
Mathématiques, PCSI 
Corrigé DS 1 

Exercice 1 De la récurrence et de la formule du binôme de Newton.   

Démontrer que : ∀𝑛 ∈ ℕ,  , 𝑛
5

5
+

𝑛4

2
+

𝑛3
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−

𝑛

30
∈ ℕ.  

Posons 𝑯(𝒏): 
𝑛5

5
+

𝑛4
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+
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3
−

𝑛

30
∈ ℕ. 

Init° : 0
5

5
+

04

2
+

03

3
−

0

30
= 0 ∈ ℕ. Donc 𝐻(0) vraie.  

Propagat° : Soit 𝑛 ∈ ℕ. Supposons 𝐻(𝑛) vraie. Et montrons 𝐻(𝑛 + 1).  
(𝑛+1)5
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+
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=
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+
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+
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+ 𝑛4 + 2𝑛3 + 2𝑛2 + 𝑛 + 2𝑛3 + 3𝑛2 + 2𝑛 + 𝑛2 + 𝑛 +
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=
𝑛5

5
+

𝑛4

2
+

𝑛3

3
−

𝑛
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+ 𝑛4 + 2𝑛3 + 2𝑛2 + 𝑛 + 2𝑛3 + 3𝑛2 + 2𝑛 + 𝑛2 + 𝑛 + 1.  

Or, par hypothèse 𝐻(𝑛), 𝑛
5

5
+

𝑛4

2
+

𝑛3

3
−

𝑛

30
∈ ℕ. Alors, comme 𝑛4 + 2𝑛3 + 2𝑛2 + 𝑛 + 2𝑛3 + 3𝑛2 + 2𝑛 + 𝑛2 + 𝑛 + 1 ∈ ℕ, on 

peut affirmer que (𝑛+1)5

5
+

(𝑛+1)4

2
+

(𝑛+1)3

3
−

(𝑛+1)

30
∈ ℕ. 𝐻(𝑛 + 1) est donc vérifiée.  

CCL° : le théorème de récurrence simple assure alors que ∀𝑛 ∈ ℕ,  , 𝑛
5
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−

𝑛

30
∈ ℕ. 

Exercice 2 Une suite récurrente . 

 Soit (𝑢𝑛) la suite définie par : 𝑢0 = 2 et ∀𝑛 ∈ ℕ∗, 𝑢𝑛 = ∑
𝑢𝑘

𝑘+1
𝑛−1
𝑘=0 .  

1. Calculer 𝑢1 et  𝑢2. 
2. Démontrer, par récurrence, que ∀𝑛 ∈ ℕ, 𝑢𝑛 > 0. 

3. Démontrer que ∀𝑛 ≥ 2, 𝑢𝑛 = (1 +
1

𝑛
) 𝑢𝑛−1. 

4. En déduire une expression explicite de 𝑢𝑛 pour 𝑛 ≥ 2. 

1. 𝑢1 = ∑
𝑢𝑘

𝑘+1

0
𝑘=0 =

𝑢0

1
= 2 et 𝑢2 = ∑

𝑢𝑘

𝑘+1
1
𝑘=0 =

𝑢0

1
+

𝑢1

2
= 2 + 1 = 3.  

2. Posons 𝐻(𝑛): 𝑢𝑛 > 0.  

Init° : 𝑢0 > 0 donc 𝐻(0) est vraie.  

Propag° : Soit 𝑛 un entier naturel. Supposons que 𝐻(0), 𝐻(1), … , 𝐻(𝑛) sont vraies. Je sais que 𝑢𝑛+1 = ∑
𝑢𝑘

𝑘+1
𝑛
𝑘=0 . De plus, 

𝐻(0), 𝐻(1), … , 𝐻(𝑛) sont vraies donc 𝑢0 > 0, 𝑢1 > 0, … , 𝑢𝑛 > 0. J’en déduis que 𝑢0

1
> 0,

𝑢1

2
> 0, … ,

𝑢𝑛

𝑛=1
> 0 et par conséquent, 

𝑢𝑛+1 = ∑
𝑢𝑘

𝑘+1
𝑛
𝑘=0 > 0. Ainsi 𝐻(𝑛 + 1) est vraie.  

CCL° : le théorème de récurrence forte permet alors de conclure que ∀𝑛 ∈ ℕ, 𝑢𝑛 > 0. 

3. Soit 𝑛 ≥ 2. 𝑢𝑛 = ∑
𝑢𝑘

𝑘+1
𝑛−1
𝑘=0 = [∑

𝑢𝑘

𝑘+1
𝑛−2
𝑘=0 ] +

𝑢𝑛−1

𝑛
= 𝑢𝑛−1 +

𝑢𝑛−1

𝑛
= (1 +

1

𝑛
) 𝑢𝑛−1. 

4. Soit 𝑛 ≥ 2. 𝑢𝑛 = (1 +
1

𝑛
) 𝑢𝑛−1 donc 𝑢𝑛

𝑢𝑛−1
= (1 +

1

𝑛
).  

Alors pour un entier 𝑁 ≥ 2,  𝑢𝑁

𝑢1
=⏟

𝑡é𝑙𝑒𝑠𝑐𝑜𝑝𝑎𝑔𝑒

∏
𝑢𝑛

𝑢𝑛−1

𝑁
𝑛=2 = ∏ (1 +

1

𝑛
)𝑁

𝑛=2 = ∏ (
𝑛+1

𝑛
)𝑁

𝑛=2 =⏟
𝑡é𝑙𝑒𝑠𝑐𝑜𝑝𝑎𝑔𝑒

𝑁+1

2
. 

Donc, pour un entier 𝑁 ≥ 2,  𝑢𝑁 = 𝑁 + 1.  

Exercice 3  Coefficients binomiaux-Pascal-Suite arithmétique.  

1. Montrer que ∀𝑛 ∈ ℕ, 2 (
2𝑛 + 1
𝑛 + 1

) = (
2𝑛 + 2
𝑛 + 1

). 

2. On pose  ∀𝑛 ∈ ℕ, 𝑆𝑛 = ∑ (
𝑛 + 𝑘

𝑘
)

1

2𝑘
𝑛
𝑘=0 .  Soit 𝑛 ∈ ℕ. 

a. Montrer que  𝑆𝑛+1 = [∑ (
𝑛 + 𝑗
𝑗 − 1

)
1

2𝑗−1
𝑛+1
𝑗=1 ] + (

2𝑛 + 2
𝑛 + 1

)
1

2𝑛+1 . 

b. Soit 𝑗 ∈ ℕ.Compléter l’égalité suivante grâce à la formule de Pascal, (
𝑛 + 𝑗
𝑗 − 1

) = (
… .
𝑗 ) − (

… .
𝑗 ).  

c. Déduire des questions précédentes que 𝑆𝑛+1 = 2𝑆𝑛+1 − 2𝑆𝑛.  
d. En déduire alors l’expression explicite de 𝑆𝑛 en fonction de 𝑛. 

1. Soit 𝑛 ∈ ℕ.  

 2 (
2𝑛 + 1
𝑛 + 1

) =  2
(2𝑛+1)!

(𝑛+1)!(2𝑛+1−𝑛−1)!
=  2

(2𝑛+1)!

(𝑛+1)!𝑛!
=  

2(𝑛+1)×(2𝑛+1)!

(𝑛+1)!𝑛!×(𝑛+1)
=

(2𝑛+2)×(2𝑛+1)!

(𝑛+1)!𝑛!×(𝑛+1)
=

(2𝑛+2)!

(𝑛+1)!(𝑛+1!)
=

(2𝑛+2)!

(𝑛+1)!(2𝑛+2−𝑛−1!)
= (

2𝑛 + 2
𝑛 + 1

).  

2.  Soit 𝑛 ∈ ℕ.𝑆𝑛+1 = ∑ (
𝑛 + 1 + 𝑘

𝑘
)

1

2𝑘
𝑛+1
𝑘=0 = [∑ (

𝑛 + 1 + 𝑘
𝑘

)
1

2𝑘
𝑛
𝑘=0 ] + (

2𝑛 + 2
𝑛 + 1

)
1

2𝑛+1 = [∑ (
𝑛 + 1 + 𝑘

𝑗 − 1
)

1

2𝑗−1
𝑛+1
𝑘=1 ] + (

2𝑛 + 2
𝑛 + 1

)
1

2𝑛+1  

3. (
𝑛 + 𝑗
𝑗 − 1

) = (
𝑛 + 1 + 𝑗

𝑗
) − (

𝑛 + 𝑗
𝑗

). 

4. Alors, 𝑆𝑛+1 = [∑ ((
𝑛 + 1 + 𝑗

𝑗
) − (

𝑛 + 𝑗
𝑗

))
1

2𝑗−1
𝑛+1
𝑗=1 ] + (

2𝑛 + 2
𝑛 + 1

)
1

2𝑛+1 

𝑆𝑛+1 = [∑ (
𝑛 + 1 + 𝑗

𝑗
)

1

2𝑗−1

𝑛+1

𝑗=1

] − [∑ (
𝑛 + 𝑗

𝑗
)

1

2𝑗−1

𝑛+1

𝑗=1

] + (
2𝑛 + 2
𝑛 + 1

)
1

2𝑛+1
= 2 [∑ (

𝑛 + 1 + 𝑗
𝑗

)
1

2𝑗

𝑛+1

𝑗=1

] − 2 [∑ (
𝑛 + 𝑗

𝑗
)

1

2𝑗

𝑛+1

𝑗=1

] + 2 (
2𝑛 + 1
𝑛 + 1

)
1

2𝑛+1
 



𝑆𝑛+1 = 2 [∑ (
𝑛 + 1 + 𝑗

𝑗
)

1

2𝑗

𝑛+1

𝑗=0

] − 2 − 2 [∑ (
𝑛 + 𝑗

𝑗
)

1

2𝑗

𝑛

𝑗=0

] + 2 − (
2𝑛 + 1
𝑛 + 1

)
1

2𝑛 + 2 (
2𝑛 + 1
𝑛 + 1

)
1

2𝑛+1 

𝑆𝑛+1= 2 [∑ (
𝑛 + 1 + 𝑗

𝑗
)

1

2𝑗
𝑛+1
𝑗=0 ] − 2 [∑ (

𝑛 + 𝑗
𝑗

)
1

2𝑗
𝑛
𝑗=0 ] = 2𝑆𝑛+1 − 2𝑆𝑛.  

Alors 𝑆𝑛+1 = 2𝑆𝑛. Donc la suite (𝑆𝑛) est géométrique de raison 2. Donc, ∀𝑛, 𝑆𝑛 = 2𝑛𝑆0 =⏟
𝑐𝑎𝑟

𝑆0=(
𝑛
0

)
1

20=1 

2𝑛.  

Exercice 4 : quatre méthodes pour calculer 𝑺𝒏 = ∑ 𝒌𝒂𝒌𝒏
𝒌=𝟏 . 

Soit  𝑎 ∈ ℝ. Pour tout 𝑛 ∈ ℕ∗, on pose 𝑆𝑛 = ∑ 𝑘𝑎𝑘𝑛
𝑘=1 .  

1. Calculer 𝑆𝑛 pour 𝑎 = 1 𝑝𝑢𝑖𝑠 𝑎 = 0.  Désormais 𝑎 ≠ 1 𝑒𝑡 𝑎 ≠ 0 .  
Partie 1 : Calcul de  𝑺𝒏 grâce à un système linéaire 

Soit 𝑛 ∈ ℕ∗. 
2. Justifier que 𝑆𝑛+1 = (∑ (𝑗 + 1)𝑎𝑗+1𝑛

𝑗=1 ) + 𝑎. 

3. En déduire que 𝑆𝑛+1 = 𝑎𝑆𝑛 +  
𝑎𝑛+2−𝑎

𝑎−1
.  

4. Déterminer une autre relation entre 𝑆𝑛+1 et 𝑆𝑛.  
5. Déduire de ces deux relations, une nouvelle expression (sans ∑ ) de 𝑆𝑛.  

Partie 2 : Calcul de  𝑺𝒏 par dérivation 
Soit 𝑛 ∈ ℕ∗et notons 𝑓 la fonction définie par : ∀𝑥 ∈ ℝ\{1},  𝑓(𝑥) = ∑ 𝑥𝑘𝑛

𝑘=0 . Alors 𝑓 est dérivable sur ℝ\{1}.  
6. Donner une autre expression de 𝑓(𝑥) et en déduire deux expressions de 𝑓′(𝑥).  
7. Exprimer 𝑆𝑛 en fonction de 𝑓′ 𝑒𝑡 𝑎 et retrouver l' expression de 𝑆𝑛 obtenue au 4. 

Partie 3 : Calcul de  𝑺𝒏 par télescopage 
8. Déterminer les réels 𝐴 et 𝐵 de sorte que la suite (𝑢𝑛) telle que :  ∀𝑛, 𝑢𝑛 = (𝐴𝑛 + 𝐵)𝑎𝑛  (où 𝐴 et 𝐵 sont des réels indépendants de 𝑛)  

vérifie : ∀𝑘 ∈ ℕ, 𝑢𝑘+1 − 𝑢𝑘 = 𝑘𝑎𝑘.  
9. Retrouver alors l’expression de 𝑆𝑛 obtenue aux questions 4. et 6. 

1. 𝑆𝑖 𝑎 = 1 𝑎𝑙𝑜𝑟𝑠 𝑆𝑛 = ∑ 𝑘𝑛
𝑘=1 =

𝑛(𝑛+1)

2
 𝑒𝑡  𝑆𝑖 𝑎 = 0 𝑎𝑙𝑜𝑟𝑠 𝑆𝑛 = ∑ 0𝑛

𝑘=1 = 0.  

2. 𝑆𝑛+1 = ∑ 𝑘𝑎𝑘𝑛+1
𝑘=1 =⏟

𝑘=𝑗+1
𝑗=𝑘−1

𝑘∈⟦1,𝑛+1⟧⟺𝑗∈⟦0,𝑛⟧

(∑ (𝑗 + 1)𝑎𝑗+1𝑛
𝑗=0 ) = ∑ (𝑗 + 1)𝑎𝑗+1𝑛

𝑗=1 + 𝑎.  

3. 𝑆𝑛+1 = ∑ (𝑗 + 1)𝑎𝑗+1𝑛
𝑗=1 + 𝑎 = ∑ (𝑗𝑎𝑗+1 + 𝑎𝑗+1)𝑛

𝑗=1 + 𝑎 = ∑ 𝑗𝑎𝑗+1𝑛
𝑗=1 + ∑ 𝑎𝑗+1𝑛

𝑗=1 + 𝑎 

= ∑ 𝑗𝑎𝑗 × 𝑎

𝑛

𝑗=1

+ ∑ 𝑎𝑗 × 𝑎

𝑛

𝑗=1

+ 𝑎 = 𝑎 ∑ 𝑗𝑎𝑗

𝑛

𝑗=1

+ 𝑎 ∑ 𝑎𝑗

𝑛

𝑗=1

+ 𝑎 = 𝑎𝑆𝑛 + 𝑎2
𝑎𝑛 − 1

𝑎 − 1
+ 𝑎 = 𝑎𝑆𝑛 +

𝑎𝑛+2 − 𝑎2 + 𝑎2 − 𝑎

𝑎 − 1
. 

 𝐴𝑖𝑛𝑠𝑖, 𝑆𝑛+1 = 𝑎𝑆𝑛 +
𝑎𝑛+2 − 𝑎

𝑎 − 1
 

4. 𝑆𝑛+1 = 𝑎𝑆𝑛 +
𝑎𝑛+2−𝑎

𝑎−1
. De plus, 𝑆𝑛+1 = 𝑆𝑛 + (𝑛 + 1)𝑎𝑛+1.  

Donc, 𝑎𝑆𝑛 +
𝑎𝑛+2−𝑎

𝑎−1
= 𝑆𝑛 + (𝑛 + 1)𝑎𝑛+1. Alors, (𝑎 − 1)𝑆𝑛 = (𝑛 + 1)𝑎𝑛+1 −

𝑎𝑛+2−𝑎

𝑎−1
.  Et ainsi,  

𝑆𝑛 =
1

(𝑎 − 1)
[(𝑛 + 1)𝑎𝑛+1 −

𝑎𝑛+2 − 𝑎

𝑎 − 1
] =

1

(𝑎 − 1)2
[(𝑛 + 1)𝑎𝑛+1(𝑎 − 1) − (𝑎𝑛+2 − 𝑎)] 

𝑆𝑛 =
1

(𝑎 − 1)²
[𝑛𝑎𝑛+2 − (𝑛 + 1)𝑎𝑛+1 + 𝑎].  

5. ∀𝑥 ∈ ℝ\{1}, 𝑓(𝑥) = ∑ 𝑥𝑘𝑛
𝑘=0 =

𝑥𝑛+1−1

𝑥−1
. Donc, ∀𝑥 ∈ ℝ\{1}, 𝑓′(𝑥) = ∑ 𝑘𝑥𝑘−1𝑛

𝑘=1 =
(𝑛+1)𝑥𝑛(𝑥−1)−(𝑥𝑛+1−1)

(𝑥−1)²
.  

6. Alors, 𝑆𝑛 = ∑ 𝑘𝑎𝑘𝑛
𝑘=1 = 𝑎(∑  𝑘𝑛

𝑘=1 𝑎𝑘−1) =⏟
𝑐𝑎𝑟 𝑎≠1

𝑎𝑓′(𝑎) = 𝑎
(𝑛+1)𝑎𝑛(𝑎−1)−(𝑎𝑛+1−1)

(𝑎−1)²
=

𝑛𝑎𝑛+1−(𝑛+1)𝑎𝑛+1+𝑎

(𝑎−1)²
. 

7. ∀𝑘 ∈ ℕ, 𝑢𝑘+1 − 𝑢𝑘 = 𝑘𝑎𝑘 ⟹ {
(𝐴 × 1 + 𝐵)𝑎1 − (𝐴 × 0 + 𝐵)𝑎0 = 0 (𝑝𝑜𝑢𝑟 𝑘 = 0)

(𝐴 × 2 + 𝐵)𝑎2 − (𝐴 × 1 + 𝐵)𝑎1 = 𝑎 (𝑝𝑜𝑢𝑟 𝑘 = 1)
   

⟺ {
𝑎𝐴 + (𝑎 − 1)𝐵 = 0

(2𝑎 − 1)𝐴 + (𝑎 − 1)𝐵 = 1
  

⟺ {
𝑎𝐴 + (𝑎 − 1)𝐵 = 0

(𝑎 − 1)𝐴 = 1  (𝐿2 ← 𝐿2 − 𝐿1)
  

⟺ {
𝐵 = −

𝑎

𝑎−1
𝐴 = −

𝑎

(𝑎−1)²

𝐴 =
1

𝑎−1

.  



Donc pour qu’une suite de la forme 𝑢𝑛 = (𝐴𝑛 + 𝐵)𝑎𝑛, vérifie ∀𝑘 ∈ ℕ, 𝑢𝑘+1 − 𝑢𝑘 = 𝑘𝑎𝑘, il faut que {
𝐵 = −

𝑎

(𝑎−1)²

𝐴 =
1

𝑎−1

.  

Posons ∀𝑛, 𝑢𝑛 = (
1

𝑎−1
𝑛 −

𝑎

(𝑎−1)²
) 𝑎𝑛.  

Alors ∀𝑘 ∈ ℕ, 𝑢𝑘+1 − 𝑢𝑘 = (
1

𝑎−1
(𝑘 + 1) −

𝑎

(𝑎−1)2
) 𝑎𝑘+1 − (

1

𝑎−1
𝑘 −

𝑎

(𝑎−1)2
) 𝑎𝑘 = 𝑎𝑘 [

𝑎

𝑎−1
(𝑘 + 1) −

𝑎2

(𝑎−1)2
−

1

𝑎−1
𝑘 +

𝑎

(𝑎−1)2
] 

= 𝑎𝑘 [𝑘 + (
𝑎

𝑎−1
−

𝑎2

(𝑎−1)2 +
𝑎

(𝑎−1)2
)] = 𝑎𝑘 [𝑘 + (

𝑎(𝑎−1)−𝑎²+𝑎

(𝑎−1)²
)] = 𝑘𝑎𝑘. Donc {

𝐵 = −
𝑎

(𝑎−1)²

𝐴 =
1

𝑎−1

 conviennent.  

8. ∀𝑘 ∈ ℕ, 𝑢𝑘+1 − 𝑢𝑘 = 𝑘𝑎𝑘. Donc ∑ 𝑢𝑘+1 − 𝑢𝑘
𝑛
𝑘=0 = ∑ 𝑘𝑎𝑘𝑛

𝑘=0 = ∑ 𝑘𝑎𝑘𝑛
𝑘=1 = 𝑆𝑛.  

Alors par télescopage, 𝑆𝑛 = 𝑢𝑛+1 − 𝑢0 = (
1

𝑎−1
(𝑛 + 1) −

𝑎

(𝑎−1)2
) 𝑎𝑛+1 − (−

𝑎

(𝑎−1)2
) = (

(𝑛+1)(𝑎−1)−𝑎

(𝑎−1)2
) 𝑎𝑛+1 +

𝑎

(𝑎−1)2
 

𝑆𝑛 = (
𝑛𝑎𝑛+2−(𝑛+1)𝑎𝑛+1

(𝑎−1)2
) −

𝑎

(𝑎−1)2
=

𝑛𝑎𝑛+2−(𝑛+1)𝑎𝑛+1−𝑎

(𝑎−1)2
. 

Exercice 5  Une démonstration d’un fameux théorème d’arithmétique  
Soit 𝑎 et 𝑏 deux entiers naturels non nuls. On note 𝑑 = 𝑃𝐺𝐶𝐷(𝑎, 𝑏). Alors 𝑑 ∈ ℕ et 𝑑 ≥ 1.  Nous allons montrer dans cet exercice que : 
𝑑 = 1 ⟺ ∃(𝑢, 𝑣) ∈ ℤ2/𝑎𝑢 + 𝑏𝑣 = 1.  (Rappel : « 𝑑 = 1" signifie que "𝑎 et 𝑏 sont premiers entre eux ").  
1. Montrons, dans cette question 1., l’implication  :  ∃(𝑢, 𝑣) ∈ ℤ2/𝑎𝑢 + 𝑏𝑣 = 1 ⟹ 𝑑 = 1. Pour cel, nous 

supposons qu’il existe deux entiers 𝑢 et 𝑣 tels que : 𝑎𝑢 + 𝑏𝑣 = 1.  
1.1. En utilisant le fait que 𝑑 divise 𝑎 et 𝑑 divise 𝑏, montrer que 𝑑 divise 1.  
1.2. Conclure.  
2. Montrons, dans cette question 2., l’implication :    𝑑 = 1 ⟹ ∃(𝑢, 𝑣) ∈ ℤ2/𝑎𝑢 + 𝑏𝑣 = 1. Pour cela, nous 

supposons que 𝑑 = 1.  
Posons 𝐸 = {𝑡 ∈ ℕ∗/∃(𝑢, 𝑣) ∈ ℤ2, 𝑡 = 𝑎𝑢 + 𝑏𝑣}.  

2.1. Quel type d’objet contient l’ensemble 𝐸 ?  Compléter, au plus précis, la phrase :  𝐸 ⊂…… 
2.2. Déterminer un élément de 𝐸.  
𝐸 donc est non vide. Des deux réponses précédentes, nous affirmons que 𝐸 contient un plus petit élément noté 𝑝. Alors, 𝑝 ∈ 𝐸 et tout 
autre élément de 𝐸 est supérieur à 𝑝.  Donc, 𝑝 > 0 et il existe (𝑢0, 𝑣0) ∈ ℤ2 tels que 𝑝 = 𝑎𝑢0 + 𝑏𝑣0. Nous allons montrer que 𝑝 = 1.  
2.3. Imaginons un instant que 𝑝 ≥ 2.  

2.3.1. Justifier que 𝑝 ne peut pas diviser 𝑎 et 𝑏 en même temps. Supposons par exemple que 𝑝 ne divise pas 𝑎.  
2.3.2. On note 𝑞 et 𝑟 respectivement le quotient et le reste de la division euclidienne de 𝑎 par 𝑝. Montrer que 𝑟 =

𝑎(1 − 𝑢0𝑞) − 𝑏𝑣0𝑞.  
2.3.3. En déduire que 𝑟 ∈ 𝐸.  
2.3.4. Expliquer pourquoi cette dernière conclusion contredit la définition de 𝑝. 

2.3.5. Conclure.  
3. Application : montrer que pour tout entier naturel 𝑛, 𝑛2 + 𝑛  𝑒𝑡 2𝑛 + 1 sont premiers entre eux.  

1.1. 𝑑 est un diviseur commun de 𝑎 et de 𝑏 donc il existe 𝑘 et 𝑘’ deux entiers tels que 𝑎 = 𝑑𝑘 𝑒𝑡 𝑏 = 𝑑𝑘′ . Alors, 𝑎𝑢 + 𝑏𝑣 = 1 s’écrit 

𝑑𝑘𝑢 + 𝑑𝑘𝑣 = 1. Donc, 𝑑(𝑘𝑢 + 𝑘𝑣) = 1. Ainsi, 𝑑 divise 1. 

1.2. Comme le seul diviseur entier naturel de 1 est 1, j’en déduis que 𝑑 = 1. Ainsi, 𝑎 et 𝑏 sont premiers entre eux.  

2.1 𝐸 contient des entiers naturels supérieurs à 1. 𝐸 ⊂ ℕ∗.  

2.2 En prenant 𝑢 = 𝑎 𝑒𝑡 𝑣 = 0,  nous avons 𝑎 × 𝑎 + 𝑏 × 0 = 𝑎2 > 0 donc 𝑎² ∈ 𝐸 

2.3 On pose 𝑝 = min(𝐸). Imaginons un instant que 𝑝 ≥ 2.  

2.3.1. Comme a et b sont premiers entre eux, a et b n’ont aucun diviseur commun supérieur à 2. Ainsi, 𝑝 ne peut diviser et 𝑎 et 

𝑏 en même temps. Supposons par exemple que 𝑝 ne divise pas 𝑎. On écrit 𝑎 = 𝑝𝑞 + 𝑟 tq 𝑞 𝑒𝑡 𝑟 entiers naturels et 0 ≤ 𝑟 < 𝑝.  

2.3.2. Nous savons que 𝑝 = 𝑎𝑢0 + 𝑏𝑣0. Donc, 𝑎 − 𝑟 = 𝑝𝑞 = 𝑎𝑢0𝑞 + 𝑏𝑣0𝑞. Ainsi, 𝑟 = 𝑎(1 − 𝑢0𝑞) − 𝑏𝑣0𝑞. 

2.3.3. Posons 𝑢 = (1 − 𝑢0𝑞) 𝑒𝑡 𝑣 = −𝑣0𝑞. Alors u et v sont deux entiers relatifs tels que 𝑟 = 𝑎𝑢 + 𝑏𝑣. De plus, comme 𝑝 ne 

divise pas 𝑎, 𝑟 ≠ 0. Donc 𝑟 > 0. J’en déduis que 𝑟 ∈ 𝐸.  

2.3.4. 𝑟 est donc un élément de 𝐸 et 𝑟 < 𝑝. Ceci est impossible puisque 𝑝 est le plus petit élément de 𝐸. J’en déduis que 

l’hypothèse 𝑝 ≥ 2 est fausse. Et ainsi, 𝑝 ≤ 1. Comme 𝑝 ∈ 𝐸, 𝑝 est un entier naturel non nul. Ainsi, 𝑝 ne peut qu’être égal à 1 et 

par conséquent, 𝑢0 et 𝑣0 sont deux entiers relatifs qui vérifient  𝑎𝑢0 + 𝑏𝑣0 = 1.  

 3. (2𝑛 + 1)( 2𝑛 + 1) − 4(𝑛2 + 𝑛) = 1. Donc les entiers 𝑢 = 2𝑛 + 1 𝑒𝑡 𝑣 = −4 vérifient 𝑢(2𝑛 + 1) + 𝑣(𝑛2 + 𝑛) = 1. J’en déduis que 

2𝑛 + 1 et 𝑛2 + 𝑛 sont premiers entre eux.  

 


