Sup PCSI 2022-2023 Mathématiques

TD 8 Calcul intégral

Ex 1 A. Calculer les intégrales I ou primitives F suivantes : $\alpha \in \mathbb{R}$, $(n,m) \in \mathbb{N}^2$, $x \in \mathbb{R}$.

1.
$$I = \int_{\ln(4)}^{\ln(2)} (3e^{-\frac{x}{4}} + 1)^2 dx$$

2.
$$I = \int_1^2 e^u \left(\frac{1}{u} + \ln(u)\right) du$$

3.
$$I_{\alpha} = \int_{e}^{e^2} \frac{dx}{x \ln^{\alpha}(x)}$$

4.
$$I = \int_{e^3}^{e^2} \frac{dx}{x \ln(x) \ln(\ln(x))}$$

5.
$$I = \int_0^1 (1 + \frac{1}{4}x)^3 dx$$

6.
$$F(x) = \int_{1}^{x} \sqrt{\theta} + \frac{1}{\sqrt{\theta}} d\theta$$

7.
$$I_{(x)} = \int_{2x}^{x} t^{x^2} e^x dt$$

8.
$$I = \int_0^1 t e^{3t^2} dt$$

9.
$$I = \int_{\frac{1}{2}}^{\frac{1}{\sqrt{2}}} \frac{1}{\sqrt{1-x^2}Arcsin(x)} dx$$

10.
$$F(t) = \int_{1}^{t} \frac{5}{\cos^2(3z)} dz$$

11.
$$I = \int_0^{2\pi} (\cos^5 y + 4\cos^3 y - 7) \sin(y) \, dy$$

12.
$$I = \int_{\underline{\pi}}^{3\underline{\pi}} (\sin(t))^5 dt$$

13.
$$I = \int_0^{\frac{\pi}{4}} (\sin(3t))^2 dt$$

14.
$$I = \int_0^{\frac{\pi}{2}} \cos^3(2x) \sin^6(2x) dx$$

15.
$$I = \int_0^{\pi} \sin(nt) \sin(mt) dt$$

15.
$$I = \int_0^{\pi} \sin(nt) \sin(mt) dt$$

16. $I = \int_{\pi}^{2\pi/3} \frac{\sin t}{\sqrt{\cos(2t)+1}} dt$

17.
$$I = \int_0^{\frac{\pi}{6}} \cos{(2t)} \tan{(t)} dt$$

18.
$$F(x) = \int_{0}^{x} ch(3t)sh(t)dt$$

19.
$$I = \int_0^1 \frac{Arctan(t)}{1+t^2} dt$$

20. $I = \int_0^1 e^t \sin(e^t) dt$

20.
$$I = \int_0^1 e^t \sin(e^t) dt$$

21.
$$I(x) = \int_{0}^{x} x sh(tx) dt$$

22.
$$I = \int_0^1 e^{2t} sh(t) dt$$

23.
$$I = \int_0^1 \frac{1}{1-it} dt$$

23.
$$I = \int_0^1 \frac{1}{1 - it} dt$$

24. $F(x) = \int_0^x \frac{\ln(t)}{t(1 + \ln(t^2))} dt$

B. Idem. On pourra utiliser la parité de l'intégrande et/ou simplifier son expression sur l'intervalle d'intégrande et/ou simplifier son expression de l'intégrande et/ou simplifier son expression sur l'intervalle d'intégrande et/ou simplifier son expression sur l'intervalle d'intégrande et/ou simplifier son expression sur l'intervalle de l'intégrande et/ou simplifier son expression sur l'intervalle et/ou simplifier son expression sur l'intervalle et/ou simplifier son expression et/ou simplifier et/ou simplifie

25.
$$I = \int_{-1}^{1} e^{-|u|} du$$

26.
$$I = \int_{4/e}^{2/e} \frac{|y|}{y} dy$$

27.
$$I = \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{e^{x^3} - e^{-x^3}}{\ln(3 + \cos(\tan(x)))} dx$$

Ex 2 Calculer les intégrales suivantes en appliquant le théorème d'intégration par parties ou passage en cpxe (ou rien ?)

1.
$$I = \int_0^1 (5u^2 + 3)ch(2u)du$$

2.
$$I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{6}} (5t - 1) \sin^3(2t) dt$$

3.
$$I = \int_{1}^{2} \ln^{2}(y) dy$$

4.
$$I = \int_0^{\pi} \cos(2t)e^{-t}dt$$

5.
$$I = \int_{-1}^{\sqrt{3}} (2t^3 Arctan(t)) dt$$

6.
$$I = \int_{2}^{1} t^{2} \ln(4t) dt$$

7.
$$I = \int_{\frac{\pi}{2}}^{0} (3t - t^{3}) \sin(4t) dt$$
8.
$$I = \int_{0}^{\pi/4\pi} e^{t} (\sin(t) - \cos(t)) dt$$

9.
$$F(y) = \int_{0}^{y} Arccos(t)dt$$

10
$$I = \int_{0}^{\pi} t \sin(t)e^{t} dt$$

$$10. I = \int_0^\pi t \sin(t) e^t dt$$

$$12.I = \int_0^1 a^3 e^{-a^2/2} da$$

13.
$$I = \int_{1}^{2} \cos(\ln(t)) dt$$

13.
$$I = \int_0^2 dt e^{-t} dt$$

13. $I = \int_1^2 \cos(\ln(t)) dt$
14. $I = \int_1^2 \frac{\omega \ln(\omega)}{(1+\omega^2)^2} d\omega$ (on écrira
$$\frac{1}{\omega(1+\omega^2)} = \frac{a}{\omega} + \frac{b\omega + c}{1+\omega^2} \text{ où } a, b, c \text{ cstes})$$

Ex 3 Calculer les intégrales suivantes :

1.
$$I = \int_{1}^{2} \frac{3}{1+t} dt$$

2.
$$I = \int_{-4}^{-2} \frac{1-x}{3x-2} dx$$

1.
$$I = \int_{1}^{2} \frac{3}{1-4t} dt$$

2. $I = \int_{-4}^{-2} \frac{1-x}{3x-2} dx$
3. $I = \int_{0}^{-1} \frac{4}{(1-2x)^{7}} dx$

4.
$$I = \int_0^1 \frac{x^6 - 1}{1 + 2x} dx$$

4.
$$I = \int_0^1 \frac{x^6 - 1}{1 + 2x} dx$$

5. $I = \int_{-2}^{-3} \frac{1}{t(t^2 - 1)} dt$

6.
$$F(x) = \int_{-\infty}^{x} \frac{4t-5}{(t+1)(t+2)} dt$$

7.
$$I = \int_{-1}^{0} \frac{t^3}{5 + 3t^2} dt$$

7.
$$I = \int_{-1}^{0} \frac{t^3}{5+3t^2} dt$$
8.
$$I = \int_{-5/\sqrt{3}}^{0} \frac{1}{25+9t^2} dt$$
9.
$$I = \int_{1}^{0} \frac{x^3}{x^2+1} dx$$

9.
$$I = \int_{1}^{0} \frac{x^3}{x^2 + 1} dx$$

10.
$$I = \int_{1}^{0} \frac{x}{(x^2+1)^3} dx$$

11.
$$I = \int_0^1 \frac{t^2}{1+t^2} dt$$

11.
$$I = \int_0^1 \frac{t^2}{1+t^2} dt$$

12. $I = \int_0^1 \frac{1}{(1+t^2)^2} dt$

13.
$$I = \int_{\frac{1}{2}}^{0} \frac{t^2}{1+4t^2} dt$$

14.
$$I = \int_{-\frac{1}{4}}^{0} \frac{t^2 + t}{1 - 4t^2} dt$$

15.
$$I = \int_0^{-1} \frac{1}{2+t+t^2} dt$$

16.
$$I = \int_0^1 \frac{2t-1}{2-t+t^2} dt$$

17.
$$I = \int_0^1 \frac{t^2 - 3t}{2t^2 + t + 1} dt$$

$$15. I = \int_0^{-1} \frac{1}{2+t+t^2} dt$$

$$16. I = \int_0^1 \frac{2t-1}{2-t+t^2} dt$$

$$17. I = \int_0^1 \frac{t^2-3t}{2t^2+t+1} dt$$

$$18. I = \int_0^1 \frac{2t^3+3t+4}{t^2-t+1} dt$$

Ex 4 Calculer à l'aide de changements de variables les intégrales suivantes :

1.
$$I = \int_{0}^{\frac{\pi}{4}} tan^{4}(t)dt$$
 (CV: $x = tan(t)$)

1.
$$I = \int_0^{\frac{\pi}{4}} tan^4(t)dt \text{ (cv : } x = tan(t))$$

2. $I = \int_3^4 \frac{xln(1+x^2)}{1+x^2} dx \text{ (cv : } t = 1+x^2)$

3.
$$I = \int_{1/2}^{0} e^{\sqrt{u}} du$$
 (CV: $x = \sqrt{u}$)

4.
$$I = \int_0^1 x^2 Arccos(x) dx$$

5.
$$I = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{dx}{\sin(x)} (CV : t = \cos(x))$$

6.
$$I = \int_0^{\frac{\pi}{2}} \frac{dx}{2+\sin(x)} (CV:t = \tan\left(\frac{x}{2}\right))$$

6.
$$I = \int_0^{\frac{\pi}{2}} \frac{dx}{2 + \sin(x)} (CV : t = \tan(\frac{x}{2})).$$

7. $I = \int_0^{\pi} \frac{dx}{1 + \cos^2(x)} (CV : t = \tan(x))$

8.
$$I = \int_{1}^{2} \frac{1 + \sqrt{1 + t}}{\sqrt{1 + t} - 1} dt$$

9.
$$I = \int_{1/2}^{0} \sqrt{\frac{1+t}{1-t}} dt \ (\text{cv}: t = \cos^2(x))$$

10.
$$I = \int_0^1 \frac{dx}{1 + ch(x)}$$

11.
$$I = \int_{1/2}^{0} \sqrt{\frac{1+t}{1-t}} dt \ (CV: t = cos^2(x))$$

12.
$$F(y) = \int_0^y \frac{x^3}{\sqrt{1+x^2}} dx$$

13.
$$I_2 = \int_0^{\pi} \frac{1}{1+\sin x} dx \text{ (CV:} u=\tan\left(\frac{x}{2}\right)\text{)}$$

Ex 5 Calculer à l'aide de changements de variables ou pas les intégrales ou primitives suivantes :

1.
$$I = \int_0^1 \frac{2t+1}{\sqrt[5]{t^2+t+1}} dt$$

2.
$$I = \int_{-2}^{-1} \frac{1}{\sqrt{2-3x}} dx$$

3.
$$I = \int_0^{-1} (1 - 2\alpha)^{\frac{4}{7}} d\alpha$$

4. $I = \int_0^{1/2} \frac{t-3}{\sqrt{1-t^2}} dt$

4.
$$I = \int_0^{1/2} \frac{t-3}{\sqrt{1-t^2}} dt$$

5.
$$I = \int_{2}^{3} \frac{t}{\sqrt{t-1}} dt$$

5.
$$I = \int_{2}^{3} \frac{t}{\sqrt{t-1}} dt$$

6. $I = \int_{1}^{2} \frac{1-5x}{\sqrt{2x-1}} dx$

$$7. \quad I = \int_1^0 t \sqrt{1 - t} dt$$

8.
$$I = \int_0^1 (1+3t)^8 \sqrt{3-2t} dt$$

9.
$$I = \int_1^0 t \sqrt{1 - t^2} dt$$

10.
$$I = \int_0^1 \frac{1}{\sqrt{2-t^2}} dt$$

11.
$$I = \int_0^1 \sqrt{1 - t^2} dt$$
 (CV: t=?)

12.
$$I = \int_{1}^{2} \sqrt{t^2 - 1} dt \, (\text{CV} : t = chx))$$

13.
$$I = \int_0^{-1} \sqrt{4t^2 + 9} dt \ (CV: t = ??)$$

14.
$$I = \int_0^{\frac{1}{2}} \sqrt{1 - 4t^2} dt$$

15. $I = \int_0^1 \sqrt{t^2 - t + 1} dt$

15.
$$I = \int_0^1 \sqrt{t^2 - t + 1} dt$$

16.
$$I = \int_0^{\frac{1}{2}} t^2 \sqrt{1 - t^2} dt$$

17. Calculer $I = \int_{\frac{1}{2}}^{\frac{2}{2}} \frac{1}{\sqrt{2x-v^2}} dx$. On fera pour cela un bon changement de variable aboutissant à intégrer $\frac{1}{\sqrt{1-u^2}}$

18. Calculer $I = \int_{-\frac{1}{2}}^{-\frac{1}{4}} \sqrt{-x - x^2} dx$. On fera pour cela un bon changement de variable aboutissant à intégrer $\sqrt{1 - u^2}$.

19. Calculer $I = \int_a^b \sqrt{(x-a)(b-x)} dx$ où a,b réels tels que a < b. On pourra effectuer le CV : $u = x - \frac{a+b}{2}$

Ex 6 Trouver une primitive des fonctions f suivantes :

1. $f:(x \mapsto \sqrt{x^2-x})$

6. $f:(x \mapsto xArcsin(x))$

2. $f: (x \mapsto \frac{1+x}{(3+2x+x^2)^{2017}})$

7. $f: (x \mapsto x\cos(2x)e^{-x})$

11. $f: (x \mapsto \frac{\ln(x)}{2x})$ 12. $f: (x \mapsto \frac{1}{(1+x^2)^3})$

8. $f: (x \mapsto \frac{1}{x(1+\ln(x))^2})$ 9. $f: (y \mapsto \frac{1}{\cos(y)})$

13. $f: (x \mapsto e^{(x+e^x)})$ 14. $f: (r \mapsto \frac{r}{r^2 + 6r - 7})$ 15. $f: (x \mapsto 2^x)$

3. $f: (x \mapsto \frac{x}{1+x})$ 4. $f: (x \mapsto \frac{x^5 - 2x^2 + 6}{2-x})$

5. $f: (t \mapsto \frac{t^4 - t + 1}{2 + t + 2})$

 $10. \ f: (x \mapsto \frac{\sin(\sqrt{x})}{\sqrt{x}})$

Ex 7 PELE-MELE 0)Calculer $I = \int_0^1 e^{Arccos(x)} dx$.

1) Soit $I=\int_{\pi/3}^{\pi/2} \frac{dx}{\sin x + \sin{(2x)}}$. Montrer que $I=\int_0^{1/2} \frac{du}{(1-u)(1+u)(1+2u)}$. En déduire la valeur de I .

2) Montrer que $\int_0^{\frac{\pi}{4}} \ln(\cos x) dx = \int_0^{\frac{\pi}{4}} \ln\left(\cos\left(\frac{\pi}{4} - x\right)\right) dx$). En déduire la valeur de $J = \int_0^{\frac{\pi}{4}} \ln(1 + \tan(x)) dx$

3) Soit f une fonction continue sur [a,b] et telle que : $\forall x \in [a,b], f(a+b-x) = f(x)$. Calculer $I = \int_a^b x f(x) dx$ en fonction de $J = \int_a^b f(x) dx$. Application : Calculer $I_2 = \int_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx$ (CV: u = ?? ou forme connue $\frac{u'(x)}{1 + u^2(x)}$).

4) Déterminer une primitive de $f: (x \mapsto \cos(x) \ln(1 + \cos(x)))$ sur $]-\pi,\pi[$. On pourra faire une *IPP*.

5) Soit $I=\int_{\frac{1}{2}}^2\left(1+\frac{1}{x^2}\right)Arctan(x)dx$. Montrer, en effectuant le CV $u=\frac{1}{x}$, que : $I=\frac{\pi}{2}\int_{\frac{1}{2}}^2\frac{1+u^2}{u^2}du-I$. En déduire I.

6) Déterminer toutes les primitives de $f:\left(x\mapsto \frac{1}{2+\sin^2(x)}\right)$. On pourra effectuer le CV : u=tan(x).

7) Soit $I = \int_{-1}^{-2} \frac{\sqrt{1+r^2}}{r} dr$. Montrer que $I = \int_{\ln(\sqrt{2}-1)}^{\ln(\sqrt{5}-2)} \frac{ch^2(t)}{sh(t)} dt = \frac{1}{2} \int_{\sqrt{2}-1}^{\sqrt{5}-2} 1 - \frac{1}{u^2} + \frac{2}{u-1} - \frac{2}{u+1} du$. En déduire I.

Ex 8 Justifier que:

Si f est continue sur $\mathbb R$ et impaire alors pour tout réel a, $\int_{-a}^{a} f(t)dt = 0$

Si f est continue sur $\mathbb R$ et paire alors pour tout réel a, $\int_{-a}^a f(t)dt = 2\int_0^a f(t)dt$

Si f est continue sur \mathbb{R} et T-périodique alors pour tous réels a et b, $\int_a^b f(t)dt = \int_{a+T}^{b+T} f(t)dt$ et $\int_0^T f(t)dt = \int_a^{a+T} f(t)dt$

Ex 9 Trouver des relations de récurrence en appliquant le théorème d'intégration par parties :

 $\forall n \in \mathbb{N}^*$, on pose $I_n = \int_0^1 \frac{1}{(1+t^2)^n} dt$. Etablir une relation entre I_n et I_{n+1} . En déduire $I = \int_0^1 \frac{t^2}{(1+t^2)^3} dt$ et $J = \int_0^1 \frac{1}{(1+t^2)^4} dt$

2. $\forall n \in \mathbb{N}$, on pose $J_n = \int_0^{\frac{\pi}{2}} cos^n t dt$. INTEGRALE DE WALLIS

a. Montrer que: $(n+2)J_{n+2}=(n+1)J_n$. En déduire une expression de J_n à l' aide de factorielles.

b. Montrer que (J_n) est convergente.

3. $\forall n \in \mathbb{N}$, on pose $I_n = \int_0^1 (1-t^2)^n dt$.

a. Déterminer une expression de I_n à l'aide de la formule du binôme .

b. Exprimer I_n en fonction de I_{n-1} . En déduire une autre expression de I_n .

c. Donner alors une formule sommatoire.

d. Montrer que (I_n) est convergente .

Ex 10 1. Calculer $\lim_{x \to 1} \frac{1}{r-1} \int_{1}^{x} e^{-t^{2}} dt$ et $\lim_{x \to 1} \frac{1}{r-1} \int_{1}^{x} e^{-t^{2}} dt$.

2. $F: \left(x \mapsto \int_1^x \frac{e^t}{1+5t^2} - \frac{x^2}{1+t^9} dt\right)$ est une primitive de quelle fonction ?

3. $F: \left(x \mapsto x \int_{\frac{1}{x}}^{x} e^{-t^2} dt\right)$ est une primitive de quelle fonction ?

Ex 11 Fonction définie par une intégrale Soit $\varphi(t) = \frac{1}{\ln(t)} et f(x) = \int_{x}^{x^2} \frac{1}{\ln(t)} dt$.

Déterminer le domaine de définition et celui de continuité de φ .

Monter que $\forall x \in]0,1[,f(x)]$ existe. Monter que $\forall x \in]1,+\infty[,f(x)]$ existe. Ainsi, $D_f=D\varphi=]0,1[\cup]1,+\infty[$. 2.

Justifier que φ admet une primitive G sur l'intervalle]0,1[et une primitive H sur l'intervalle $]1,+\infty[$.

- 4. Soit $x \in]0,1[$. Exprimer f(x) à l'aide de G, x et x^2 . En déduire que f est de classe C^1 sur]0,1[et exprimer f'(x) à l'aide de φ , x et x^2 . En déduire les variations de f sur]0,1[.
- 5. Faire de même sur l'intervalle]1, $+\infty$ [.
- 6. Soit $x \in]0,1[$. Montrer que $:\frac{x^2-x}{2\ln(x)} \le f(x) \le \frac{x^2-x}{\ln(x)}$. En déduire les limites de f en 0.
- 7. Soit $x \in]1, +\infty[$. Montrer que $: \frac{x^2 x}{2\ln(x)} \le f(x) \le \frac{x^2 x}{\ln(x)}$. En déduire les limites de f en $+\infty$.
- 8. Soit $x \in]1, +\infty[$. Montrer que $\forall t \in [x, x^2], 0 < \frac{1}{t-1} \le \frac{1}{\ln(t)} \le \frac{x^2}{t-1}$. En déduire la limite de f en 1^+ .
- 9. Faire de même en 1^- et conclure.