COLLE 2 Pcsi

QDC: Enoncer et démontrer la formule de Pascal.

- **1.** Montrer que les suites u et v sont bien définies.
- **2.** Supposons ici que la suite u converge vers un réel L . Quel est alors la valeur de L?
- 3. Montrer que v est géométrique.
- **4.** En déduire une expression explicite de u_n et $\lim_{n\to+\infty} u_n$.

Ex 2 Soit $n \in \mathbb{N}\{0,1\}$. Calculer $S_n = \sum_{k=2}^n k \times k!$

Ex 3 Résoudre le système linéaire : $\begin{cases} 2x + 3y - 2z = 1\\ 3x - y + 2z = 0\\ 4x + 2y + 3z = -1 \end{cases}$

QDC: Enoncer et démontrer la formule de factorisation de $1-x^n$ par (1-x) et celle des sommes géométriques

Ex 1 Soit $S_n = \sum_{k=1}^n k \binom{n}{k}$ et t $T_n = \sum_{k=1}^n k^2 \binom{n}{k}$

- 1) Montrer que $k \binom{n}{k} = n \binom{n-1}{k-1}$. En déduire S_n .
- 2) En transformant de même $k(k-1)\binom{n}{k}$, déterminer T_n .

Ex 2 Résoudre le système linéaire : $\begin{cases} 2x + y + z = 1 \\ x + 2y + z = 0 \\ x + y + 2z = -1 \end{cases}$

Ex 3 Résoudre le système{ $PPCM(x,y) = 540 \\ PGCD(x,y) = 18$ d'inconnue $(x,y) \in \mathbb{N}^2$.

QDC : Enoncer et démontrer la formule du binôme de Newton

Ex 1: Soit p un entier naturel tel que $p \ge 3$. Montrer que : $\left(1 + \frac{2}{p}\right)^p > 3$.

Ex 2 pour tout n un entier naturel non nul, on note D(n) le nombre de ses diviseurs entiers naturels.

- 1. Soit n un entier naturel tel que $n=p_1^{\alpha_1}p_2^{\alpha_2}\dots p_r^{\alpha_r}$, la décomposition primaire de n. Déterminer D(n) en fonction des $\alpha_1,\alpha_2,\dots\alpha_r$.
- 2. Soit a et b deux entiers naturels non nuls et premiers entre eux. Montrer que D(ab) = D(a)D(b).
- 3. Montrer que n est le carré d'un entier sietssi D(n) est impair.
- 4. Que dire de n si D(n) = 3?

Ex 3 Résoudre le système linéaire : $\begin{cases} 2x + 2y - 2z = a \\ 3x - 4y + 3z = b \text{ d'inconnue } (x, y, z) \in \mathbb{R}^3, \ a \text{ et } b \text{ sont des paramètres} \\ 2x + 3y - 4z = a \end{cases}$ réels.

Ex 4: Soit $x \in [0,1]$. Montrer que pour tout p entier naturel non nul, $(1-x)^p \le 1-x^p$.

Ex 4 Soit $n \in \mathbb{N}\{0,1\}$. Calculer $S_n = \sum_{k=2}^n \ln\left(1 - \frac{1}{k}\right)$