
NOM:	. Prénom :
------	------------

DC 2.1	
1. Compléter:	
Formule d'addition : $\forall (x, y) \in \dots, \sin(x - y) = \dots$	
Formule d'angle double : $\forall x \in \dots, \cos(2x) = \dots = \dots = \dots$	
2. Résoudre l'exercice : Soit a_1, a_2, \ldots, a_n des réels positifs. a. Montrer que : $\forall (i,j) \in [\![1,n]\!]^2, ij \geq i+j-1$. b. En déduire que : $\left(\sum_{i=1}^n \frac{a_i}{i}\right)^2 \leq \sum_{i=1}^n \sum_{j=1}^n \frac{a_i a_j}{i+j-1}$.	
3. Décomposer en éléments simples la fraction suivante : $F(x) = \frac{1-3x}{x^3-4x^2+4x}$	

.....

