Programme de colle 6

CHAP 4 Nombres complexes

I Forme algébrique

- <u>Ensemble ℂ</u>:
 - définition, forme algébrique (existence et unicité), partie réelle, partie imaginaire, imaginaire pur
 - o règles de calculs : égalité de deux complexes, parties réelle et imaginaire d'une somme de nombres complexes.
- Représentation d'un nombre complexe :
 - définition de l'affixe d'un point, d'un vecteur, images ponctuelle et vectorielle d'un complexe
 - o affixe de $\alpha \vec{u} + \beta \vec{v}$, affixe de $\overrightarrow{MM'}$; caractérisation par les complexes de deux points symétriques par rapport à O.
- Conjugué d'un nombre complexe :
 - o définition du conjugué et son image ponctuelle
 - o <mark>propriétés</mark> :
 - \checkmark écriture des parties réelle et imaginaire de z à l'aide de z et de son conjugué
 - ✓ caractérisation d'un réel ou d'un imaginaire pur grâce au conjugué.
 - ✓ conjugué d'une somme, d'un produit ou d'un quotient de nombres complexes
 - \checkmark le produit d'un complexe par son conjugué.

II Forme trigonométrique

• <u>Module</u> : 4 <u>définitions équivalentes</u> : par les parties réelle et imaginaire - par le conjugué - par une distance - par une norme de vecteur .

Propriétés du module :

- o module d'un réel
- o comparaison entre |Re(z)| et |z|, entre |Im(z)| et |z|
- o module de l'inverse d'un complexe, d'un produit, d'un quotient, d'une puissance de complexes
- \circ module de $\frac{z}{|z|}$
- o inégalités triangulaires, cas d'égalité dans la première inégalité triangulaire.
- applications « géométriques » Distance entre deux points . Description par les complexes d'un cercle et d'une médiatrice.
- Exponentielle imaginaire.
 - o définition
 - o caractérisation (écriture) des complexes de module 1.
 - o propriétés :
 - √ égalité de deux exponentielles imaginaires
 - ✓ produit et quotient d'exponentielle imaginaire
 - √ formules de Moivre
 - √ Formule d'Euler
 - ✓ Identités du losange.
- <u>La forme trigonométrique et les arguments</u> d'un nombre complexe non nul :
 - o définition (géométrique) d'un argument d'un complexe non nul
 - o forme trigonométrique d'un complexe non nul : existence et unicité.
 - o caractérisation de l'égalité de deux complexes non nuls.
 - $\circ \quad \text{forme quasi-trigonom\'etrique} : \text{r\'eel} \times \text{exponentielle imaginaire}$
 - o relation entre forme trigo et forme algébrique
 - o propriétés des arguments : arg(zz'), $arg(\frac{1}{z})$, $arg(\frac{z'}{z})$, $arg(z^n)$ où $n \in \mathbb{Z}$, $arg(\bar{z})$.
- Applications « algébriques » à savoir retrouver
 - \circ identités du losange généralisées : $\overline{e^{i heta}+e^{i heta'}}$ et $\ e^{i heta}-e^{i heta'}$.
 - quotient et puissance de complexes
 - o linéarisation d'un produit de sinus et cosinus
 - o calcul de $\sum_{k=0}^{n} e^{ik\theta}$, $\sum_{k=0}^{n} cos(k\theta)$ et $\sum_{k=0}^{n} sin(k\theta)$.
- Applications « géométriques »
 - o distance entre deux points. Description par les complexes d'un cercle et d'une médiatrice.
 - o angle entre deux vecteurs. Description par les complexes de l'alignement de points, d'un cercle de diamètre connu.

• Exponentielle complexe :

- o définition de l'exponentielle complexe
- o module, arguments, parties réelle et imaginaire d'une exponentielle complexe
- o propriétés: $e^z = e^{z'} \Leftrightarrow \cdots$, $e^{z+z'} = \cdots$, $e^{z-z'} = \cdots$, $e^{-z} = \cdots$, $\overline{e^z} = \cdots$.

III Racines carrées complexes-Equations polynomiales.

- Racines carrées complexes (racines deuxièmes) d'un complexe :
 - définition
 - o théorème d'existence
 - o méthodes d'obtention.
- Théorème de factorisation dans $\mathbb C$ d'une expression polynômiale de degré 2 à coefficients complexes. Somme et produit des racines. Cas d'une expression à coefficients réels et $\Delta < 0$.
- $\begin{cases} u+v=s \\ us=p \end{cases} \Leftrightarrow u \text{ et } v \text{ sont les racines de } P(z)=z^2-sz+p.$
- Division euclidienne et Factorisation d'une fonction polynomiale connaissant une de ces racines.

IV Racines $n^{ ext{ièmes}}$ d'un complexe, $n \in \mathbb{N}^*$

- Définition d'une racine $n^{\text{ième}}$ d'un complexe.
- Racines n^{ièmes} de l'unité :
 - \circ théorème donnant les n racines nièmes de l'unité
 - o illustration : polygone régulier
 - o Racines $3^{\mathrm{i\`{e}mes}}$ de l'unité : définition et propriétés de $j=e^{\frac{2i\pi}{3}}$
 - o somme des racines nièmes de l'unité $(n \ge 2)$.
- Racines *n*^{ièmes} d'un complexe non nul:
 - o théorème donnant les *n* racines *nièmes* d'un complexe non nul
 - méthode d'obtention.

TOUS LES ENONCES DES DEFINITIONS, PROPRIETES ET THEOREMES DOIVENT ETRE CONNUS.

La question de cours demandée peut être :

A. Enoncer une définition et /ou une propriété de cours .

ET /OU

B. Enoncer et démontrer les résultats suivants:

- 1) $\forall (z, z') \in \mathbb{C}^2$, $|z \times z'| = |z| \times |z'| \text{ et } ||z| |z'|| \le |z + z'| \le |z| + |z'|$.
- 2) Formule d'Euler et identités du losange.
- 3) Le théorème de factorisation d'une expression polynomiale de degré 2 à coefficients complexes.
- 4) Le théorème explicitant les racines nièmes de l'unité où $n \in \mathbb{N}^*$.
- 5) Le théorème donnant les racines nièmes d'un complexe a non nul où $n \in \mathbb{N}^*$.
- 6) Savoir compléter et démontrer les formules : Soit A , B C et D des points du plan

$$\overrightarrow{AB} = |z_B - z_A| = |z_A - z_B|$$

$$(\overrightarrow{\overrightarrow{l},AB}) \equiv arg(z_B - z_A)[2\pi] \text{ si } A \neq B$$

$$(\overrightarrow{AB},\overrightarrow{CD}) \equiv arg\left(\frac{z_D - z_C}{z_B - z_A}\right)[2\pi] \text{ si } A \neq B \text{ et } C \neq D \text{ sont distincts.}$$

Rappeler soigneusement le résultat avant de le démontrer.