Variables aléatoires

Dans tout le chapitre, on travaille avec un espace probabilisé fini (Ω, P) et E un ensemble.

I Variables aléatoires et ses lois

1. <u>Définitions générales</u>

1Définition : Une variable aléatoire est une application X de Ω dans E . Une variable aléatoire réelle est une application X de Ω dans $\mathbb R$.

2Notation: Ω est fini , $\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$ où $n = card\Omega$. Donc $X(\Omega) = \{\underbrace{X(\omega_1), X(\omega_2), \dots, X(\omega_n)}_{pas\ tous\ distincts!!}\} \subset E$ est fini et m = 1

 $card(X(\Omega)) \leq n = card(\Omega)$ (il y aura égalité des cardinaux sietssi tous les réels x_i sont distincts sietssi X est injective). En fait $X(\Omega) = \{X(\omega_{i_1}), X(\omega_{i_2}), \dots, X(\omega_{i_m})\}$ tel que $m \leq n$ et $(k \neq l \Rightarrow X(\omega_{i_k}) \neq X(\omega_{i_l}))$.

On notera désormais $x_k = X(\omega_{i_k})$ et $X(\Omega) = \left\{\underbrace{x_1, x_2, \dots, x_m}_{tous \ distincts}\right\}$ et on peut simplement prendre $E = \left\{\underbrace{x_1, x_2, \dots, x_m}_{tous \ distincts}\right\}$

3Définitions: Soit A une partie de $X(\Omega)$ i.e. A est un évènement de l'univers $X(\Omega)$.

Alors, l'évènement $\{\omega \in \Omega/X(\omega) \in A\}$ est noté $\{X \in A\}$ ou $(X \in A)$ et se lit l'évènement X appartient à A.

 $(X \in A)$ est donc l'ensemble des antécédents par X des éléments de A.

et $P(\{\omega \in \Omega/X(\omega) \in A\})$ est noté $P(X \in A)$: c'est la probabilité que X réalise A.

Deux cas particuliers :

Si $x \in E$ et $A = \{x\}$ alors l'évènement $(X \in \{x\})$ est noté $\{X = x\}$ ou (X = x) et se lit « X vaut x » et (X = x) contient tous les antécédents de x par X.

 $P(X = x) \stackrel{\text{def.}}{=} P(\{\omega \in \Omega / X(\omega) = x\})$ =probabilité que X vaille x.

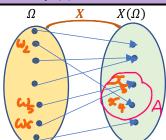
 $\Omega = \bigcup_{x \in X(\Omega)} (X = x)$

Si $E = \mathbb{R}$ et $A =]-\infty, x]$ alors $(X \in A) \stackrel{not\'e}{=} (X \le x) \stackrel{def.}{=} \{\omega \in \Omega/X(\omega) \le x\}$

et $P(X \le x) \stackrel{\triangle}{=} P(\{\omega \in \Omega/X(\omega) \le x\})$ = probabilité que X soit inférieur à x.

4 NB: D'après le chapitre précédent, la probabilité d'un évènement A est la somme des probabilités des évènements élémentaires dont la réunion est A.

Donc
$$\forall x \in X(\Omega)$$
, $P(X = x) = \sum_{\substack{\omega \in \Omega \\ tq \ X(\omega) = x}} P(\omega)$ et $\forall A \subset X(\Omega)$, $P(X \in A) = \sum_{\substack{\omega \in \Omega \\ tq \ X(\omega) \in A}} P(\omega)$



$$P(X = x_3) = P(\omega_2) + P(\omega_5)$$

$$P(X = x_4) = P(\omega_6)$$

$$P(X \in A) = P(\omega_2) + P(\omega_5) + P(\omega_6)$$

5 Proposition-Définition: L'application P_X : $\binom{\mathcal{P}(X(\Omega)) \to [0,1]}{A \to P(X \in A)}$ est une probabilité sur l'univers $X(\Omega)$, appelée **loi de**

probabilité de $X \cdot P_X(A)$ est donc la probabilité que la variable aléatoire X soit dans A (X réalise A). On note $X \sim Y$ lorsque X et Y sont deux variables aléatoires sur un même univers et telles que : $P_X = P_Y$.

6 NB: P_X est entièrement définie par la distribution de probabilités $(P(X=x))_{x \in X(\Omega)}$ $(=(P(X=x_i))_{i \in \{1,...,m\}})$.

Si toutes ces probabilités sont connues alors $\forall A \in \mathcal{P}(X(\Omega)), P_X(A) = \sum_{x \in A} P(X = x)$.

En particulier , $1 = P_X(X(\Omega)) = \sum_{x \in X(\Omega)} P(X = x) = \sum_{i=1}^m P(X = x_i)$ où $X(\Omega) = \{x_1, x_2, \dots, x_m\}$.

On peut présenter la loi de probabilité par le tableau ci-contre :

Valeur de X	x_1	x_2	 x_m
$P(X=x_i)$	p_1	p_2	 p_m

7 NB: Si on ne considère pas $E = X(\Omega)$, $alors \ \forall x \in E \setminus X(\Omega)$, P(X = x) = 0 et par conséquent $(P(X = x))_{x \in E}$ est égale à la distribution $(P(X = x_i))_{i \in \{1,...,m\}}$ à laquelle on a ajouté des zéros. P_X est donc aussi entièrement définie par la distribution de probabilités $(P(X = x))_{x \in E}$.

2. Loi uniforme

- **8 Définition**: Soit $E = \{x_1, x_2, ..., x_m\}$ un ensemble fini $et\ X$ une variable aléatoire à valeurs dans E. X suit $la\$ loi uniforme sur E lorsque P_X est la probabilité uniforme sur E; autrement dit, lorsque chaque valeur possible $x_1, x_2, ..., x_m$ a la même probabilité d'être atteinte i.e. $\forall i \in \{1, ..., m\}, P(X = x_i) = \frac{1}{m}$. On note $X \sim \mathcal{U}(\{x_1, x_2, ..., x_m\})$.
- **9 Exemple :** Dans une urne contenant n boules identiques au toucher numérotées de 1 à n. Tirons au hasard une boule . Notons X le chiffre sur cette boule . On définit ainsi une variable aléatoire et $\forall i \in \{1, ..., n\}, P(X = i) = \frac{1}{n}$. Idem avec le lancer d'un dé non pipé .

3. Loi de Bernoulli

10 Définition : La **loi de Bernoulli** de paramètre p réel tel que : $p \in]0,1[$ est la loi d'une variable aléatoire qui ne prend que les valeurs $x_1 = 0$ ou $x_2 = 1$ telle que P(X = 1) = p appelée **probabilité de succès** .

On a alors P(X=0)=1-p=q appelée **probabilité d'échec** . On note $X\sim \mathcal{B}(p)$

11 NB: Cette loi est associée à une épreuve n'ayant que deux issues telle que le lancer d'une pièce de monnaie par exemple : X prend la valeur 1 si on obtient Pile et 0 si l'on obtient Face . Si p est la probabilité d'obtenir pile alors X suit alors la loi de Bernoulli de paramètre p. Si la pièce est bien (non pipée), $p = \frac{1}{2}$.

4. Loi binomiale

12 Définition : La **loi de Binomiale** de paramètres n et p tel que : $n \in \mathbb{N}^*$ et $p \in]0,1[$ est la loi d'une variable aléatoire qui prend les valeurs entières comprises entre 0 et n et telle que :

$$\forall k \in \{0,...,n\}, P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$
 . On note $X \sim \mathcal{B}(n,p)$

13 On vérifie que $\sum_{k=0}^{n} P(X=k) = \sum_{k=0}^{n} {n \choose k} p^k (1-p)^{n-k} = 1$ et par conséquent ${n \choose k} p^k (1-p)^{n-k} \in [0,1]$. Ainsi, cette probabilité existe et est unique (Cf théo. 8 chapitre précédent)!! Pour n=1, on retrouve la loi de Bernoulli .

- **14 Prop :** Cette loi binomiale apparait lorsque l'on répète n fois une même épreuve n'ayant que deux issues , dans les mêmes conditions et de manières indépendantes. L'évènement « succès » se réalise avec une probabilité $p \in]0,1[$. Alors, la variable aléatoire X qui compte le nombre de succès au bout de n épreuves suit la loi binomiale de paramètres n et p.
- **15 Exemple :** Une urne contient n boules dont v vertes . On tire b boules avec remise . On range les résultats dans un b-uplet : au i^{ime} tirage , la i^{ime} coordonnée du b-uplet prend la valeur 1 si la boule est verte et 0 si la boule est blanche. On définit alors X la variable aléatoire qui compte le nombre de boules vertes tirées sur les b tirages . X suit alors la loi binomiale $\mathcal{B}(b, \frac{v}{n})$.

5. Couple de variables aléatoires

16 Déf: Un couple de variables aléatoires est une variable aléatoire Z = (X, Y) telle que X et Y sont deux variables aléatoires . Par définition, la loi conjointe de X et Y est la loi de X.

17 Notons $E = X(\Omega) = \{x_1, x_2, ..., x_n\}$ $et F = Y(\Omega) = \{y_1, y_2, ..., y_p\}$ l'ensemble des valeurs prises par X et Y.

Alors $Z(\Omega) = E \times F$ et la loi conjointe de X et Y est entièrement déterminée par la donnée des $n \times p$ réels :

$$P(Z = (x_i, y_j)) = P((X, Y) = (x_i, y_j)) = P(\{X = x_i\} \cap \{Y = y_j\}) \stackrel{notée}{=} P(X = x_i, Y = y_j) \stackrel{notée}{=} p_{ij} \quad \mathsf{tq} \begin{cases} i \in [1, n] \\ j \in [1, p] \end{cases}$$

18 Théorème: A la loi conjointe de X et Y sont associées deux lois dites marginales correspondantes aux lois de X et de Y définies par les distributions de probabilités suivantes : $\forall i \in [1, n]$ et $\forall j \in [1, n]$,

$$P(X = x_i) = \sum_{k=1}^{p} P(X = x_i, Y = y_k) = \sum_{k=1}^{p} p_{ik}$$
 et $P(Y = y_j) = \sum_{k=1}^{n} P(X = x_k, Y = y_j) = \sum_{k=1}^{n} p_{kj}$

- 19 Conséquence: Dès que je connais la loi conjointe de deux variables aléatoires, je connais les lois de ces 2 variables aléatoires.
- **20 Rque**: A la loi conjointe de X et Y sont associées des lois conditionnelles: la loi de X sachant que $Y = y_i$ fixé ou encore la loi

de
$$Y$$
 sachant que $X = x_i$ fixé. $\forall i \in [1, n], P(X = x_i | Y = y_j) = P_{[Y = y_j]}(X = x_i) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)} = \frac{p_{ij}}{\sum_{i=1}^{n} p_{ij}}$

Et
$$\forall j \in [1, p], P_{[X=x_i]}(y=y_j) = \frac{P(X=x_i, Y=y_j)}{P(X=x_i)} = \frac{p_{ij}}{\sum_{j=1}^p p_{ij}}.$$

21 Exercice: Soit X et Y deux variables aléatoires. Le couple (X,Y) des variables aléatoires prend les valeurs (i,j) avec les probabilités $p_{ij} = P((X=i) \cap (Y=j))$ définies dans le tableau ci-dessous :

Y	0	1	2	3
1	$0.1 = p_{1,0}$	0.2	0.1	0.1
2	0.1	0	0	0.1
3	0.1	0	0.2	0

- a) Vérifier que ces données permettent de définir une probabilité sur $X(\Omega) \times Y(\Omega)$.
- b) Déterminer les lois de X et de Y.

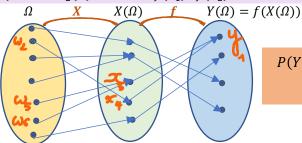
- c) Former la table de « Y sachant que X = 1 » ($not\'ee\ Y_{[X=1]}$).
- d) Déterminer la loi de U = XY.
- e) Déterminer la loi de $V = \min(X, Y)$.
- f) Former la table de (U, V) la loi conjointe de U et V.

6. Image d'une variable aléatoire

22 Théorème : Soit X variable aléatoire sur Ω et f une application définie sur $X(\Omega)$ à valeurs dans un ensemble F. On pose $Y=f(X)=f\circ X$. Alors, Y est la variable aléatoire sur (Ω,P) telle que :

$$\forall y \in f\big(X(\varOmega)\big), P(Y=y) = \sum_{\substack{x \in X(\varOmega) \\ tel \ f(x) = y}} P(X=x) \ \ et \ \ \forall A \subset f\big(X(\varOmega)\big), P(Y \in A) = \sum_{\substack{x \in X(\varOmega) \\ tel \ f(x) \in A}} P(X=x).$$

23 NB: Si X_1et X_2 sont deux variables aléatoires telles que $X_1 \sim X_2$ et f une application définie sur D à valeurs dans un ensemble F telle que , $X_1(\Omega) \subset D$ et $X_2(\Omega) \subset D$ alors $f(X_1) \sim f(X_2)$.



$$P(Y = y) = P(X = x_3) + P(X = x_4)$$

= $P(\omega_2) + P(\omega_5) + P(\omega_6)$

Il Espérance d'une variable aléatoire complexe.

1. Définitions

24 Définition: Soit X une variable aléatoire complexe sur Ω .

L'espérance de X est le complexe $E(X) = \sum_{x \in X(\Omega)} x P(X = x)$.

- **25** Autres expressions : Soit X une variable aléatoire complexe sur Ω .
- **1)** Si $X(\Omega) = \{x_1, x_2, ..., x_m\} \subset \mathbb{C}$, alors $E(X) = \sum_{i=1}^m x_i P(X = x_i)$
- 2) $E(X) = \sum_{\omega \in \Omega} X(\omega) P(\omega)$.

26 Interprétation: L'espérance de X est la moyenne des valeurs prises par X pondérées par leurs probabilités respectives .

2. Exemples.

- 27 Cas particuliers :
- 1. Si X est constante égale à x alors E(X) = x.
- 2. Si X suit la loi uniforme alors $E(X) = \frac{1}{m} \sum_{i=1}^{m} x_i$.
- 3. Si X suit la loi de Bernoulli de paramètre p alors E(X) = p.
- **4.** Si X suit la loi binomiale de paramètres n et p alors E(X) = np.

3. <u>Propriétés.</u>

28 Proposition : Propriétés de l'espérance Soit X une variable aléatoire complexe sur Ω .

- 1) Pour tous complexes a et b, E(aX + b) = aE(X) + b.
- 2) Si X réelle et positive, alors $E(X) \ge 0$.
- 3) Si X et Y sont deux variables aléatoires complexes, alors pour tous complexes a et b, E(aX + bY) = aE(X) + bE(Y).
- 4) Si X et Y sont réelles telles que $X \ge Y$, alors $E(X) \ge E(Y)$.

29 Théorème du transfert

Si X est une variable aléatoire sur Ω et f est une application de $X(\Omega)$ dans $\mathbb C$ alors $E(f(X)) = \sum_{x \in X(\Omega)} f(x) P(X = x)$

30Exemple: $E(X^2) = \sum_{i=1}^m x_i^2 P(X = x_i) = \sum_{x \in X(\Omega)} x^2 P(X = x)$

31Théorème d' Inégalité de Markov

Si X est réelles et à valeurs positives alors $\forall t \in \mathbb{R}^{+*}, \forall n \in \mathbb{N}^*, P(X \ge t) \le \frac{E(X^n)}{t^n}$ et en particulier , $\forall t \in \mathbb{R}^{+*}, P(X \ge t) \le \frac{E(X)}{t}$.

III Variance et covariance

1. <u>Définition et règles de calcul</u>.

32 Définition: Soit X une variable aléatoire **réelle.** La variance de X est définie par $V(X) = E((X - E(X))^2)$ et l'écart type par : $\sigma(X) = \sqrt{V(X)}$.

La variance et l'écart mesurent la dispersion des valeurs de X autour de la moyenne pondérée E(X) . X , E(X) et $\sigma(X)$ ont les mêmes unités .

- **33 Règles de calcul :** Soit X une variable aléatoire réelle sur Ω .
- 1) $V(X) = E(X^2) (E(X))^2$
- 2) $\forall (a,b) \in \mathbb{R}^2, V(aX+b) = a^2V(X) \text{ et } \sigma(aX+b) = |a|\sigma(X)$

34Définition : Covariance de deux variables aléatoires réelles

Soit X et Y deux variables aléatoires **réelles** sur Ω .

On appelle covariance de X et Y le réel : cov(X,Y) = E((X-E(X))(Y-E(Y)))

On dit que X et Y sont décorrélées lorsque cov(X,Y) = 0.

35 Théorème cov(X,Y) = E(XY) - E(X)E(Y) et V(X+Y) = V(X) + 2cov(X,Y) + V(Y)

2. Exemples

36Proposition : Si X suit la loi de Bernoulli de paramètre p alors V(X) = p(1-p) . Si X suit la loi binomiale B(n,p)alors V(X) = np(1-p).

37Définition: X est dite centrée lorsque E(X) = 0 et réduite lorsque $\sigma(X) = 1$.

38 Proposition : Si X est d'écart – type non nul alors $Z=rac{X-E(X)}{\sigma(X)}$ est une variable aléatoire centrée réduite .

3. <u>Inégalité de Bienaymé-Tchebychev</u>

39Théorème d' Inégalité de Bienaymé-Tchebychev

Si X est réelle et d'écart – type non nul alors $\forall t \in \mathbb{R}^{+*}$, $P(|X - E(X)| \ge t\sigma(X)) \le \frac{1}{t^2}$ ce qui signifie que la probabilité que X soit à une distance de E(X) supérieure à $t\sigma(X)$ est inférieure à $\frac{1}{t^2}$.

- 40 Autres versions équivalence : Si X est réelle et d'écart type non nul alors l'inégalité s'écrit aussi :
- 1. $\forall t \in \mathbb{R}^{+*}$, $P(X \in]E(X) t\sigma(X)$, $E(X) + t\sigma(X)[) \ge 1 \frac{1}{t^2}$.
- 2. $\forall \varepsilon > 0$, $P(|X E(X)| \ge \varepsilon) \le \frac{\sigma(X)^2}{\varepsilon^2}$ en posant $\varepsilon = t\sigma(X)$.

41Exemple: $P(|X - E(X)| \ge 3\sigma(X)) \le \frac{1}{9} \approx 11\%$; autrement dit, la probabilité que X prenne des valeurs dans $]E(X) - 3\sigma(X), E(X) + 3\sigma(X)[$ est supérieur à 89%.

V Variables aléatoires indépendantes

1. Cas de deux variables

42Définition: Soient X et Y deux variables aléatoires sur (Ω, P) . On dit que X et Y sont indépendantes lorsque : $\forall x \in X(\Omega), \forall y \in Y(\Omega)$, $P(\{X = x\} \cap \{Y = y\}) = P(X = x) \times P(Y = y)$ ie. lorsque $\forall x \in X(\Omega), \forall y \in Y(\Omega)$, les évènements P(X = x) et P(Y = y) sont indépendants.

43Proposition : Si *X* et *Y* sont indépendantes alors

 $\forall A \in \mathcal{P}(X(\Omega)), \forall B \in \mathcal{P}(Y(\Omega)), P((X,Y) \in A \times B) = P(X \in A) \times P(Y \in B).$

44Proposition: Espérance d'un produit, variance d'une somme de variables indépendantes

Si X et Y sont réelles et indépendantes alors E(XY) = E(X)E(Y) et V(X+Y) = V(X) + V(Y).

45 Proposition: Images de deux variables aléatoires indépendantes

Si X et Y sont indépendantes et f et g deux applications définies respectivement sur $X(\Omega)$ et $Y(\Omega)$ alors f(X) et g(Y) sont indépendantes .

2. Cas de *n* variables

46Définition : Soit $X_1, X_2, ..., X_n$ des variables aléatoires sur (Ω, P) .

1) $X_1, X_2, ..., X_n$ sont deux à deux indépendantes lorsque pour tout couple (i, j) tel que $\neq j$, X_i et X_j sont indépendantes .

2) $X_1, X_2, ..., X_n$ sont mutuellement indépendantes lorsque :

 $\forall (x_1, x_2, ..., x_n) \in X_1(\Omega) \times X_2(\Omega) \times ... \times X_n(\Omega) \text{ , } P(\cap_{k=1}^n \{X_k = x_k\}) = \prod_{k=1}^n P(X_k = x_k).$

47Proposition: une généralisation (admise)

SI X_1, X_2, \ldots, X_n sont mutuellement indépendantes alors pour toutes parties $A_k \ de \ X_k(\Omega)$, on a :

$$P((X_1, X_2, ..., X_n) \in A_1 \times A_2 \times ... \times A_n) = \prod_{k=1}^n P(X_k \in A_k)$$

48Proposition: variance (admis)

SI $X_1, X_2, ..., X_n$ sont réelles et mutuellement indépendantes alors $V(\sum_{k=1}^n X_k) = \sum_{k=1}^n V(X_k)$

49Exemple important : Si $X_1, X_2, ..., X_n$ sont mutuellement indépendantes et suivent la loi de Bernoulli de paramètre p alors $X = X_1 + X_2 + ... + X_n$ suit la loi binomiale de paramètres n et p et donc V(X) = np(1-p).