Préparation devoirs de cours Chap 0

Ensembles

Soit A et B des sous-ensemble de E.
$A \subset B$ sietssi
$A \backslash B = \{\dots \dots \dots \dots \dots \}$
$A \cap B = \{\dots \dots \dots \dots \} \text{ et } \bigcap_{i=1}^{n} A_i = \{\dots \dots \dots \dots \}$
$A \cup B = \{\dots \dots \dots \} \text{ et } \bigcup_{i=1}^{n} A_i = \{\dots \dots \dots \}$
$A \setminus B = \{\dots \dots \}$ et $A \times B = \{\dots \dots \}$
$A^n = \{\dots \dots \dots \dots \dots \}$
$x \in A \cap B$ sietssi
$x \in A \cup B$ sietssi Et $x \in \bigcup_{i=1}^n A_i$ sietssi
$x \in A \setminus B$ sietssi
$x \in A \times B \text{ sietssi } \dots \dots \dots \dots \dots$
$x \in A^n$ sietssi
$E = \{ \underbrace{x \in F}_{\substack{les \ objets \\ de \ E \ sont \\ des \ objets \ de \ F}} / \underbrace{P(x) \ est \ vraie}_{\substack{ce \ sont \ ceux \\ qui \ v\'erifient \\ la \ propriét\'e \ P}} = \{x \in F, P(x)\} \ signifie \dots \dots$
Soit a et b deux réels tels que $a \le b$. Soit n et m deux entiers tels que $n \le m$.
$[a,b] = \{\dots \dots \dots \}$ et $[a,b[=\{\dots \dots \dots \dots]]$
$]-\infty,a]=\{\ldots\ldots\ldots\ldots\}$
$\llbracket n,m\rrbracket = \{\ldots\ldots\ldots\ldots\ldots\}$
R. est
\mathbb{R}^+ (resp. \mathbb{R}^{+*} , resp. \mathbb{R}^*)) est(resp. strictement positifs, resp. non nuls).
$\mathbb N$ est $et \ \mathbb N^* =$
ℤ est
${ t $
Q est; ces nombres sont les réels de la forme
$\mathbb{R} \setminus \mathbb{Q}$ est; ces nombressont les réels

Soit P et Q deux assertions. Le négation de P est	Logique
$(P\Rightarrow Q)$ signifie que P est une condition	Soit P et Q deux assertions.
La réciproque de $(P\Rightarrow Q)$ est	Le négation de P est
La reciproque de $(P\Rightarrow Q)$ est	$(P\Rightarrow Q)$ signifie que P est une conditionpour que Q soit vraie et signifie aussi que Q est une condition
La contraposée de $(P \Rightarrow Q)$ est	pour que P soit vraie.
La négation de $(P \Rightarrow Q)$ est	La réciproque de $(P\Rightarrow Q)$ est
La négation de « $\forall x \in E, P(x) \Rightarrow Q(x)$) » est	La contraposée de $(P \Rightarrow Q)$ est
La négation de * $\forall x \in E, P(x) \ vraie$ * est	La négation de $(P \Rightarrow Q)$ est
La négation de «∃x ∈ E/P(x) vraie » est	La négation de « $\forall x \in E, (P(x) \Rightarrow Q(x))$ » est
 (P ⇔ Q) signifie que :; cela signifie aussi que P est une conditionpour que Q soit vraie. Entiers Définitions Soit n et m deux entiers relatifs. n est pair lorsquen est impair lorsque	La négation de « $\forall x \in E, P(x) \ vraie$ » est
Entiers Définitions Soit n et m deux entiers relatifs. • n est pair lorsque	La négation de « $\exists x \in E/P(x) \ vraie$ » est
Définitions Soit n et m deux entiers relatifs. n est pair lorsque	$(P \Leftrightarrow Q)$ signifie que :; cela signifie aussi que
Définitions Soit n et m deux entiers relatifs. • n est pair lorsque	$\it P$ est une conditionpour que $\it Q$ soit vraie.
 n est pair lorsque	Entiers
 Un multiple de n est	Définitions Soit n et m deux entiers relatifs.
 Un multiple de n est	• n est pair lorsque n est impair lorsque
 n est dit premier lorsque	• Un diviseur de n est
 n et m sont dits premiers entre eux lorsque	• Un multiple de n est
Théorème de décomposition primiaire: Csq: Soit n et m et p des entiers. 1. n divise m sietssi	• n est dit premier lorsque
Csq: Soit n et m et p des entiers. 1. n divise m <u>sietssi</u>	• n et m sont dits premiers entre eux lorsque
 n et m sont premiers entre eux sietssi Soit k un entier naturel non nul. n et m sont premiers entre eux sietssi Si n divise mp et n et p sont premiers entre aux alors 	Théorème de décomposition primiaire :
 n et m sont premiers entre eux sietssi Soit k un entier naturel non nul. n et m sont premiers entre eux sietssi Si n divise mp et n et p sont premiers entre aux alors 	
 n et m sont premiers entre eux <u>sietssi</u>	\mathbf{Csq} : Soit n et m et p des entiers.
 3. Soit k un entier naturel non nul. n et m sont premiers entre eux sietssi. 4. Si n divise mp et n et p sont premiers entre aux alors. 	1. n divise m <u>sietssi</u>
4. Si n divise mp et n et p sont premiers entre aux alors	2. n et m sont premiers entre eux <u>sietssi</u>
	3. Soit k un entier naturel non nul. n et m sont premiers entre eux $\underline{sietssi}$.
Théorème de la division euclidienne :	4. Si n divise mp et n et p sont premiers entre aux alors
Théorème de la division euclidienne :	

•	le $\operatorname{P\mathbf{GCD}}(n,m)$ est
•	le $\frac{PPCM}{PPCM}(n,m)$ est
The	éo:
1.	Si n et m sont deux entiers alors $PGCD(n, m) \times PPCM(n, m) = \dots$
2.	Supposons $n < m$. Soit r le reste de la division euclidienne de m par n .
	Tout divisieur commune de et $PGCD(,) = PGCD(,)$.
Mé	thode pour déterminer le PGCD et le PPCM de deux entiers par décomposition primaire
Soi	it n et m sont deux entiers naturels. Soient p_1,\dots,p_s tous les diviseurs premiers de n et de m .
n =	$= p_1^{k_1} \times p_2^{k_2} \times p_3^{k_3} \times \times p_s^{k_s} \ et \ m = p_1^{l_1} \times p_2^{l_2} \times p_3^{l_3} \times \times p_s^{l_s} \ \text{où} \ k_1, k_2,, k_s \ et \ l_1, l_2,, l_s \ \text{entiers naturels}$
éve	entuellement nuls. Alors
PG	CD(n,m)= et $PPCM(n,m)$ =
Mé	sthode d'Euclide pour déterminer le $\it PGCD$ de deux entiers . Soient $\it n$ et $\it m$ deux entiers tels que $\it 0 < \it n < \it m$.
Pri	ncipe de l'algorithme d'Euclide pour déterminer $PGCD(n,m)$. : on effectue:
	Etape 0 : division euclidienne de par , on note r_0 le reste.
	Si $r_0 = 0$ alors $PGCD(n, m) = \dots$
	Si $r_0 \neq 0$ alors
	Etape 1 : division euclidienne de par , on note r_1 le reste r_1 le reste,
	Si $r_1 = 0$ alors $PGCD(n, m) = \dots$
	Si $r_1 \neq 0$ alors
	Etape 2 : division euclidienne de par , on note r_2 le reste, $r_2 \neq 0$.
	Si $r_2 = 0$ alors $PGCD(n, m) = \dots$
	Si $r_2 \neq 0$ alors
	()
	Etape N : division euclidienne de r_{N-2} par r_{N-1} , on note r_N le reste et $r_N=0$.
	On s'arrête. Alors $PGCD(n, m) = \cdots \dots$
Dé	finition de la congruence : Soit x et y et w des réels. x est congru à y modulo w lorsque
Cs	q de la division euclidienne : Soit m un entier naturel non nul. Tout entier naturel n est congru modulo m à

Définition: Soit n et m deux entiers relatifs non nuls .

Rationnels
Théo: Tout nombre rationnel a une écriturei.e. une écriture de la forme
Théorème : √2 est
Proposition: La somme, le produit et le quotient de deux rationnels sont
La somme d'un rationnel et d'un irrationnel est Le produit d'un rationnel et d'un irrationnel
est
Récurrence
Théo de récurrence simple
Soit $H(n)$ une propriété dépendant de l'entier naturel n .
Si { alors
Théo de récurrence forte (admis)
Soit $H(n)$ une propriété dépendant de l'entier naturel n .
Si { alors
·
Théo de récurrence double (admis)
Soit $H(n)$ une propriété dépendant de l'entier naturel n .
Si { alors