DS 1

CALCULATRICE et AUTRE OUTILS NUMERIQUE <u>NON</u> AUTORISES. DUREE 4 HEURES. INTERDICTION DE SORTIR DE LA SALLE LA PREMIERE HEURE

Le sujet comporte 2 pages (1 feuille recto-verso). Les exercices sont indépendants. QUELQUES CONSIGNES :

- Bien lire tout le sujet avant de commencer.
- Traiter les exercices dans l'ordre que vous souhaitez.
- Justifier toutes vos réponses. Bien relire chaque raisonnement et s'assurer que :

•Vous <u>n'avez pas d'emblée affirmé que la propriété à démontrer est vraie</u> (sans justifier). Posez - vous les bonnes questions : je sais que ? ou je cherche quand ou qui ? ou je veux montrer que ?

•Le <u>raisonnement</u> est clairement exposé : avec une syntaxe correcte en maths et en français. Relisez-vous pour vous assurer que vous avez bien écrit ce que vous vouliez dire (en maths comme en français).

•Les <u>liens logiques</u> (donc, si et seulement si, car, alors, si, par conséquent, je sais que, en conclusion, ..., \Leftrightarrow , \Rightarrow) sont utilisés et utilisés à bon escient.

•La <u>phrase réponse</u>, attendue et soulignée (ou encadrée ou surlignée) répond clairement à la question posée.

Si vous avez un doute sur l'énoncé (erreur d'énoncé ??), n'hésitez pas à demander au professeursurveillant.

Exercice 1 De la récurrence et de la formule du binôme de Newton.

Démontrer que : $\forall n \in \mathbb{N}$, , $\frac{n^5}{5} + \frac{n^4}{2} + \frac{n^3}{3} - \frac{n}{30} \in \mathbb{N}$.

Exercice 2 Une suite récurrente.

Soit (u_n) la suite définie par : $u_0 = 2$ et $\forall n \in \mathbb{N}^*$, $u_n = \sum_{k=0}^{n-1} \frac{u_k}{k+1}$.

- 1. Calculer u_1 et u_2 .
- 2. Démontrer que $\forall n \in \mathbb{N}, u_n > 0$.
- 3. Démontrer que $\forall n \geq 2, u_n = \left(1 + \frac{1}{n}\right) u_{n-1}$.
- 4. En déduire une expression explicite de u_n pour $n \ge 2$.

Exercice 3 Coefficients binomiaux-Pascal-Suite arithmétique.

- 1. Montrer que $\forall n \in \mathbb{N}, 2 {2n+1 \choose n+1} = {2n+2 \choose n+1}.$
- 2. On pose $\forall n \in \mathbb{N}$, $S_n = \sum_{k=0}^n \binom{n+k}{k} \frac{1}{2^k}$.
 - a. Soit $n \in \mathbb{N}$. Montrer que $S_{n+1} = \left[\sum_{j=1}^{n+1} \binom{n+j}{j-1} \frac{1}{2^{j-1}}\right] + \binom{2n+2}{n+1} \frac{1}{2^{n+1}}$.
 - b. Compléter, grâce à la formule de Pascal : $\forall (j,n) \in \cdots$, $\binom{n+j}{j-1} = \binom{\cdots}{j} \binom{\cdots}{j}$.
 - c. Soit $n \in \mathbb{N}$. Déduire des questions précédentes que $S_{n+1} = 2S_{n+1} 2S_n$.
 - d. En déduire alors l'expression explicite de S_n en fonction de n.

Exercice 4: Trois méthodes pour calculer $S_n = \sum_{k=1}^n ka^k$.

Soit $a \in \mathbb{R}$. Pour tout $n \in \mathbb{N}^*$, on pose $S_n = \sum_{k=1}^n k a^k$.

1. Calculer S_n pour a=1 puis a=0. Désormais $a \neq 1$ et $a \neq 0$.

Partie 1 : Calcul de S_n grâce à S_{n+1}

Soit $n \in \mathbb{N}^*$.

- 2. Justifier que $S_{n+1} = (\sum_{j=1}^{n} (j+1)a^{j+1}) + a$.
- 3. En déduire que $S_{n+1} = aS_n + \frac{a^{n+2}-a}{a-1}$.
- 4. Déterminer une autre relation entre S_{n+1} et S_n .
- 5. Déduire de ce qui précède, une nouvelle expression de S_n (sans Σ).

Partie 2 : Calcul de S_n par dérivation

Soit $n \in \mathbb{N}^*$ et f la fonction définie par : $\forall x \in \mathbb{R} \setminus \{1\}$, $f(x) = \sum_{k=0}^{n} x^k$. Alors f est dérivable sur $\mathbb{R} \setminus \{1\}$.

- 6. Donner une autre expression de f(x) et en déduire deux expressions de f'(x).
- 7. Exprimer S_n en fonction de f' et a et retrouver l'expression de S_n obtenue au 5.

Partie 3 : Calcul de S_n par télescopage

On considère A et B deux réels indépendants de n et la suite (u_n) définie par : $\forall n, u_n = (An + B)a^n$.

- 8. Déterminer les valeurs de A et B telles que $\forall k \in \mathbb{N}$, $u_{k+1} u_k = ka^k$.
- 9. Retrouver alors l'expression de S_n obtenue aux questions 5. et 7.

Exercice 5 Une démonstration d'un fameux théorème d'arithmétique.

Soit a et b deux entiers relatifs non nuls et d = PGCD(a, b). Alors $d \in \mathbb{N}$ et $d \ge 1$. Dans cet exercice, nous allons montrer, par double implication, l'équivalence : $d = 1 \Leftrightarrow \exists (u, v) \in \mathbb{Z}^2 / au + bv = 1$.

- 1. Montrons, dans cette question 1., l'implication : $\exists (u,v) \in \mathbb{Z}^2/au + bv = 1 \Longrightarrow d = 1$. Pour cela, nous supposons qu'il existe deux entiers u et v tels que : au + bv = 1.
 - 1.1. En utilisant la définition de d, montrer que d divise 1.
 - 1.2. Conclure.
- 2. Montrons, dans cette question 2., l'implication : $d=1 \Rightarrow \exists (u,v) \in \mathbb{Z}^2/au + bv = 1$. Pour cela, nous supposons que d=1.

Posons $E = \{au + bv/(u, v) \in \mathbb{Z}^2 \text{ et } au + bv > 0\}.$

- 2.1. Quel type d'objet contient l'ensemble E ? Compléter, au plus précis et avec un ensemble connu, la phrase : $E \subset$
- 2.2. Déterminer un élément de E.

E donc est non vide. Des deux réponses précédentes, nous affirmons que E admet un minimum noté p. Alors, $p \in E$ et tout autre élément de E est supérieur à p. Donc, p > 0 et il existe $(u_0, v_0) \in \mathbb{Z}^2$ tels que $p = au_0 + bv_0$. Nous allons maintenant montrer que p = 1.

- 2.3. Imaginons un instant que $p \ge 2$.
 - 2.3.1. Justifier que p ne peut pas diviser a et b en même temps. Supposons par exemple que p ne divise pas a.
 - 2.3.2. On note q et r respectivement le quotient et le reste de la division euclidienne de a par p. Montrer que $r=a(1-u_0q)-bv_0q$.
- 2.3.3. En déduire que $r \in E$.
- 2.3.4. Expliquer pourquoi cette dernière conclusion contredit la définition de p.
- 2.3.5. Conclure.
- 3. **Application :** montrer que pour tout entier naturel n, $n^2 + n$ et 2n + 1 sont premiers entre eux.