}^3$ telle que : f(x,y,z) = (2x y + z, x y + z, y 2z) et $A = \{(x,x,x)/x \in \mathbb{R}\}$ et $B = \{(a,b,c) \in \mathbb{R}^3/a + b + c = 0\}$.
- 3. $f: \mathbb{R}^2 \to \mathbb{R}^3$ telle que : f(a,b) = (2a+b,a-b-1,3b-a) et $A = \{(x,y)/x = y\}$ et $B = \{(x,y,z)/2x + y z = 1\}$.
- 4. $f: \mathbb{R}^2 \to \mathbb{C}$ telle que : : f(a,b) = (2a-b) + i(a+2b) et $A = \{(a,b)/a + 2b 1 = 0\}$ et $B = \{z \in \mathbb{C} / |z| = 3\}$.
- 5. $\forall z \in \mathbb{C} \setminus \{-2 i\}, \ f(z) = \frac{2 + i z}{iz 1 + 2i} \text{ et } A = \{z \in \mathbb{C} / |m(z) = -1\} \text{ et } B = \{z \in \mathbb{C} / |z| = 1\} \text{ puis } B' = \mathbb{R}.$
- 6. $f: \binom{\mathbb{C} \to \mathbb{C}}{z \mapsto z^2 + z + 1}$ et $A = B = \mathbb{R}$. 1. $f: \mathbb{R}^2 \to \mathbb{R}$ telle que : f(a, b) = 2a + 3b et $B = \{5\}$ et $A = \{(x, y) \in \mathbb{R}^2 / x = 2y\}$.

Injectivité f(0,0) = f(-3,2) Donc f n'est pas injective sur \mathbb{R}^2 . Et par conséquent, f n'est pas bijective de \mathbb{R}^2 sur \mathbb{R} .

Surjectivité Pour tout $y \in \mathbb{R}$, $y = f\left(\frac{y}{2}, 0\right)$. Donc tout réel a au moins un antécédent par f. Ainsi, f est surjective de \mathbb{R}^2 sur \mathbb{R}

Image directe $f(A) = \{f(x,y)/(x,y) \in A\} = \{f(x,y)/(x,y) \in \mathbb{R}^2 \text{ et } x = 2y\} = \{f(2y,y)/y \in \mathbb{R}\} = \{2(2y) + 3y/y \in \mathbb{R}\} = \{7y/y \in \mathbb{R}\} = \mathbb{R}$ Image réciproque $f^{-1}(B) = \{(x,y) \in \mathbb{R}^2 / f(x,y) \in B\} = \{(x,y) \in \mathbb{R}^2 / 2x + 3y = 5\} = \{(x,y) \in \mathbb{R}^2 / y = \frac{5}{3} - \frac{2}{3}x\} = \{(x,\frac{5}{3} - \frac{2}{3}x) / x \in \mathbb{R}\}.$ Les

points $M(x,y) \in P$ tq $y = \frac{5}{3} - \frac{2}{3}x$, constituant $f^{-1}(B)$, sont les points de la droite d'équation 2x + 3y = 5, la droite passant par $A\left(0,\frac{5}{3}\right)$ et dirigée par $\vec{u} = -2\vec{\imath} + 3\vec{\jmath}$.

2. $f: \mathbb{R}^3 \to \mathbb{R}^3$ telle que : f(x, y, z) = (2x - y + z, x - y + z, y - 2z) et $A = \{(x, x, x)/x \in \mathbb{R}\}$ et $B = \{(a, b, c) \in \mathbb{R}^3/a + b + c = 0\}$.

Injectivité, surjectivité et bijectivité : méthode de l'équation

Soit $Y=(a,b,c)\in\mathbb{R}^3$. Résolvons l'équation f(X)=Y d'inconnue $X=(x,y,z)\in\mathbb{R}^3$, afin de déterminer le nombre d'antécédents de Y par f.

$$f(X) = Y \Leftrightarrow f(x, y, z) = (a, b, c) \Leftrightarrow (2x - y + z, x - y + z, y - 2z) = (a, b, c) \Leftrightarrow \begin{cases} 2x - y + z = a \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x - y + z = b \end{cases} \Leftrightarrow \begin{cases}$$

$$\begin{cases} x = a - b \\ a - b - y + z = b \Leftrightarrow \begin{cases} x = a - b \\ -y + z = 2b - a \Leftrightarrow \end{cases} \begin{cases} x = a - b \\ -y + z = 2b - a \Leftrightarrow \end{cases} \begin{cases} x = a - b \\ y = 2a - 4b - c \Leftrightarrow X = (a - b, 2a - 4b - c, a - c - 2b). \end{cases}$$

$$\begin{cases} x = a - b \\ y - 2z = c \end{cases} \begin{cases} x = a - b \\ y - 2z = c \end{cases} \begin{cases} x = a - b \\ y = 2a - 4b - c \Leftrightarrow X = (a - b, 2a - 4b - c, a - c - 2b). \end{cases}$$

Donc Y=(a,b,c) admet un unique antécédent par f qui est (a-b,2a-4b-c,a-c-2b). Donc f est bijective de \mathbb{R}^3 sur \mathbb{R}^3 et $\forall (a,b,c) \in \mathbb{R}^3$ \mathbb{R}^3 , $f^{-1}(a, b, c) = (a - b, 2a - 4b - c, a - c - 2b)$. Alors est injective et surjective.

Image directe : $f(A) = \{f(x, x, x)/x \in \mathbb{R}\} = \{(2x, x, -x)/x \in \mathbb{R}\} = \{x(2, 1, -1)/x \in \mathbb{R}\}$. Les points M(2x, x, -x) tq $x \in \mathbb{R}$ sont les points de l'espace géométrique situé sur la droite passant par O et dirigée par $\vec{u} = 2\vec{i} + \vec{j} - \vec{k}$.

 $\mathbb{R}^3/3x - y = 0$ = $\{(x, 3x, z)/x \ et \ z \ r\'eels \} = \{x(1,3,0) + z(0,0,1)/x \ et \ z \ r\'eels \}$. Les points $M(x, 3x, z) \ tq \ x \ et \ z \ r\'eels$ sont les points du plan P passant par O et dirigée par : $\vec{u}(1,3,0)$ et $\vec{v}(0,0,1)$ puisque $\overrightarrow{OM} = x\vec{u} + z\vec{v}$.

 $\mathsf{Rque}: f^{-1}(B) = \{f^{-1}(a,b,c)/(a,b,c) \in B\} = \{(a-b,2a-4b-c,a-c-2b)/(a,b,c) \in \mathbb{R}^3 \ et \ a+b+c=0\}$

- $= \{(a-b, 2a-4b-c, a-c-2b)/(a,b,c) \in \mathbb{R}^3 et \ a = -b-c\}$
 - $=\{(-b-c-b,2(-b-c)-4b-c,(-b-c)-c-2b)/(b,c)\in\mathbb{R}^2\}$
 - $=\{(-2b-c,-3c-6b,-2c-3b)/(b,c)\in\mathbb{R}^2\}$
 - $= \{(2b+c, 3c+6b, 2c+3b)/(b, c) \in \mathbb{R}^2\}$
 - = $\{b(2,6,3) + c(1,3,2)/(b,c) \in \mathbb{R}^2\}$ représenté par *P* aussi !!!

7. $f: \mathbb{R}^2 \to \mathbb{R}^3$ telle que : f(a, b) = (2a + b, a - b - 1, 3b - a)

Injectivité, surjectivité et bijectivité : méthode de l'équation

Soit $Y = (u, v, w) \in \mathbb{R}^3$. Résolvons l'équation f(X) = Y d'inconnue $X = (a, b) \in \mathbb{R}^2$, afin de déterminer le nombre d'antécédents de Y par f.

Soit
$$Y = (u, v, w) \in \mathbb{R}^3$$
. Résolvons l'équation $f(X) = Y$ d'inconnue $X = (a, b) \in \mathbb{R}^2$, afin de déterminer le nombre d'antécédents de Y $f\left(\underbrace{X}_{inconnue}\right) = Y \Leftrightarrow f\underbrace{(a, b)}_{inconnue} = (u, v, w) \Leftrightarrow (2a + b, a - b - 1, 3b - a) = (u, v, w) \Leftrightarrow \begin{cases} 2a + b = u \\ a - b - 1 = v \Leftrightarrow \\ 3b - a = w \end{cases}$ $\begin{cases} 3a - 1 = u + v \\ 3b + 2 = u - 2v \Leftrightarrow \\ 3b - a = w \end{cases}$ $\begin{cases} a = \frac{1}{3}(u + v + 1) \\ b = \frac{1}{3}(u - 2v - 2) \\ u - 2v - 2 - \frac{1}{3}(u + v + 1) = w \end{cases}$ $\begin{cases} a = \frac{1}{3}(u + v + 1) \\ b = \frac{1}{3}(u - 2v - 2) \\ \frac{2u - 7v - 3w = 7}{6quation de compatibilité} \end{cases}$ Donc si $Y = (u, v, w) \in \mathbb{R}^3$ ne vérifie pas $2u - 7v - 3w = 7$ alors l'équation $f(X) = Y$ est impossible ; autrement dit, Y n'a pas d'antégent Y and Y in the sum of Y in the sum of Y is a sum of Y and Y in the sum of Y in the sum of Y is a sum of Y in the sum of Y is a sum of Y in the sum of Y

Donc si $Y = (u, v, w) \in \mathbb{R}^3$ ne vérifie pas 2u - 7v - 3w = 7 alors l'équation f(X) = Y est impossible ; autrement dit, Y n'a pas d'antécédent par f. En particulier, le triplet (0,0,0) n'a pas d'antécédent par f. J'en conclus que f n'est pas surjective de \mathbb{R}^2 sur \mathbb{R}^3 . Et ainsi, f n'est pas bijective de \mathbb{R}^2 sur \mathbb{R}^3 .

Par contre si $Y=(u,v,w)\in\mathbb{R}^3$ vérifie 2u-7v-3w=7 alors l'équation f(X)=Y admet $X=(\frac{1}{3}(u+v+1),\frac{1}{3}(u-2v-2))$ comme unique solution, donc un tel Y admet un seul antécédent par f qui est = $(\frac{1}{3}(u+v+1), \frac{1}{3}(u-2v-2))$

Alors, d'après ce qui précède, un triplet Y=(u,v,w), quelconque, admet 0 antécédent (si $2u-7v-3w\neq 7$) ou 1 antécédent (si $2u-7v-3w\neq 7$) 7v - 3w = 7) par f. J'en conclus que $\frac{f}{f}$ est injective. De plus, je peux désormais affirmer que $Im(f) = f(\mathbb{R}^2) = \{(u, v, w) \in \mathbb{R}^3 / 2u - (u, v, w) \in \mathbb{R}^3 / 2u \}$

$$7v - 3w = 7\} \text{ et } \frac{Im(f) \to \mathbb{R}^2}{\int Im(f) de \mathbb{R}^2 sur Im(f) de f} = \frac{Im(f) \to \mathbb{R}^2}{\int Im(f) de \mathbb{R}^2} \frac{Im(f) de \mathbb{R}^2}{\int Im(f) de \mathbb{R}^2}$$

8. $f: \mathbb{R}^2 \to \mathbb{C}$ telle que : : f(a,b) = (2a-b) + i(a+2b) et $A = \{(a,b)/a + 2b - 1 = 0\}$ et $B = \{z \in \mathbb{C} / |z| = 3\}$.

Injectivité, surjectivité et bijectivité : méthode de l'équation

Soit $Y = u + iv \in \mathbb{C}$. Résolvons l'équation f(X) = Y d'inconnue $X = (a, b) \in \mathbb{R}^2$, afin de déterminer le nombre d'antécédents de Y par f.

$$f\left(\underbrace{X}_{inconnue}\right) = Y \Leftrightarrow f\underbrace{(a,b)}_{inconnue} = u + iv \Leftrightarrow (2a - b) + i(a + 2b) = u + iv \Leftrightarrow \begin{cases} 2a - b = u \\ a + 2b = v \end{cases} \Leftrightarrow \begin{cases} 5a = v + 2u \\ 5b = 2v - u \end{cases} \Leftrightarrow \begin{cases} a = \frac{v + 2u}{5} \\ b = \frac{2v - u}{5} \end{cases}$$

Donc chaque $Y=u+iv\in\mathbb{C}$ admet $X=\left(\frac{v+2u}{5},\frac{2v-u}{5}\right)$ comme unique antécédent par f. Donc f est bijective de \mathbb{R}^2 sur \mathbb{C} et $\forall Y=u+iv\in\mathbb{C}$

 $\mathbb{C}, f^{-1}(u+iv) = \left(\frac{v+2u}{5}, \frac{2v-u}{5}\right)$ Alors f est injective et surjective.

Image directe: $f(A) = \{f(a,b)/(a,b) \in \mathbb{R}^2 \text{ et } a = 1-2b\} = \{(2(1-2b)-b)+i(1-2b+2b)/b \in \mathbb{R}\} = \{2-5b+i/b \in \mathbb{R}\}$

 $\{x+i/x\in\mathbb{R}\}$. Donc f(A) est représentée, dans le plan complexe, par la droite d'équation y=1

 $\mathbf{Image\ r\'eciproque}: f^{-1}\langle B\rangle = \{(a,b)\in\mathbb{R}^2/f(a,b)\in B\} = \{(a,b)\in\mathbb{R}^2/|f(a,b)|=3\}$

 $= \{(a,b) \in \mathbb{R}^2 / \sqrt{(2a-b)^2 + (a+2b)^2} = 3\} = \{(a,b) \in \mathbb{R}^2 / 3a^2 + 3b^2 = 9\} = \{(a,b) \in \mathbb{R}^2 / a^2 + b^2 = 3\}$. Donc $f^{-1}(B)$ est représentée par le cercle de centre O et de rayon $\sqrt{3}$.

 $\forall z \in \mathbb{C} \setminus \{-2 - i\}, \ f(z) = \frac{2 + i - z}{iz - 1 + 2i} \ \text{et} \ A = \{z \in \mathbb{C} / |m(z) = -1\} \ \text{et} \ B = \{z \in \mathbb{C} / |z| = 1\} \ \text{puis} \ B' = \mathbb{R}.$

Injectivité, surjectivité et bijectivité : méthode de l'équation

f(z) existe $\Leftrightarrow iz - 1 + 2i \neq 0 \Leftrightarrow z \neq \frac{1-2i}{i} \Leftrightarrow z \neq -2 - i$

Soit $y \in \mathbb{C}$. Résolvons l'équation f(z) = y d'inconnue $z \in \mathbb{C} \setminus \{-2 - i\}$, afin de déterminer le nombre d'antécédents de y par f.

$$f\left(\underbrace{z}_{inconnue}\right) = y \Leftrightarrow \underbrace{\frac{2+i-z}{iz-1+2i}} = y \Leftrightarrow 2+i-z = y(iz-1+2i) \Leftrightarrow (-1-iy)z = -2-i+(2i-1)y$$

$$\Leftrightarrow \begin{cases} z = \frac{-2-i+(2i-1)y}{(-1-iy)} si \ y \neq i \\ 0 = -4 \ si \ y = i \end{cases} \Leftrightarrow \begin{cases} z = \frac{(2i-1)y-(2+i)}{(-1-iy)} si \ y \neq i \\ imposible \ si \ y = i \end{cases}$$

$$\Leftrightarrow \begin{cases} z = \frac{(2i-1)y-(2+i)}{(-1-iy)} si \ y \neq i \\ imposible \ si \ y = i \end{cases}$$

$$\Leftrightarrow \begin{cases} z = \frac{(2i-1)y-(2+i)}{(-1-iy)} si \ y \neq i \\ imposible \ si \ y = i \end{cases}$$

$$\Leftrightarrow \begin{cases} z = \frac{(2i-1)y-(2+i)}{(-1-iy)} si \ y \neq i \\ imposible \ si \ y = i \end{cases}$$

 $\Leftrightarrow y = -\frac{1}{i} = i$ $\mathbb{C}\setminus\{-2-i\}$ sur \mathbb{C} . Et tout complexe $y\neq i$ admet un unique antécédent $\frac{(2i-1)y-(2+i)}{(-1-iy)}$ par f. Et par suite, tout complexe y a 0 (si y=i) ou 1 (si $y\neq i$) antécédent par f. Donc f est injective et $f(\mathbb{C}\setminus\{-2-i\})=\mathbb{C}\setminus\{i\}$ et f réalise une bijection de $\mathbb{C}\setminus\{-2-i\}$ sur $\mathbb{C}\setminus\{i\}$ et $\forall y\in \mathbb{C}\setminus\{i\}$ et $\forall y\in \mathbb{C}\setminus\{i\}$ et f réalise une bijection de f realise une bijection de f real $\mathbb{C}\setminus\{i\}, f^{-1}(y) = \frac{(2i-1)y-(2+i)}{(-1-iy)}$

Image directe:
$$f(A) = \{f(z)/z \in \mathbb{C} \text{ et } Im(z) = -1\} = \{f(x-i)/x \in \mathbb{R} \setminus \{-2\}\} = \left\{\frac{2+i-x+i}{ix+1-1+2i}/x \in \mathbb{R} \setminus \{-2\}\right\}$$

$$= \left\{\frac{2-x+2i}{(2+x)i}/x \in \mathbb{R} \setminus \{-2\}\right\} = \left\{\frac{2-x+2i}{(2+x)}(-i)/x \in \mathbb{R} \setminus \{-2\}\right\} = \left\{\frac{(x-2)i+2}{(2+x)}/x \in \mathbb{R} \setminus \{-2\}\right\} = \left\{\frac{2}{(2+x)}\left(1+\frac{(x-2)}{2}i\right)/x \in \mathbb{R} \setminus \{-2\}\right\}$$

$$f(A) = \begin{cases} t\left(1+\frac{1}{2}\left(\frac{2}{t}-2\right)i\right)/t \in \mathbb{R}^*\right\} = \left\{t+\left(1-\frac{1}{t}\right)i/t \in \mathbb{R}^*\right\}. \text{ Donc } f(A) \text{ est représentée, dans le plan complexe, par l' hyperbole,}$$

$$car\left\{t=\frac{2}{2+x}\right\}$$

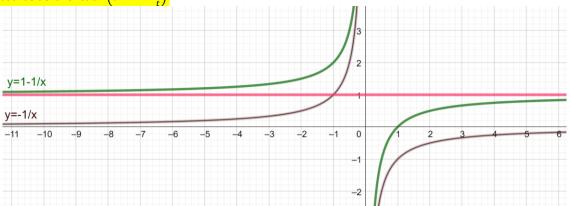
$$car\left\{t=\frac{2}{2+x}\right\}$$

$$car\left\{t=\frac{2}{2+x}\right\}$$

$$car\left\{t=\frac{2}{2+x}\right\}$$

$$car\left\{t=\frac{2}{2+x}\right\}$$

courbe de la fonction $(t \mapsto 1 - \frac{1}{t})$



Images réciproques :

$$f^{-1}\langle B \rangle = \left\{ z \in \mathbb{C} \setminus \{-2 - i\} / |f(z)| = 1 \right\} = \left\{ z \in \mathbb{C} \setminus \{-2 - i\} / \left| \frac{2 + i - z}{iz - 1 + 2i} \right| = 1 \right\} = \left\{ z \in \mathbb{C} \setminus \{-2 - i\} / \left| \frac{|2 + i - z|}{|iz - 1 + 2i|} \right| = 1 \right\} = \left\{ z \in \mathbb{C} \setminus \{-2 - i\} / \left| \frac{|2 + i - z|}{|iz - 1 + 2i|} \right| = 1 \right\} = \left\{ z \in \mathbb{C} \setminus \{-2 - i\} / \left| \frac{|2 + i - z|}{|iz - 1 + 2i|} \right| = 1 \right\} = \left\{ z \in \mathbb{C} \setminus \{-2 - i\} / \left| \frac{|2 + i - z|}{|iz - 1 + 2i|} \right| = 1 \right\} = \left\{ z \in \mathbb{C} \setminus \{-2 - i\} / \left| \frac{|2 + i - z|}{|iz - 1 + 2i|} \right| = 1 \right\} = \left\{ z \in \mathbb{C} \setminus \{-2 - i\} / \left| \frac{|2 + i - z|}{|iz - 1 + 2i|} \right| = 1 \right\} = \left\{ z \in \mathbb{C} \setminus \{-2 - i\} / \left| \frac{|2 + i - z|}{|iz - 1 + 2i|} \right| = 1 \right\} = \left\{ z \in \mathbb{C} \setminus \{-2 - i\} / \left| \frac{|2 + i - z|}{|iz - 1 + 2i|} \right| = 1 \right\} = \left\{ z \in \mathbb{C} \setminus \{-2 - i\} / \left| \frac{|2 + i - z|}{|iz - 1 + 2i|} \right| = 1 \right\} = \left\{ z \in \mathbb{C} \setminus \{-2 - i\} / \left| \frac{|2 + i - z|}{|iz - 1 + 2i|} \right| = 1 \right\} = \left\{ z \in \mathbb{C} \setminus \{-2 - i\} / \left| \frac{|2 + i - z|}{|iz - 1 + 2i|} \right| = 1 \right\} = \left\{ z \in \mathbb{C} \setminus \{-2 - i\} / \left| \frac{|2 + i - z|}{|iz - 1 + 2i|} \right| = 1 \right\} = \left\{ z \in \mathbb{C} \setminus \{-2 - i\} / \left| \frac{|2 + i - z|}{|iz - 1 + 2i|} \right| = 1 \right\} = \left\{ z \in \mathbb{C} \setminus \{-2 - i\} / \left| \frac{|2 + i - z|}{|iz - 1 + 2i|} \right| = 1 \right\} = \left\{ z \in \mathbb{C} \setminus \{-2 - i\} / \left| \frac{|2 - i|}{|iz - 1 + 2i|} \right| = 1 \right\} = \left\{ z \in \mathbb{C} \setminus \{-2 - i\} / \left| \frac{|2 - i|}{|iz - 1 + 2i|} \right| = 1 \right\} = \left\{ z \in \mathbb{C} \setminus \{-2 - i\} / \left| \frac{|2 - i|}{|iz - 1 + 2i|} \right| = 1 \right\} = \left\{ z \in \mathbb{C} \setminus \{-2 - i\} / \left| \frac{|2 - i|}{|iz - 1 + 2i|} \right| = 1 \right\} = \left\{ z \in \mathbb{C} \setminus \{-2 - i\} / \left| \frac{|2 - i|}{|iz - 1 + 2i|} \right| = 1 \right\} = \left\{ z \in \mathbb{C} \setminus \{-2 - i\} / \left| \frac{|2 - i|}{|iz - 1 + 2i|} \right| = 1 \right\} = \left\{ z \in \mathbb{C} \setminus \{-2 - i\} / \left| \frac{|2 - i|}{|iz - 1 + 2i|} \right| = 1 \right\} = \left\{ z \in \mathbb{C} \setminus \{-2 - i\} / \left| \frac{|2 - i|}{|iz - 1 + 2i|} \right| = 1 \right\} = \left\{ z \in \mathbb{C} \setminus \{-2 - i\} / \left| \frac{|2 - i|}{|iz - 1 + 2i|} \right| = 1 \right\} = \left\{ z \in \mathbb{C} \setminus \{-2 - i\} / \left| \frac{|2 - i|}{|iz - 1 + 2i|} \right| = 1 \right\} = \left\{ z \in \mathbb{C} \setminus \{-2 - i\} / \left| \frac{|2 - i|}{|iz - 1 + 2i|} \right| = 1 \right\} = \left\{ z \in \mathbb{C} \setminus \{-2 - i\} / \left| \frac{|2 - i|}{|iz - 1 + 2i|} \right| = 1 \right\} = \left\{ z \in \mathbb{C} \setminus \{-2 - i\} / \left| \frac{|2 - i|}{|iz - 1 + 2i|} \right| = 1 \right\} = \left\{ z \in \mathbb{C} \setminus \{-2 - i\} / \left| \frac{|2 - i|}{|iz - 1 + 2i|} \right| = 1 \right\} = \left\{ z \in \mathbb{C} \setminus \{-2$$

 \Leftrightarrow Mest sur la droite passant par 0 et dirigée par $\vec{u} = \vec{i} - 2\vec{j}$.

Donc $f^{-1}(B)$ est représentée dans le plan complexe par cette droite passant par 0 et dirigée par $\vec{u} = \vec{\iota} - 2\vec{j}$.

$$\cdot f^{-1}\langle B'\rangle = \big\{\,z\in\mathbb{C}\backslash\{-2-i\}/f(z)\in\mathbb{R}\big\} = \Big\{\,z\in\mathbb{C}\backslash\{-2-i\}/\tfrac{2+i-z}{iz-1+2i}\in\mathbb{R}\big\}$$

$$= \left\{z \in \mathbb{C} \setminus \{-2 - i\}/2 + i - z = 0 \text{ ou } arg\left(\frac{2 + i - z}{iz - 1 + 2i}\right) \equiv 0[\pi]\right\}$$
 Or , $arg\left(\frac{2 + i - z}{iz - 1 + 2i}\right) \equiv 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z + i + 2)}\right) \equiv 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i - z}{i(z - 1 + 2i)}\right) = 0[\pi] \Leftrightarrow arg\left(\frac{2 + i -$

M est sur le cercle de diamètre [A,B]. Donc, $f^{-1}(B')$ est représentée dans le plan complexe par le cercle de diamètre [A,B].

10. $f: \begin{pmatrix} \mathbb{C} \to \mathbb{C} \\ z \mapsto z^2 + z + 1 \end{pmatrix}$ et $A = B = \mathbb{R}$.

Soit $y \in \mathbb{C}$. L'équation f(z) = y d'inconnue complexe z est une équation du second degré de discriminant $\Delta = 1 - 4(1 - y) = -3 + 4y$. Donc si $y=\frac{3}{4}$ i.e. $\Delta=0$ alors cette équation admet une unique solution mais si $y\neq\frac{3}{4}$ i.e. $\Delta\neq0$, cette équation admet donc deux solutions distinctes . Donc tout complexe distinct de $\frac{3}{4}$ a deux antécédents. J'en déduis que $\frac{1}{4}$ $\frac{1}$

Image directe : $f(A) = f(\mathbb{R}) = \{x^2 + x + 1/x \in \mathbb{R}\} = Im(g) \text{ où } g: \left(\underset{x \mapsto 1 + x + x^2}{\mathbb{R}} \right)$. Or, l'étude(*) de g assure que $Im(g) = [\frac{3}{4}, +\infty[$. Donc

$$f(A) = \left[\frac{3}{4}, +\infty\right[.$$

(*) Etude de g:g est continue et dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}, g'(x) = 2x + 1 = 2\left(x + \frac{1}{2}\right)$.

g étant continue et strictement croissante sur l'intervalle $[-1/2,+\infty[$,

le TBCSM assure que $g\left(\left[-\frac{1}{2},+\infty\right[\right)=\left[\frac{3}{4},+\infty\right[$. De même, $g\left(\left]-\infty,-\frac{1}{2}\right[\right)=\right]\frac{3}{4},+\infty[$.e,

Par suite, $g(\mathbb{R}) = [\frac{3}{4}, +\infty[$.

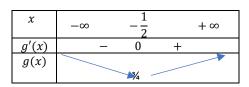


Image réciproque : $f^{-1}\langle B\rangle=\{\,z\in\mathbb{C}/\underline{z^2+z+1}\in\mathbb{R}\}.$

$$\text{Or, } z^2 + z + 1 \in \mathbb{R} \Leftrightarrow z^2 + z + 1 = \overline{z^2 + z + 1} \Leftrightarrow z^2 + z + 1 = \overline{z}^2 + \overline{z} + 1 \Leftrightarrow z^2 + z = \overline{z}^2 + \overline{z} \Leftrightarrow z^2 - \overline{z}^2 + z - \overline{z} = 0 \Leftrightarrow (z - \overline{z})(z + \overline{z}) + (z - \overline{z}) = 0 \Leftrightarrow (z - \overline{z})(z + \overline{z} + 1) = 0 \Leftrightarrow \begin{cases} z - \overline{z} = 0 \\ ou \\ z + \overline{z} + 1 = 0 \end{cases} \Leftrightarrow \begin{cases} z = \overline{z} \\ ou \\ 2Re(z) + 1 = 0 \end{cases} \Leftrightarrow \begin{cases} z \in \mathbb{R} \\ ou \\ Re(z) = -\frac{1}{2} \end{cases}$$

Donc, $f^{-1}(B) = \left\{ x; -\frac{1}{2} + ix/x \in \mathbb{R} \right\}$. $f^{-1}(B)$ est donc représentée par la réunion de deux droites : la droite des abscisses et la droite d'équation

Ex 2 Soient f et g les applications de \mathbb{N} dans \mathbb{N} définies par : g(x) = 2x et $f(x) = \begin{cases} \frac{x}{2} & \text{si } x \text{ pair} \\ 0 & \text{si } x \text{ immain} \end{cases}$

Déterminer $g \circ f$ et $f \circ g$. Les applications f et g sont-elles injectives , surjectives ou bijectives ?

Soit
$$x \in \mathbb{N}$$
. $f \circ g(x) = f(g(x)) = f(2x) = \frac{2x}{\cos^2 x \cdot \sin^2 x} = x$

Soit $x \in \mathbb{N}$. $f \circ g(x) = f(g(x)) = f(2x) = \frac{2x}{car 2x \ pair} = x$ Si x est pair alors $g \circ f(x) = g\left(\frac{x}{2}\right) = \frac{2x}{2} = x$ et si x est impair alors $g \circ f(x) = g(0) = 2 \times 0 = 0$.

J'en conclus que $g \circ f = id_{\mathbb{N}}$ et $f \circ g = h$: $\left(x \mapsto \begin{cases} x \text{ si } x \text{ pair} \\ 0 \text{ si } x \text{ impair} \end{cases}\right)$

Comme $id_{\mathbb{N}}$ est injective, f est injective . Comme $id_{\mathbb{N}}$ est surjective, g est surjective .

h n'est pas injective car h(1) = h(3). Alors comme f est injective et $f \circ g$ n'est pas injective, $\frac{g}{g}$ n'est pas injective (puisque la composée d'injections est injective)

h n'est pas surjective car $\forall x \in \mathbb{N}$, h(x) est pair, donc 1 n' a pas d'antécédent par h. Alors comme g est surjective et $f \circ g$ n'est pas surjective, f n'est pas surjective (puisque la composée de surjections est surjective).

Ex 3 Soient E, F, G et H quatre ensembles, f une application de vers F, g une application de F vers G et H une application de G vers H. Montrer que si $g \circ f$ et $h \circ g$ sont bijectives alors f, g et h le sont aussi.

On suppose que $g\circ f$ et $h\circ g$ sont bijectives.

Comme $g \circ f$ est injective et surjective, f est injective et g est surjective.

Comme $h \circ g$ est injective et surjective, g est injective et h est surjective.

Par conséquent, g est bijective. Et par suite, g^{-1} , la bijection réciproque de g, existe.

Alors $h = h \circ id_G = h \circ (g \circ g^{-1}) = (h \circ g) \circ g^{-1}$; donc h est la composée de $h \circ g$ et g^{-1} . Comme $h \circ g$ et g^{-1} sont bijectives, h est la composée de $h \circ g$ et g^{-1} . bijective. De même, $f = g^{-1} \circ (g \circ f)$ avec g^{-1} et $g \circ f$ bijectives. Donc f est bijective.

Remarque: on peut appliquer le même type de preuve pour démontrer le résultat de cours : f est bijective de E sur F sietssi il existe $g:F\to E$ telle que : $g \circ f = id_E \ et \ f \circ g = id_F$.

Ex 4 Soit $f: E \to E$ telle que fofof = f. Montrer que: f injective $\Leftrightarrow f$ surjective.

 \implies Je suppose que f injective . Sous cette hypothèse, montrons que f surjective. Soit $y \in E$.

Comme fofof = f, je peux affirmer que fofof(y) = f(y) qui s'écrit aussi : f(fof(y)) = f(y). Donc fof(y) et y ont la même image par f. Comme f est injective, nécessairement, $f \circ f(y) = y$ qui s'écrit aussi y = f(f(y)). Donc, f(y) est un antécédent de y par f. Ainsi, tout élément de E admet un antécédent par f. J'en conclus que f est surjective.

 \leftarrow Je suppose que f surjective . Sous cette hypothèse, montrons que f injective.

Soit $(x_1, x_2) \in E^2$ tel que $f(x_1) = f(x_2)$.

Comme f est surjective de E sur E, x_1 et x_2 ont chacun un antécédent par f noté respectivement t_1 et t_2 . Alors $x_1 = f(t_1)$ et $x_2 = f(t_2)$. donc $fof(f(t_1)) = fof(f(t_2))$ qui s'écrit aussi $fofof(t_1) = fofof(t_2)$. Comme fofof = f, je peux affirmer que $f(t_1) = f(t_2)$ qui s'écrit aussi $x_1 = x_2$. Ainsi, deux éléments de E ayant la même image par f sont nécessairement égaux. J'en conclus que f est injective.

Ex 5 Soit E et F deux ensembles et f une application de E dans F. $\mathscr{H}(E)$, respectivement $\mathscr{H}(F)$, désigne l'ensemble de toutes les parties (les sous-ensembles) de E, respectivement de F. Montrer que :

- $\forall (A,B) \in \mathcal{P}(E)^2$,
 - $A \subset B \Rightarrow f(A) \subset f(B)$
 - $f(A \cup B) = f(A) \cup f(B)$
 - $f(A \cap B) \subset f(A) \cap f(B)$ y a t il 'egalit'e?
- $(f injective) \Leftrightarrow (\forall (A,B) \in \mathcal{P}(E)^2, f(A \cap B) = f(A) \cap f(B)).$
- $\forall A \in \mathcal{P}(E), A \subset f^{-1}\langle f(A) \rangle y a t il \, \text{\'e} \, \text{galit\'e} \, ?$

- 4) $(f injective) \Leftrightarrow (\forall A \in \mathcal{P}(E), A = f^{-1}\langle f(A) \rangle.$
- 5) $\forall B \in \mathcal{F}(F), f(f^{-1}\langle B \rangle) \subset B \ y a t il \ \text{\'e} \ galit\'e?$
- 6) $(f \ surjective) \Leftrightarrow (\forall B \in \mathcal{P}(F), f(f^{-1}\langle B \rangle) = B).$
- 1) Montrons que : $\forall (A, B) \in \mathcal{P}(E)^2$,
 - $A \subset B \Rightarrow f(A) \subset f(B)$
 - $f(A \cup B) = f(A) \cup f(B)$
 - $f(A \cap B) \subset f(A) \cap f(B)$ y a t il 'egalit'e?

Soit $(A, B) \in \mathcal{P}(E)^2$.

- Je suppose que $A \subset B$. Montrons que $f(A) \subset f(B)$. Soit $y \in f(A)$. Alors il existe $a \in A$ tel que : y = f(a). Comme $A \subset B$, $a \in B$. Alors $y = f(a) \in f(B)$. Ainsi, je peux conclure que $f(A) \subset f(B)$.
- Montrons que $f(A \cup B) \subset f(A) \cup f(B)$. Soit $y \in f(A \cup B)$. Alors il existe $x \in A \cup B$ tel que : y = f(x). $x \in A \cup B$ donc $x \in A$ ou $x \in B$ Alors $y = f(x) \in f(A)$ ou $y = f(x) \in f(B)$ donc $y \in f(A) \cup f(B)$. Alors $y \in f(A)$ ou $y \in f(A) \cup f(B)$. Montrons que $f(A \cup B) \supset f(A) \cup f(B)$. Soit $y \in f(A) \cup f(B)$. Alors $y \in f(A)$ ou $y \in f(B)$. Donc, il existe $x \in A : y = f(x)$ ou il existe $x \in B$ tel que y = f(x). Ainsi il existe $x \in A \cup B$ tel que y = f(x) et par suite, $y = f(x) \in f(A \cup B)$. Ainsi, je peux conclure que $f(A) \cup f(B) \subset f(A \cup B)$. Ainsi, $f(A) \cup f(B) = f(A \cup B)$.

$f(B) = f(A) = f(A) \cap f(B)$ $f(A \cap B) \subseteq f(A) \cap f(B).$

2) Montrons que : $(f injective) \Leftrightarrow (\forall (A,B) \in \mathcal{P}(E)^2, f(A \cap B) = f(A) \cap f(B)).$

Comme $\forall (A,B) \in \mathcal{P}(E)^2, f(A \cap B) \subset f(A) \cap f(B)$, il faut et il suffit de prouver que : $(f injective) \Leftrightarrow (\forall (A,B) \in \mathcal{P}(E)^2, f(A \cap B) \supset f(A) \cap f(B))$.

 \Rightarrow Je suppose f injective. Montrons sous cette hypothèse que $\forall (A,B) \in \mathcal{F}(E)^2$, $f(A) \cap f(B) \subset f(A \cap B)$. Soit $(A,B) \in \mathcal{F}(E)^2$. Soit $y \in f(A) \cap f(B)$. Alors $y \in f(A)$ et $y \in f(A)$. Donc, il existe $a \in A$ et $b \in B$ tels que : y = f(a) = f(b). Alors, comme f est injective, nécessairement a = b. Alors, puisque $a \in A$ et $b \in B$, $a \in A \cap B$. Alors $b \in B$.

 \Leftarrow Je suppose $\forall (A,B) \in \mathcal{H}(E)^2$, $f(A) \cap f(B) \subset f(A \cap B)$. Montrosn que f est injective. Soit x_1 et x_2 deux éléments de E tels que $f(x_1) = f(x_2)$. Considérons $A = \{x_1\}$ et $B = \{x_2\}$. Alors, $f(A) = \{f(x_1)\}$ et $f(B) = \{f(x_2)\} = \{f(x_1)\}$ donc $f(A) \cap f(B) = \{f(x_1)\}$. Comme, $f(A) \cap f(B) \subset f(A \cap B)$, $\{f(x_1)\} \subset f(A \cap B)$ ce qui signifie que $f(x_1) \in f(A \cap B)$. Par conséquent, $f(A \cap B) \neq \emptyset$. Or, si $x_1 \neq x_2$ alors $A \cap B = \emptyset$ donc $f(A \cap B) = \emptyset$. Donc nécessairement, $x_1 = x_2$. J'en conclus que f est injective.

3) Montrons que $\forall A \in \mathcal{P}(E), A \subset f^{-1}(f(A)) \ y - a - t - il \ \acute{e} \ galit\acute{e}$?

Soit $A \in \mathcal{P}(E)$. Montrons que : $A \subset f^{-1}\langle f(A) \rangle$.

Soit $a \in A$. Alors $f(a) \in f(A)$. Alors, comme a est un antécédent de f(a), $a \in f^{-1}(f(A))$. Ainsi, $A \subseteq f^{-1}(f(A))$.

L'égalité n'est en général pas vraie comme le prouve l'exemple suivant :

4) $(f \text{ injective}) \Leftrightarrow (\forall A \in \mathcal{P}(E), A = f^{-1}\langle f(A) \rangle).$

D'après ce qui précède : $\forall A \in \mathcal{P}(E), A \subset f^{-1}\langle f(A) \rangle$ est toujours vraie, donc il faut et suffit de prouver que : $(f \ injective) \Leftrightarrow (\forall A \in \mathcal{P}(E), A \supset f^{-1}\langle f(A) \rangle)$.

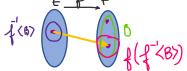
 \Rightarrow je suppose que f est injective. Montrons que $\forall A \in \mathcal{P}(E), A \supset f^{-1}\langle f(A) \rangle$. Soit $A \in \mathcal{P}(E)$. Soit $x \in f^{-1}\langle f(A) \rangle$. Alors $f(x) \in f(A)$. Donc il existe $a \in A$ tel que f(a) = f(x). Comme f est injective , a = x. Donc $x \in A$. Ainsi, $f^{-1}\langle f(A) \rangle \subset A$.

 \Longrightarrow je suppose que $\forall A \in \mathcal{P}(E), A \supset f^{-1}\langle f(A) \rangle$. Montrons que f est injective. Soit x_1 et x_2 deux éléments de E tels que $f(x_1) = f(x_2)$. Considérons $A = \{x_1\}$. Alors $f(A) = \{f(x_1)\} = \{f(x_2)\}$ donc $\{x_1, x_2\} \subset f^{-1}\langle f(A) \rangle$. Or, par hypothèse, $f^{-1}\langle f(A) \rangle \subset A = \{x_1\}$. Par conséquent, $\{x_1, x_2\} \subset \{x_1\}$ ce qui entraine que $x_1 = x_2$. J'en conclus que f est injective.

5) Montrons que $\forall B \in \mathcal{F}(F), f(f^{-1}\langle B \rangle) \subset B. \ y - a - t - il \, \text{\'e} \, \text{galit\'e} \, ?$

Soit $B \in \mathcal{P}(F)$. Soit $y \in f(f^{-1}\langle B \rangle)$. Alors il existe $x \in f^{-1}\langle B \rangle$ tel que : y = f(x). Or, comme $x \in f^{-1}\langle B \rangle$, $f(x) \in B$. Ainsi, $y \in B$. J'en conclus que $f(f^{-1}\langle B \rangle) \subset B$.

Il n'y a pas en général égalité comme le prouve l'exemple suivant :



6) $(f surjective) \Leftrightarrow \forall B \in \mathcal{P}(F), f(f^{-1}\langle B \rangle) = B$

D'après ce qui précède que $\forall B \in \mathcal{F}(F), f(f^{-1}\langle B \rangle) \subset B$, il s'agit donc de prouver que $(f \ surjective) \Leftrightarrow \forall B \in P(F), f(f^{-1}\langle B \rangle) \supset B$. \Rightarrow Je suppose f surjective . Montrons qu'alors $\forall B \in \mathcal{F}(F), f(f^{-1}\langle B \rangle) \supset B$.

Soit $B \in \mathcal{P}(F)$. Soit $y \in B$. Comme f est surjective, il existe $x \in E$ tel que : y = f(x). Alors, $x \in f^{-1}(B)$ et par suite $y = f(x) \in f(f^{-1}(B))$. Ainsi, $B \subset f(f^{-1}\langle B \rangle)$.

 \Leftarrow Je suppose que : $\forall B \in \mathcal{P}(F), f(f^{-1}(B)) \supset B$. . Montrons que f est surjective.

Soit $y \in F$. Posons $B = \{y\}$. Alors $\{y\} \subset f(f^{-1}\langle B \rangle)$; autrement dit, $y \in f(f^{-1}\langle B \rangle)$. Donc il existe $x \in f^{-1}\langle B \rangle$ tel que y = f(x). J'en conclus que *f* est surjective.

Ex 6 Soit $f:[0,1]\to\mathbb{R}$ telle que $f(x)=x-2\sqrt{x}+1$. Montrer que $\forall x\in[0,1], f\circ f(x)=x$. Que peut-on en déduire que f?

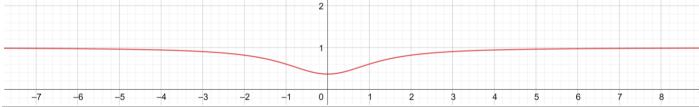
Soit $x \in [0,1], f(x) = x - 2\sqrt{x} + 1 = \left(\sqrt{x} - 1\right)^2$. Comme $x \in [0,1], \sqrt{x} - 1 \in [0,1]$ et par suite, $f(x) \in [0,1]$. Donc f(f(x)) existe

et
$$f(f(x)) = (\sqrt{f(x)} - 1)^2 = (\sqrt{(\sqrt{x} - 1)^2} - 1)^2 = (|\sqrt{x} - 1| - 1)^2 = (1 - \sqrt{x} - 1)^2 = (-\sqrt{x})^2 = x$$
. Ainsi, $f \circ f = id_{[0,1]}$.

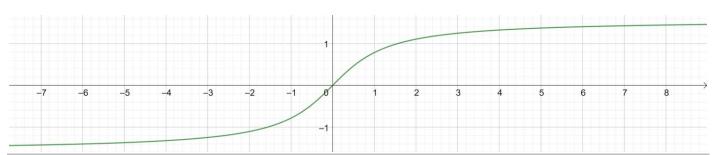
J'en déduis que $\frac{f}{f}$ est bijective de [0,1] sur [0,1] et $\frac{f}{f}$ = f.

Ex 7

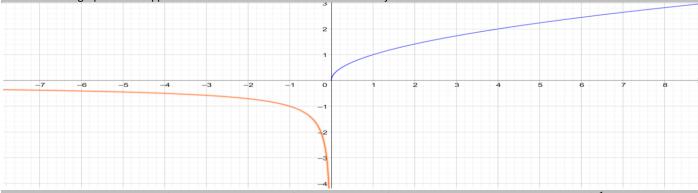
Donner le graphe d'une application de $\mathbb R$ dans $\mathbb R$ continue sur $\mathbb R$ et non bijective de $\mathbb R$ sur $\mathbb R$.



Donner le graphe d'une application de $\mathbb R$ dans $\mathbb R$ strictement monotone et non bijective de $\mathbb R$ sur $\mathbb R$.



Donner le graphe d'une application de $\mathbb R$ dans $\mathbb R$ non continue sur $\mathbb R$ et bijective de $\mathbb R$ sur $\mathbb R$.



Ex 8 Pour chacune des fonctions f suivantes, justifier que f est bijective de Df sur un domaine à définir et déterminer f^{-1} .

1.
$$f(x) = 1 - 4\sqrt[3]{x}$$

$$2. \quad f(x) = e^{\sqrt{x}}$$

3.
$$f(x) = ln(2x + 1)$$

1.
$$Df = \mathbb{R}$$
. Soit $y \in X$ des réels. $y = 1 - 4\sqrt[3]{x} \Leftrightarrow \sqrt[3]{x} = \frac{1-y}{4} \Leftrightarrow x = \left(\frac{1-y}{4}\right)^3$. Donc, f est bijective de \mathbb{R} sur \mathbb{R} et $\forall y \in \mathbb{R}$, $f^{-1}(y) = \left(\frac{1-y}{4}\right)^3$.

2.
$$Df = \mathbb{R}^+ \ et \ \forall x \ge 0, \ f(x) = e^{\sqrt{x}} = (\exp \circ \sqrt{x})(x)$$
.

Or,
$$u = \sqrt{}$$
 est bijective de \mathbb{R}^+ sur \mathbb{R}^+ de bijection réciproque u^{-1} : $\binom{\mathbb{R}^+ \to \mathbb{R}^+}{x \mapsto x^2}$.

Et
$$v = \exp$$
 est bijective de \mathbb{R}^+ sur $[1, +\infty[$ $et \ v^{-1} : \binom{[1, +\infty[\to \mathbb{R}^+]}{x \mapsto x^2}]$.

Donc f est bijective de \mathbb{R}^+ sur $[1, +\infty[$ $et \ \forall x \in [1, +\infty[, f^{-1}(x) = u^{-1} \circ v^{-1}(x) = (\ln(x))^2]$.

3. $Df =] -\frac{1}{2}, +\infty[$ et $\forall x > -\frac{1}{2}, \ f(x) = (v \circ u)(x)$ où $u(x) = 2x + 1$ et $v = \ln x$.

Or,
$$u: (x \mapsto 2x + 1)$$
 est bijective de $]-\frac{1}{2}$, $+\infty[$ sur \mathbb{R}^{+*} de bijection réciproque $u^{-1}: \begin{pmatrix} \mathbb{R}^{+*} \to]-\frac{1}{2}, +\infty[\\ x \mapsto \frac{1}{2}(x-1) \end{pmatrix}$.

Et
$$v=ln$$
 est bijective de \mathbb{R}^{+*} sur \mathbb{R} et v^{-1} : $\begin{pmatrix} \mathbb{R} \to \mathbb{R}^{*+} \\ r \mapsto e^x \end{pmatrix}$.

 $\text{Donc } f \text{ est bijective de}] - \frac{1}{2}, +\infty[\text{ sur } \mathbb{R} \text{ } et \text{ } \forall x \in] - \frac{1}{2} \text{ } , +\infty[, f^{-1}(x) = u^{-1} \circ v^{-1}(x) = \frac{1}{2}(e^x - 1).$

Ex 9 Pour chacune des fonctions f suivantes, montrer que f est bijective de Df sur un domaine à définir et déterminer f^{-1} .

1.
$$f(x) = x + \sqrt{1 + x^2}$$
.

$$3. \qquad f(x) = \frac{x}{1+|x|}$$

5.
$$f(x) = \frac{e^{x}+2}{e^{x}-1}$$

2.
$$f(x) = \lfloor x \rfloor + \sqrt[6]{x - \lfloor x \rfloor}$$
.

$$4. f(x) = \frac{e^{x}}{1+e^x}$$

$$6. \qquad f(x) = sh(x)$$

1.
$$f(x) = x + \sqrt{1 + x^2}$$
.

$$\forall x \in \mathbb{R}, 1 + x^2 \ge 1 > 0 \text{ donc } Df = \mathbb{R}.$$

f est continue sur $\mathbb R$ car son expression n'est constituée que des fonctions continues sur leur domaine de définition.

Dans l'expression de f seule la fonction racine carrée n'est pas dérivable sur tout son domaine de définition mais n'est dérivable que sur

$$\mathbb{R}^{+*}$$
. Or, $\forall x \in \mathbb{R}, 1+x^2 \in \mathbb{R}^{+*}$. Par conséquent, f est dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}, f'(x) = 1 + \frac{2x}{2\sqrt{1+x^2}} = \frac{\sqrt{1+x^2}+x}{\sqrt{1+x^2}}$. Or $|x| = \sqrt{x^2} < 1$

 $\sqrt{x^2+1}$. Donc $-\sqrt{x^2+1} < x < \sqrt{x^2+1}$. Et par suite, $x+\sqrt{x^2+1} > 0$ et finalement, f'(x) > 0. Sur l'intervalle \mathbb{R} , f est donc strictement

Alors le TBSCM assure que $f(\mathbb{R}) = \lim_{x \to \infty} f(x)$, $\lim_{x \to +\infty} f(x)$ [et f est bijective de \mathbb{R} sur $f(\mathbb{R})$. De plus, $\lim_{x \to +\infty} f(x) = +\infty$ et $f(x) = x + \infty$

$$\sqrt{1+x^2} \stackrel{quantit\'e}{=} \frac{1}{x-\sqrt{1+x^2}} \operatorname{donc}, \lim_{x\to -\infty} f(x) = 0. \quad \operatorname{Donc} f(\mathbb{R}) = \mathbb{R}^{+*}. \operatorname{Ainsi}, f \text{ est bijective de } \mathbb{R} \operatorname{sur} \mathbb{R}^{+*}.$$

Soit $y \in \mathbb{R}^{+*}$. Notons x l'unique antécédent de y par f. Alors $y \stackrel{(*)}{=} x + \sqrt{1+x^2}$. Donc $y = \frac{-1}{x-\sqrt{1+x^2}}$ donc $x - \sqrt{1+x^2} \stackrel{(**)}{=} -\frac{1}{y}$. J'en déduis, en additionnant (*) et (**), que : $2x = y - \frac{1}{y}$ et ainsi, $x = \frac{1}{2} \left(y - \frac{1}{y} \right)$. Ainsi, $\forall y \in \mathbb{R}^{+*}, f^{-1}(y) = \frac{1}{2} \left(y - \frac{1}{y} \right)$.

2.
$$f(x) = |x| + \sqrt[6]{x - |x|}$$

 $\forall x \in \mathbb{R}, x - \lfloor x \rfloor \ge 0 \text{ donc } Df = \mathbb{R}.$

Soit $p \in \mathbb{Z}$. Soit $x \in [p, p+1[$. Alors $[x] = p \text{ donc } f(x) = p + \sqrt[6]{x-p}$. Comme $x - p \in [0,1[$, $\sqrt[6]{x-p} \in [0,1[$ et $f(x) \in [p, p+1[$.

Les ensembles [p,p+1[tq $p\in\mathbb{Z}$ sont deux à deux disjoints. Par conséquent, si $y\in[p,p+1[$ alors les antécédents de y , s'il en existe, sont dans [p, p + 1].

Soit
$$y \in \mathbb{R}$$
. Posons $p = \lfloor y \rfloor$. Alors $y \in [p, p + 1[$.Donc les solutinos de , $f(x) = y$ sont dans $[p, p + 1[$ Soit $x \in [p, p + 1[$. $f(x) = y \Leftrightarrow p + \sqrt[6]{x - p} = y \Leftrightarrow \sqrt[6]{x - p} = y - p \Leftrightarrow x - p = (y - p)^6 \Leftrightarrow x = p + (y - p)^6 \Leftrightarrow x = \lfloor y \rfloor + (y - \lfloor y \rfloor)^6$.

J'en déduis que $[y] + (y - [y])^6$ est l'unique antécédent de y par f. Donc f est bijective de \mathbb{R} sur \mathbb{R} et $\forall y \in \mathbb{R}$, $f^{-1}(y) = [y] + (y - [y])^6$.

$$3. \quad f(x) = \frac{x}{1+|x|}.$$

3. $f(x) = \frac{x}{1+|x|}$ $\forall x \in \mathbb{R}, 1+|x| > 0 \ donc \ 1+|x| \neq 0 \ donc \ Df = \mathbb{R}$.

$$\forall x \in \mathbb{R}^+, x \ge 0 \text{ et } 1 + |x| > 0 \text{ donc } f(x) \ge 0. \forall x \in \mathbb{R}^{-*}, x < 0 \text{ et } 1 + |x| > 0 \text{ donc } f(x) < 0.$$

Donc si $y \in \mathbb{R}^+$, alors les antécédents de y s'il en existe sont positifs et si $y \in \mathbb{R}^{-*}$, alors les antécédents de y s'il en existe sont strictement négatifs.

Soit $y \in \mathbb{R}$.

$$\underbrace{\frac{1^{\text{er}} \cos y}{\cos y} \in \mathbb{R}^{+}. \, \text{Soit} \, x \in \mathbb{R}^{+}. \, \text{Alors} \, f(x) = y \Leftrightarrow \frac{x}{1+x} = y \Leftrightarrow x = y(1+x) \Leftrightarrow (1-y)x = y \Leftrightarrow \begin{cases} x = \frac{y}{1-y} \, \text{si} \, y \neq 1 \\ 0 = 1 \, \text{si} \, y = 1 \end{cases}}_{\text{cor}} \Leftrightarrow \begin{cases} x = \frac{y}{1-y} \, \text{si} \, y \in [0,1[]] \\ \text{impossible si} \, y = 1 \, \text{cor} \\ x = \frac{y}{1-|y|} \, \text{si} \, y \in [1,+\infty[]] \end{cases}$$

$$\frac{2^{\text{ème}} \operatorname{cas} y}{\sum_{i=1}^{n} \operatorname{cas} y} \in \mathbb{R}^{-*}. \operatorname{Soit} x \in \mathbb{R}^{-*}. \operatorname{Alors} f(x) = y \Leftrightarrow \frac{x}{1-x} = y \Leftrightarrow x = y(1-x) \Leftrightarrow (1+y)x = y \Leftrightarrow \begin{cases} x = \frac{y}{1+y} \operatorname{si} y \neq -1 \\ 0 = 1 \operatorname{si} y = -1 \end{cases} \Leftrightarrow \begin{cases} x = \frac{y}{1+y} \operatorname{si} y \neq -1 \\ \operatorname{impossible} \operatorname{si} y = -1 \operatorname{car} \\ \operatorname{impossible} \operatorname{si} y = -1 \operatorname{car} \\ \operatorname{impossible} \operatorname{si} y \in] - \infty, -1[\Leftrightarrow \begin{cases} x = \frac{y}{1-|y|} \operatorname{si} y \in] - 1, 0[\\ \operatorname{impossible} \operatorname{si} y \in] - \infty, -1[\end{cases}$$

$$\begin{cases} x = \frac{y}{1+y} \text{ si } y \neq -1 \\ \text{impossible si } y = -1 \\ \text{car} \end{cases} \begin{cases} x = \frac{y}{1+y} \text{ si } y \in] -1,0[\\ \text{impossible si } y \in] -\infty,-1[\\ \text{impossible si } y \in] -\infty,-1[\end{cases} \Leftrightarrow \begin{cases} x = \frac{y}{1-|y|} \text{ si } y \in] -1,0[\\ \text{impossible si } y \in] -\infty,-1[\\ \text{impossible s$$

Ainsi, $si\ y \in]-1,1[$ alors y a un unique antécédent qui est $\frac{y}{1-|y|}$ et $si\ y \in]-\infty,-1] \cup [1,+\infty[$ alors y n'a pas d'antécédent .

J'en conclus que $\frac{f}{f}$ est bijective de \mathbb{R} sur]-1,1[et $\forall y\in]-1,1[,f^{-1}(y)=\frac{1}{1-f}]$

Conséquence : f est donc injective . Comme, de plus, f est continue, f est strictement monotone et comme f(0) < f(1), f est strictement croissante ; alors le *TBCSM* assure que $1 = \lim_{x \to +\infty} f(x)$ et $-1 = \lim_{x \to -\infty} f(x)$.

$$4. \quad f(x) = \frac{e^x}{1 + e^x}.$$

 $Df = \mathbb{R} \text{ et } \forall x \in \mathbb{R}, f(x) > 0.$

Soit $y \in \mathbb{R}$ et $x \in \mathbb{R}$. Posons $X = e^x$

$$f(x) = y \Leftrightarrow y = \frac{e^x}{1 + e^x} \Leftrightarrow (1 + e^x)y = e^x \Leftrightarrow (1 - y)e^x = y \Leftrightarrow e^x = \frac{y}{1 - y} \Leftrightarrow \begin{cases} x = \ln\left(\frac{y}{1 - y}\right) si\left(\frac{y}{1 - y}\right) > 0 \\ impossible si\left(\frac{y}{1 - y}\right) \leq 0 \end{cases} \Leftrightarrow \begin{cases} x = \ln\left(\frac{y}{1 - y}\right) si y \in]0,1[$$

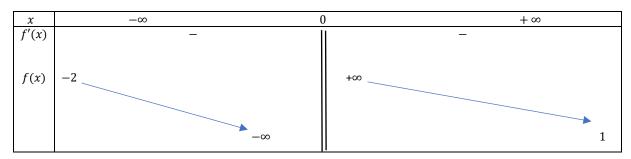
Donc , tout réel $y \in]0,1[$ admet un unique antécédent qui vaut $\ln\left(\frac{y}{1-y}\right)$ et tout réel $y \notin]0,1[$ n'a pas d'antécédent par f.

Ainsi, f est bijective de \mathbb{R} sur]0,1[et $\forall y \in]0,1[$, $f^{-1}(y)=\ln\left(\frac{y}{1-y}\right)$.

Soit $f(x) = \frac{e^{x}+2}{e^{x}-1}$

- 1. f(x) existe sietssi $e^x \ne 1$ sietssi $x \ne 0$. Donc $Df = \mathbb{R}^*$. 2. Etudions $f: \forall x \in Df$, $f(x) = \frac{e^x 1 + 3}{e^x 1} = 1 + \frac{3}{e^x 1}$. f est dérivable sur Df et $\forall x \in Df$, $f'(x) = \frac{-3e^x}{(e^x 1)^2} < 0$.

Donc sur chaque intervalle \mathbb{R}^{+*} et \mathbb{R}^{-*} , f est strictement décroissante.



f est continue et strictement décroissante sur l'intervalle] $-\infty$, 0[. Donc , le TBCSM assure que $f(]-\infty$, 0[) =] $-\infty$, -2[et f est bijective $\text{de }]-\infty, 0 [\text{ sur }]-\infty, -2 [\text{ . De même}, f(\]0, +\infty[) = \]1, +\infty[\text{ et }f \text{ est bijective de }]0, +\infty[\text{ sur }]1, +\infty[\text{ . Par conséquent, tout réel de member }]2, +\infty[\text{ . Par conséquent, tout réel de member }]2, +\infty[\text{ . Par conséquent, tout réel de member }]2, +\infty[\text{ . Par conséquent, tout réel de member }]2, +\infty[\text{ . Par conséquent, tout réel de member }]2, +\infty[\text{ . Par conséquent, tout réel de member }]2, +\infty[\text{ . Par conséquent, tout réel de member }]2, +\infty[\text{ . Par conséquent, tout réel de member }]2, +\infty[\text{ . Par conséquent, tout réel de member }]2, +\infty[\text{ . Par conséquent, tout réel de member }]2, +\infty[\text{ . Par conséquent, tout réel de member }]2, +\infty[\text{ . Par conséquent, tout réel de member }]2, +\infty[\text{ . Par conséquent, tout réel de member }]2, +\infty[\text{ . Par conséquent, tout réel de member }]2, +\infty[\text{ . Par conséquent, tout réel de member }]2, +\infty[\text{ . Par c$ $]-\infty, -2[\cup]1, +\infty[$ admet un et un seul antécédent par f dans Df. Donc f est bijective Df sur $]-\infty, -2[\cup]1, +\infty[$.

3. Cherchons une expression de f^{-1} : soit $y \in]-\infty, -2[\cup]1, +\infty[$ et x l' antécédent de y par f.

On a:
$$1 + \frac{3}{e^{x} - 1} = y$$

Donc,
$$\frac{3}{e^x - 1} = y - 1$$
 puis $e^x - 1 = \frac{3}{y - 1}$ et $e^x = 1 + \frac{3}{y - 1} = \frac{y + 2}{y - 1} > 0$ car $y \in]-\infty, -2[\cup]1, +\infty[$.

Ainsi,
$$x = \ln\left(\frac{y+2}{y-1}\right)$$

J'en conclus que $\forall y \in]-\infty, -2[\cup]1, +\infty[, f^{-1}(y)] = \ln\left(\frac{y+2}{y-1}\right)$

5.
$$f(x) = sh(x) = \frac{e^x - e^{-x}}{2}$$

 $Df = \mathbb{R}$.

Soit $y \in \mathbb{R}$ et $x \in \mathbb{R}$. Posons $X = e^x$.

$$f(x) = y \Leftrightarrow y = \frac{e^{x} - e^{-x}}{2} \Leftrightarrow \frac{\left(x - \frac{1}{x}\right)}{2} = y \Leftrightarrow (X^{2} - 1) = 2yX \Leftrightarrow X^{2} - 2yX - 1 = 0 \qquad \stackrel{\triangle}{\Leftrightarrow} \qquad \Leftarrow$$

$$f(x) = y \Leftrightarrow y = \frac{e^x - e^{-x}}{2} \Leftrightarrow \frac{\left(x - \frac{1}{x}\right)}{2} = y \Leftrightarrow (X^2 - 1) = 2yX \Leftrightarrow X^2 - 2yX - 1 = 0 \qquad \Leftrightarrow \qquad \Leftrightarrow \qquad \Leftrightarrow \qquad \Leftrightarrow \qquad \\ \begin{cases} X = \frac{2y + 2\sqrt{y^2 + 1}}{2} = y + \sqrt{y^2 + 1} & \text{donc } y - \sqrt{y^2 + 1} < 0 < y + \sqrt{y^2 + 1} \\ & ou & \text{cor } x > 0 \\ & & x = y + \sqrt{y^2 + 1}. \text{ Donc tout réel } y \text{ admet } y + \sqrt{y^2 + 1} \text{ comme unique antécédent.} \\ & X = y - \sqrt{y^2 + 1} \end{cases}$$
 Ainsi sh est bijective de \mathbb{R} sur \mathbb{R} et $\forall y \in \mathbb{R}$ ($x \in \mathbb{R}$) ($x \in \mathbb$

Ainsi, $\frac{sh}{s}$ est bijective de \mathbb{R} sur \mathbb{R} et $\forall y \in \mathbb{R}$, $(sh^{-1})(y) = y + \sqrt{y^2 + 1}$.

Ex 10 Soit $f: \left(x \mapsto \frac{2\sqrt{x}-1}{1+\sqrt{x}}\right)$

- Montrer que f est bijective de Df sur un intervalle I à déterminer et donner une expression de f^{-1} .
- b. Justifier que Cf a une tangente verticale en 0. En déduire $(f^{-1})'(-1)$.
- c. Calculer $(f^{-1})'(x)$ pour $x \in J$ et retrouver la valeur de $(f^{-1})'(-1)$.
- $Df = \mathbb{R}^+$. Soit y un réel et $x \in \mathbb{R}^+$.

$$\frac{2\sqrt{x}-1}{1+\sqrt{x}} = y \Leftrightarrow 2\sqrt{x}-1 = \left(1+\sqrt{x}\right)y \Leftrightarrow (2-y)\sqrt{x} = y+1 \Leftrightarrow \sqrt{x} = \frac{y+1}{2-y} \Leftrightarrow \begin{cases} impossible \ si \ \frac{y+1}{2-y} < 0 \ ou \ y = 2 \\ x = \left(\frac{y+1}{2-y}\right)^2 si \ \frac{y+1}{2-y} \ge 0 \end{cases} \Leftrightarrow \frac{2\sqrt{x}-1}{1+\sqrt{x}} = y \Leftrightarrow 2\sqrt{x}-1 = \left(1+\sqrt{x}\right)y \Leftrightarrow (2-y)\sqrt{x} = y+1 \Leftrightarrow \sqrt{x} = \frac{y+1}{2-y} \Leftrightarrow \frac{1}{2-y} \approx \frac{y+1}{2-y} \approx \frac{y+1}{2$$

 $\begin{cases} \text{impossible si } y \notin [-1,2[\\ x = \left(\frac{y+1}{2-y}\right)^2 \ge 0 \text{ si } y \in [-1,2[\\ \text{Donc, tout réel } y \in [-1,2[\\ \text{admet un unique antécédent} \left(\frac{y+1}{2-y}\right)^2 \text{ et tout autre réel } y \text{ n'a pas d'antécédent.} \end{cases}$

- Ainsi, f est bijective de $\mathbb{R}^+ sur$ [-1,2[et $\forall y \in [-1,2[,f^{-1}(y)=\left(\frac{y+1}{2-y}\right)^2]$. b. f est continue en 0 et $\forall x>0$, $\tau(x)=\frac{f(x)-f(0)}{x}=\frac{\frac{2\sqrt{x}-1}{1+\sqrt{x}}+1}{x}=\frac{2\sqrt{x}-1+1+\sqrt{x}}{x(1+\sqrt{x})}=\frac{3\sqrt{x}}{x(1+\sqrt{x})}=\frac{3}{\sqrt{x}(1+\sqrt{x})}$. Donc, $\lim_{x\to 0}\tau(x)=+\infty$. Ainsi, Cf a une tangente verticale au point A(0,-1). Alors le TDBR assure que f^{-1} est dérivable en -1 et $(f^{-1})'(-1)=0$; autrement dit, $C_{f^{-1}}$ au tangente horizontale au point B(-1,0).
- $\forall y \in [-1,2[,f^{-1}(y)=\left(\frac{y+1}{2-y}\right)^2]$. Donc f^{-1} est dérivable sur [-1,2[(puisque son expression n'est constituée que de fonctions dérivables partout sur leur propre domaine de définition). Et $\forall y \in [-1,2[,(f^{-1})'(y)=2u'(y)u(y) \text{ avec } u(y)=\frac{y+1}{2-y} \text{ et } u'(y)=\frac{(2-y)+(y+1)}{(2-y)^2}=\frac{3}{(2-y)^2}]$ Donc, $\forall y \in [-1,2[,(f^{-1})'(y)=6\frac{y+1}{(2-y)^3}]$. On retrouve ainsi $(f^{-1})'(-1)=0$.

Ex 11 1. Soit f définie par : $f(x) = \frac{1}{\sin(x)}$. Montrer que f est bijective de $\left[0, \frac{\pi}{2}\right]$ sur un domaine f à déterminer. Montrer que f^{-1} est dérivable sur $f \setminus \{1\}$ et calculer $(f^{-1})'(2)$. Que se passe -t-il en 1 ? Donner une expression de f^{-1} à l'aide de l'Arcsin.

Etudier et représenter la fonction f de la variable réelle telle que : $f(x) = x + \ln(x)$. Montrer que f est bijective de Df sur un domaine à déterminer. Justifier que f^{-1} est dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}$, $(f^{-1})'(x) = 1 - \frac{1}{f^{-1}(x)+1}$.

Soit f définie par : $f(x) = \frac{1}{\sin(x)}$.

 $Df =]0, \frac{\pi}{2}]. f$ est continue sur Df

Soit
$$(x_1, x_2) \in]0, \frac{\pi}{2}]^2$$
. $x_1 < x_2 \Longrightarrow car \sin est strictement croissante strictement croissante $\cos x = \frac{1}{\sin(x_1)} > \frac{1}{\sin(x_2)}$. Donc f est strictement décroissante.$

- Alors le TBCSM assure que :
 - $f(0,\frac{\pi}{2}] = \lim_{x \to \frac{\pi}{2}} f(x), \lim_{x \to 0^+} f(x) = [1, +\infty[.$
 - 2) f est bijective de $]0,\frac{\pi}{2}]$ sur $[1,+\infty[$.
 - 3) f^{-1} est continue et strictement décroissante sur $[1, +\infty[$ et bijective de $[1, +\infty[$ sur $]0, \frac{\pi}{2}]$.
- f est dérivable sur Df et $\forall x \in Df$, $f'(x) = -\frac{\cos(x)}{\sin^2(x)}$. Donc $\forall x \in]0, \frac{\pi}{2}[, f'(x) \neq 0$. Le TDBR assure alors que f^{-1} est dérivable sur $f(]0, \frac{\pi}{2}[]) =]1, +\infty[$ et $\forall x \in]1, +\infty[, (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$. En particulier, $(f^{-1})'(2) = \frac{1}{f'(f^{-1}(2))}$. Or $a = f^{-1}(2) \Leftrightarrow f(a) = 2 \Leftrightarrow f(a) = 1$ $\frac{1}{\sin(a)} = 2 \Leftrightarrow \sin(a) = \frac{1}{2} \Leftrightarrow a = \frac{\pi}{6}. \text{ Donc, } (f^{-1})'(2) = \frac{1}{f'(\frac{\pi}{6})} = -\frac{1}{\frac{\cos(\frac{\pi}{6})}{\sin(2^{2})}} = -\frac{\sin^{2}(\frac{\pi}{6})}{\cos(\frac{\pi}{6})} = -\frac{\frac{1}{4}}{\frac{\sqrt{3}}{2}} = -\frac{1}{4} \times \frac{2}{\sqrt{3}} = -\frac{1}{2\sqrt{3}}$
- Comme f est dérivable en $\frac{\pi}{2}$ et f'(1) = 0, $f^{-1}n'$ est pas dérivable en $1 = f\left(\frac{\pi}{2}\right)$ et la courbe de f^{-1} a une tangente verticale au point $B(1, \frac{\pi}{2})$.
- $Soit \ y \in [1, +\infty[. \ \text{Notons} \ x \ l'unique antcédent \ de \ y \ par \ f \ . Alors \ x \in]0, \frac{\pi}{2}] \ \text{et} \frac{1}{\sin(x)} = y \ . \ \text{Donc} \ sin(x) = \frac{1}{y} \ et \frac{1}{y} \in]0, 1]. x \ \text{est donc l'unique antcédent } l \ \text{est donc l'unique$ élément de $]0,\frac{\pi}{2}]$ dont le sinus vaut 1/y . J'en déduis que $x = Arcsin\left(\frac{1}{y}\right)$. Ainsi, $f^{-1}(y) = Arcsin\left(\frac{1}{y}\right)$.
- Soit f définie par : $f(x) = x + \ln(x)$ $Df = \mathbb{R}^{+*}$. f étant la somme de deux fonctions continues et strictement croissantes sur leur propre domaine de définition, f est continue et strictement croissante sur ${\it Df}\,$. Alors, le TBSCM assure que : $f(\mathbb{R}^{+*}) = \lim_{x \to 0} f(x)$, $\lim_{x \to +\infty} f(x) =]-\infty$, $+\infty$ [et f est bijective de \mathbb{R}^{+*} sur \mathbb{R} et f^{-1} est continue et strictement croissante sur $\ensuremath{\mathbb{R}}.$

$$f \text{ est d\'erivable sur } Df \text{ et } \forall x > 0, f'(x) = 1 + \frac{1}{x} \neq 0. \text{ Donc } f^{-1} \text{est d\'erivable sur } f(D_f) = \mathbb{R} \text{ et } \forall x \in \mathbb{R}, (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{1 + \frac{1}{f^{-1}(x)}} = \frac{f^{-1}(x)}{1 + f^{-1}(x)} = \frac{f^{-1}(x) + 1 - 1}{1 + f^{-1}(x)} = 1 - \frac{1}{1 + f^{-1}(x)}. \text{ OK } !$$

Ex 12 Soit $f: (x \mapsto x^3 + x - 8)$.

- Montrer que f est bijective de \mathbb{R} sur \mathbb{R} . Donner $\lim_{x\to +\infty} f^{-1}(x)$.
- 3)
- Résoudre l'équation $2f(x) + 3f^{-1}(x) = 10$. Montrer que f^{-1} est dérivable sur \mathbb{R} et calculer $(f^{-1})'(-6)$. Montrer que $\forall x \in \mathbb{R}, (f^{-1})'(x) = \frac{1}{3(f^{-1}(x))^2 + 1}$.
- f est continue et dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}, f'(x) = 3x^2 + 1 > 0$. Donc f est strictement croissante sur l'intervalle \mathbb{R} . Alors le TBCSM assure que $f(\mathbb{R}) = \lim_{x \to +\infty} f(x)$, $\lim_{x \to +\infty} f(x) = \mathbb{R}$ et f est bijective de \mathbb{R} sur \mathbb{R} et f^{-1} est continue et strictement croissante sur \mathbb{R} et bijective de \mathbb{R} sur \mathbb{R} . De plus, par symétrie des courbes Cf et Cf par rapport à la première bissectrice, $\lim_{x\to a} f(x) = b \Leftrightarrow \lim_{x\to b} f^{-1}(x) = a$. Or, $\lim_{x \to +\infty} f(x) = +\infty$ donc, $\lim_{x \to +\infty} f^{-1}(x) = +\infty$.
- f et f^{-1} sont strictement croissante sur $\mathbb R$ donc φ : $(x \mapsto 2f(x) + 3f^{-1}(x))$ est strictement croissante sur $\mathbb R$ donc est injective. Par conséquent, 10 admet au plus un antécédent par φ . De plus, f(2) = 2 donc $f^{-1}(2) = 2$ et $\varphi(2) = 10$. Ainsi, 2 est un antécédent de 10 par φ . J'en déduis que 2 est ;'unique antécédent de 10 par φ et ainsi, l'unique solution de l'équation $2f(x) + 3f^{-1}(x) = 10$.
- Comme $\forall x \in \mathbb{R}, f'(x) \neq 0$, le TDBR assure que f^{-1} est dérivable sur \mathbb{R} et $(f^{-1})'(-6) = \frac{1}{f'(f^{-1}(-6))}$.

Cherchons
$$(f^{-1}(-6)): a = (f^{-1}(-6)) \Leftrightarrow -6 = f(a) \Leftrightarrow -6 \stackrel{*}{=} a^3 + a - 8 \Leftrightarrow f \text{ \'etant bijective,}$$

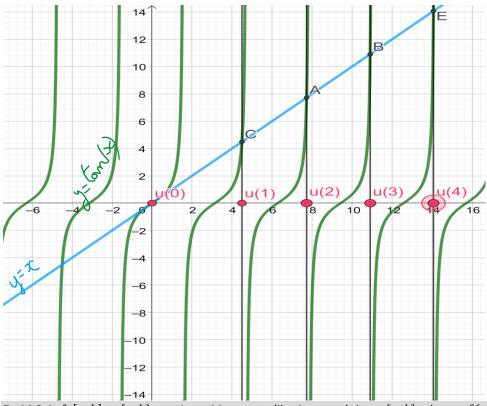
$$(*)n'a \ qu'une \ solution$$

Par suite, $(f^{-1})'(-6) = \frac{1}{f'(1)} = \frac{1}{4}$.

4) Le *TDBR* assure que : $\forall x \in \mathbb{R}, (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{3(f^{-1}(x))^2 + 1}$

Ex 13 Montrer que l'équation $\tan(x) = x$ admet une unique solution u_n dans chaque intervalle $] - \frac{\pi}{2} + n\pi, \frac{\pi}{2} + n\pi[tq \ n \in \mathbb{N}]$. Un tel réel u_n est appelé un point fixe de tan. Illustrer ce résultat. Déterminer la limite de la suite (u_n) .

Posons $f: (x \mapsto \tan(x) - x)$. Alors $Df = D_{tan} = \bigcup_{n \in \mathbb{Z}}] - \frac{\pi}{2} + n\pi, \frac{\pi}{2} + n\pi [$. f est continue et dérivable sur D_{tan} car son expression n'est constituée que de fonctions continues et dérivables sur leur propre domaine de définition. Et $\forall x \in Df, f'(x) = 1 + tan^2(x) - 1 = tan^2(x) \ge 0$. Sur chaque intervalle $] - \frac{\pi}{2} + n\pi, \frac{\pi}{2} + n\pi[$, f' est positive et s'annule au point isolé $n\pi$ donc f est strictement croissante. Alors le Donc 0 admet un unique antécédent u_n^2 dans chaque intervalle $]-\frac{\pi}{2}+n\pi,\frac{\pi}{2}+n\pi[$. Donc l'équation $\tan(x)=x$ admet une unique solution u_n dans chaque intervalle $\left]-\frac{\pi}{2}+n\pi,\frac{\pi}{2}+n\pi\right[tq\;n\in\mathbb{N}.$



 $\forall n \in \mathbb{N},$ $-\frac{\pi}{2} + n\pi < u_n < \frac{\pi}{2} + n\pi. \text{ Comme}$ $\lim_{n \to +\infty} -\frac{\pi}{2} + n\pi = +\infty, \text{ le théorème}$ des gendarmes assure que ;

 $\lim_{n\to+\infty}u_n=+\infty.$

Ex 14 Soit $f:[a,b] \to [a,b]$, continue. Montrer qu'il existe un réel $\alpha \in [a,b]$ tel que $: f(\alpha) = \alpha$. Un tel réel α est appelé un point fixe de f.

Soit $g:(x\mapsto f(x)-x)$.

g est la somme de deux fonctions continues sur l'intervalle [a, b], donc g est continue sur [a, b].

 $g(a) = f(a) - a \ge 0 \operatorname{car} f(a) \in [a, b].$

 $g(b) = f(b) - b \le 0 \operatorname{car} f(b) \in [a, b].$

Alors le TVI assure que g s'annule au moins une fois sur [a,b] en un réel α . Alors $f(\alpha)-\alpha=0$ et ainsi $f(\alpha)=\alpha$.

Ex 15 Soit f et g deux fonctions réelles, continues sur un intervalle I et telles que : $\forall x \in I$, |f(x)| = |g(x)| et $f(x) \neq 0$. Montrer : $\forall x \in I$, f(x) = g(x) ou $\forall x \in I$, f(x) = -g(x).

 $\forall x \in I, |f(x)| = |g(x)| \ donc \ \forall x \in I, f(x) = g(x) \ ou \ f(x) = -g(x).$ Or, $\forall x \in I, f(x) \neq 0 \ donc \ |g(x)| = |f(x)| \neq 0$ et par conséquent $et \ \forall x \in I, g(x) \neq 0$. Comme f et g sont contonues sur l'interavlle I et ne s'annule pas sur I nécessairement f et g garde un même signe sur I. Il en résulte que si f et g ont le même signe alors $\forall x \in I, f(x) = g(x)$ et si f et g sont de signe opposé alors $\forall x \in I, f(x) = -g(x)$.

Ex 16: Soit $f: \mathbb{R} \to \mathbb{R}$ telle que: $f(x) = \frac{2x}{1+x^2}$.

- 1) f est-elle injective ? surjective de \mathbb{R} sur \mathbb{R} ?
- 2) Montrer que $f(\mathbb{R}) = [-1; 1]$.
- 3) Montrer que f induit une bijection g de [-1,1] sur [-1,1] et déterminer une expression de g^{-1} .
- 1) f est continue et dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}, f'(x) = \frac{-2(x^2 1)}{(1 + x^2)^2} = -2\frac{(x 1)(x + 1)}{(1 + x^2)^2}$



f est continue et strictement décroissante sur l'intervalle $]1, +\infty[$. Donc , le TBCSM assure que $f(]1, +\infty[)=]0,1[$. De même, f([-1,1])=[-1,1] et $f(]-\infty,1[)=]-1,0[$. J'en déduis que :

- 1) 2 n'a pas d'antécédent par f et par conséquent, f n'est pas surjective de \mathbb{R} sur \mathbb{R} .
- 2) $\frac{1}{2}$ admet au moins deux antécédents par f l'un dans $]1, +\infty[$ et l'autre dans [-1,1]. Donc, $\frac{f}{f}$ n'est pas injective.

2)
$$f(\mathbb{R}) = f(]1, +\infty[\cup [-1,1] \cup]-\infty, 1[) = f(]1, +\infty[) \cup f([-1,1]) \cup f(]-\infty, 1[) = [-1,1].$$

3) f est continue et strictement décroissante sur l'intervalle [-1,1]. Donc , le TBCSM assure que f induit une bijection g de [-1,1] sur f([-1,1]) = [-1,1]. Autrement dit, $g: \binom{[-1,1] \to [-1,1]}{x \mapsto \frac{2x}{1+x^2}}$ est donc bijective.

Cherchons une expression de g^{-1} . Soit $y \in [-1,1]$ et x l'unique antécédent de y par g dans [-1,1]. Je sais que $: y = g(x) = \frac{2x}{1+x^2}$. Alors $yx^2 - 2x + y = 0$. Posons $\Delta = 4 - 4y^2 = 4(1-y^2) = \left(2\sqrt{1-y^2}\right)^2$, $x_1 = \frac{2-2\sqrt{1-y^2}}{2y} = \frac{1-\sqrt{1-y^2}}{y}$ et $x_2 = \frac{1+\sqrt{1-y^2}}{y}$. Donc, $x = x_1$ ou $x = x_2$.

 $\text{Mais si } 1>y\geq 0 \text{ alors } 1+\sqrt{1-y^2}>1 \text{ donc } x_2=\frac{1+\sqrt{1-y^2}}{y}>\frac{1}{y}>1. \text{ Donc , } x_2 \text{ ne convient pas et ainsi, } x=x_1 \text{ est l'unique antécédent de } y=x_1 \text{ donc } x_2=\frac{1+\sqrt{1-y^2}}{y}>\frac{1}{y}>1. \text{ Donc , } x_2=\frac{1+\sqrt{1-y^2}}{y}>\frac{1}{y}>1. \text{ Donc } x_2=\frac{1+\sqrt{1-y^2}}{y}>\frac{1}{y}>\frac{1}{y}>1. \text{ Donc } x_2=\frac{1+\sqrt{1-y^2}}{y}>\frac{1}{$ par g. Mais si -1 < y < 0 alors $x_2 = \frac{1+\sqrt{1-y^2}}{y} < \frac{1}{y} < -1$. Donc, x_2 ne convient pas et ainsi, $x = x_1$ est l'unique antécédent de y par g.

Ainsi,
$$g^{-1}(y) = \frac{1 - \sqrt{1 - y^2}}{y}$$

$$\text{V\'erification}: g\left(\frac{1-\sqrt{1-y^2}}{y}\right) = \frac{2^{\frac{1-\sqrt{1-y^2}}{y}}}{1+\left(\frac{1-\sqrt{1-y^2}}{y}\right)^2} = 2y\frac{1-\sqrt{1-y^2}}{y^2+\left(1-\sqrt{1-y^2}\right)^2} = 2y\frac{1-\sqrt{1-y^2}}{y^2+1+(1-y^2)-2\sqrt{1-y^2}} = 2y\frac{1-\sqrt{1-y^2}}{2-2\sqrt{1-y^2}} = y \text{ OK } !!!$$

Ex 17: Soit a et b réels et $f:(x\mapsto ax+b|x|)$. Déterminer une condition nécessaire et suffisante sur a et b pour que f est bijective de $\mathbb R$ sur $\mathbb R$. Le cas échéant, donner une expression de f

$$\forall x \in \mathbb{R}, f(x) = ax + b|x| = \begin{cases} (a+b)x & \text{si } x > 0 \\ 0 & \text{si } x = 0 \\ (a-b)x & \text{si } x < 0 \end{cases}$$

 $\frac{1^{\text{er cas}}}{(a-b)}: \begin{cases} a+b>0 \\ a-b>0 \end{cases}$ Alors, $\begin{cases} \forall x \geq 0, (a+b)x \geq 0 \\ \forall x < 0, (a-b)x < 0 \end{cases}$. Donc, un réel positif et un réel strictement négatif n'ont jamais la même image.

De plus $h: (x \mapsto (a+b)x)$ est bijective de \mathbb{R}^+ sur \mathbb{R}^+ et $h^{-1}: (x \mapsto \frac{1}{a+b}x)$. Et $g: (x \mapsto (a-b)x)$ est bijective de \mathbb{R}^{-*} sur \mathbb{R}^{-*} et $g^{-1}: (x \mapsto (a-b)x)$

$$\frac{1}{a-b}x$$
). Par conséquent, f est bijective de $\mathbb R$ sur $\mathbb R$ et f^{-1} : $\left(x \mapsto \begin{cases} \frac{1}{a+b}x \ si \ x \geq 0 \\ \frac{1}{a-b}x \ si \ x < 0 \end{cases}\right)$.

 $\frac{2^{\text{er cas}}}{(a-b)}: \begin{cases} a+b < 0 \\ a-b < 0 \end{cases}$ Alors, $\begin{cases} \forall x \geq 0, (a+b)x \leq 0 \\ \forall x < 0, (a-b)x > 0 \end{cases}$. Donc, un réel positif et un réel strictement négatif n'ont jamais la même image. Comme précédemment, f est

bijective de \mathbb{R} sur \mathbb{R} et f^{-1} : $\left(x \mapsto \begin{cases} \frac{1}{a+b} x \sin x \ge 0 \\ \frac{1}{a+b} x \sin x < 0 \end{cases}\right)$.

3ème cas: a + b > 0 et a - b < 0

Alors $h: (x \mapsto (a+b)x)$ est bijective de \mathbb{R}^+ sur \mathbb{R}^+ et $g: (x \mapsto (a-b)x)$ est bijective de \mathbb{R}^{-*} sur \mathbb{R}^{+*} . Donc tout réel strictement positif à 2 antécédents par f : l'un strictement positifs et l'autre strictement négatif. Ainsi, f n'est pas bijectif.

 $4^{\text{ème}} \cos : a + b < 0 \text{ et } a - b < 0.$

Alors comme précédemment, je peux affirmer que tout réel strictement négatif à 2 antécédents par f: l'un strictement positif et l'autre strictement négatif. Ainsi, f n'est pas bijectif.

 $5^{\text{ème}} \cos : a + b = 0 \ \mathbf{OU} \ a - b = 0.$

Alors $\forall x \ge 0$, f(x) = 0 **OU** $\forall x < 0$, f(x) = 0. Donc 0 a une infinité d'antécédents par f. Donc f n'est pas bijective.

$$f$$
 est bijective de \mathbb{R} sur $\mathbb{R} \Leftrightarrow \begin{cases} a+b < 0 \\ a-b < 0 \end{cases}$ ou $\begin{cases} a+b > 0 \\ a-b > 0 \end{cases} \Leftrightarrow \begin{cases} a < -b \\ a < b \end{cases}$ ou $\begin{cases} a > -b \\ a > b \end{cases} \Leftrightarrow a < -|b| \ ou \ a > |b|$

$$f$$
 est bijective de \mathbb{R} sur $\mathbb{R} \Leftrightarrow \begin{cases} a+b<0 \\ a-b<0 \end{cases}$ ou $\begin{cases} a+b>0 \\ a-b>0 \end{cases} \Leftrightarrow \begin{cases} a<-b \\ a **ou $\begin{cases} a>-b \\ a>b \end{cases} \Leftrightarrow a<-|b|$ ou $a>|b|$ f est bijective de \mathbb{R} sur $\mathbb{R} \Leftrightarrow |a|>|b|$. Et le cas échéant, $f^{-1}:\left(x\mapsto \begin{cases} \frac{1}{a+b}x\sin x\geq 0\\ \frac{1}{a-b}x\sin x<0 \end{cases}\right)$.**$

Ex 18 Montrer que $f:((n,p)\mapsto 2^n(2p+1))$ est une bijection de \mathbb{N}^2 sur \mathbb{N}^* .

Surjectivité: pour chaque $m \in \mathbb{N}^*$, je cherche $(n,p) \in \mathbb{N}^2$ tel que $m = 2^n(2p+1)$.

Montrons par récurrence forte sur m que H(m): « il existe $(n,p) \in \mathbb{N}^2$ tel que $m=2^n(2p+1)$.» est vraie.

<u>Initialisation</u>: $1 = 2^0(2 \times 0 + 1)$. Donc, n = 0 et p = 0 conviennent.

<u>Propagation</u>: Soit m un entier naturel non nul. Je suppose que H(1), ..., H(m-1), H(m) sont vraies et sous cette hypothèse forte, je vais montrer que H(m+1) est vraie.

Si m+1 est impair alors il existe $k \in \mathbb{N}$ tel que m=(2k+1). Donc $m+1=2^0(2k+1)$. Ainsi, n=0 et p=k conviennent.

Si m+1 est pair alors il existe $k \in \mathbb{N}^*$ tel que m=2k. Comme $1 \le k \le m$, H(k) est vraie donc il existe $(n',p') \in \mathbb{N}^2$ tel que k=1

 $2^{n'}(2p'+1)$. Donc, $m=2k=2^{n'+1}(2p'+1)$. Ainsi, n=n'+1 et p=p' conviennent.

Ainsi, H(m+1) est vraie dès que H(1), H(2), ..., H(m) sont vraies.

Conclusion: Le théorème de récurrence forte assure alors que pour tout $m \in \mathbb{N}^*$, il existe $(n,p) \in \mathbb{N}^2$ tel que $m = 2^n(2p+1)$. Ainsi, f est surjective de \mathbb{N}^2 sur \mathbb{N}^* .

<u>Injectivité</u>: Prenons(n,p) et (n',p') des couples d'entier naturels tels que : $2^n(2p+1) \stackrel{(*)}{=} 2^{n'}(2p'+1)$.

Imaginons que n < n'. Alors $\begin{cases} 2p+1 = 2^{n'-n}(2p'+1) & \text{donc } 2p+1 \text{ est pair ce qui est absurde. Par conséquent, } n \geq n'$. De même en imaginons que n > n'. Alors $2p+1 = 2^{n-n'}(2p'+1)$ est pair ce qui est absurde. Par conséquent, $n \leq n'$.

Donc, nécessairement, n=n'. Par suite, (*)s'écrit(2p+1)=(2p'+1) et par conséquent, p=p'.

J'en conclus que f est injective. Et finalement $f:((n,p)\mapsto 2^n(2p+1))$ est une bijection de \mathbb{N}^2 sur \mathbb{N}^* .

Ex 19 Méthode de dichotomie: Soit f une fonction continue et strictement monotone sur [a,b] et telle que : f(a)f(b) < 0 (i.e. f(a) et f(b)sont de signes opposés). Alors le TBCSM assure que f s'annule une seule fois sur [a,b] en un réel $\alpha \in]a,b[$. Lorsque l'équation f(x)=0est impossible à résoudre de manière algébrique, la méthode de dichotomie permet alors, dans cette situation, de déterminer une valeur approchée de α à une précision ε choisie. Voici le principe de dichotomie :

Etape 1: On calcule $f\left(\frac{a+b}{2}\right)$. Ou bien $f\left(\frac{a+b}{2}\right)=0$ alors $\alpha=\frac{a+b}{2}$. Et c'est fini : on a trouvé la valeur exacte de α .

Ou bien
$$f\left(\frac{a+b}{2}\right) \neq 0$$
 alors

Soit $f\left(\frac{a+b}{2}\right)$ est de signe opposé à f(a). Alors $\alpha\in]a,\frac{a+b}{2}[$. Posons $a_1=a$ et $b_1=\frac{a+b}{2}$

Soit $f\left(\frac{a+b}{2}\right)$ est de signe opposé à f(b). Alors $\alpha \in]\frac{a+b}{2}$, b[. Posons $a_1 = \frac{a+b}{2}$ et $b_1 = b$.

Alors $\alpha \in]a_1, b_1[$ et a_1 et b_1 sont deux valeurs approchées de α par défaut et excès à la précision $\frac{b-a}{2}$

Etape 2 : On calcule
$$f\left(\frac{a_1+b_1}{2}\right)$$
. Ou bien $f\left(\frac{a_1+b_1}{2}\right)=0$ alors $\alpha=\frac{a_1+b_1}{2}$. Et c'est fini.

Ou bien
$$f\left(\frac{a_1+b_1}{2}\right) \neq 0$$
 alor

Ou bien $f\left(\frac{a_1+b_1}{2}\right) \neq 0$ alors Soit $f\left(\frac{a_1+b_1}{2}\right)$ est de signe opposé à celui de $f(a_1)$. Alors $\alpha \in]a_1, \frac{a_1+b_1}{2}$ [. Posons $a_2 = a_1$ et $b_2 = \frac{a_1+b_1}{2}$. Soit $f\left(\frac{a_1+b_1}{2}\right)$ est de signe opposé f à celui de $f(b_1)$. Alors $\alpha \in]\frac{a_1+b_1}{2}$, b_1 [. Posons $a_2 = \frac{a_1+b_1}{2}$ et $b_2 = b_1$.

Alors $\alpha \in]a_2, b_2[$ et a_2 et b_2 sont deux valeurs approchées de α par défaut et excès à la précision $\frac{b-a}{2}$

$$|b_2 - a_2| = \frac{b - a}{2^2}$$

Etape n: On calcule $f\left(\frac{a_{n-1}+b_{n-1}}{2}\right)$. Ou bien $f\left(\frac{a_{n-1}+b_{n-1}}{2}\right)=0$ alors $\alpha=\frac{a_{n-1}+b_{n-1}}{2}$. Et c'est fini. Ou bien $f\left(\frac{a_{n-1}+b_{n-1}}{2}\right) \neq 0$ alors

Soit $f\left(\frac{a_{n-1}+b_{n-1}}{2}\right)$ et $f(a_{n-1})$ sont de signes opposés. Alors $\alpha\in]a_{n-1},\frac{a_{n-1}+b_{n-1}}{2}[$. Posons $a_n=a_{n-1}$ et $b_n=\frac{a_{n-1}+b_{n-1}}{2}$. Soit $f\left(\frac{a_{n-1}+b_{n-1}}{2}\right)$ et $f(b_{n-1})$ sont de signes opposés. Alors $\alpha\in]\frac{a_{n-1}+b_{n-1}}{2}$, $b_{n-1}[$. Posons $a_n=\frac{a_{n-1}+b_{n-1}}{2}$ et $b_n=b_{n-1}$.

Alors $\alpha \in]a_n, b_n[$ et a_n et b_n sont deux valeurs approchées de α par défaut et excès à la précision $\frac{b-a}{2^n}$

L'étau se resserre donc autour de la racine α de f sur]a,b[. Il suffit de savoir quel entier n choisir pour obtenir la précision ε souhaitée. Il suffit

$$\text{de choisir } n \in \mathbb{N} \text{ tel que} : \frac{b-a}{2^n} \leq \varepsilon. \text{ Or, } \frac{0 < \frac{b-a}{2^n}}{2^n} \leq \varepsilon \Leftrightarrow \frac{2^n}{b-a} \geq \frac{1}{\varepsilon} \Leftrightarrow 2^n \geq \frac{b-a}{\varepsilon} \Leftrightarrow \ln(2^n) \geq \ln\left(\frac{b-a}{\varepsilon}\right) \Leftrightarrow n\ln(2) \geq \ln\left(\frac{b-a}{\varepsilon}\right) \Leftrightarrow n \geq \frac{\ln\left(\frac{b-a}{\varepsilon}\right)}{\ln(2)}.$$

Prenons $n_0 = \left| \frac{\ln\left(\frac{b-a}{\varepsilon}\right)}{\ln(2)} \right| + 1$. Alors a_{n_0} et b_{n_0} sont deux valeurs approchées de α par défaut et excès à la précision ε .

Application : 1) Montrer que l'équation $e^x + \sqrt{x-2} = 7$ admet une unique solution et en trouver une valeur approchée à 10^{-2} près. 2) Donner une valeur approchée de l'unique point fixe de la fonction cosinus.