NOM ·	Prénom:
INOI'I	FIGURE

DC 2.3

1.	Compléter:
	Complete .

$\forall x \in \dots $ $\tan\left(\frac{\pi}{2} - x\right) = \dots$
$\forall x \in \dots, \cos\left(\frac{\pi}{2} + x\right) = \dots$
Soit x et a deux réels. $\sin(x) = \sin(a) \Leftrightarrow \dots$
Enoncer le théorème d'inégalité Cauchy-Schwarz.
2. Résoudre les exercices :
1. Démontrer que pour tous réels x et y , pour tout entier naturel $n \ge 2$, $\sqrt[n]{ x \pm y } \le \sqrt[n]{ x } + \sqrt[n]{ y }$.

2. Soit $f(x) =$	$\frac{\sqrt{x+2}-2}{\sqrt{2x+5}-3}$. Déterminer le domaine de définition Df de f . Puis calculer la limite de f en 2.
••••••••••	
••••••••••	
••••••••	

Ex 41 Soit $f(x) = \frac{\sqrt{x+2}-2}{\sqrt{2x+5}-3}$. Déterminer le domaine de définition Df de f. Puis calculer la limite de f en 2.

Ex 46 1. Montrer que : pour tous réels a, b, c et d, $|ac + bd| \le \sqrt{a^2 + b^2} \sqrt{c^2 + d^2}$.

- 2. Montrer que : $|ac + bd| = \sqrt{a^2 + b^2} \sqrt{c^2 + d^2}$ sietssi $((a, b) = (0, 0) \ ou \ \exists k \in \mathbb{R}$ tel que $c = ka \ et \ d = kb)$
- 3. Soit $C = \{(x,y) \in \mathbb{R}^2/x^2 + y^2 = 1\}$ et $A = \{x + 2y/(x,y) \in C\}$. Montrer que A est bornée et admet un maximum et un minimum.