DS 2

CALCULATRICE et AUTRE OUTILS NUMERIQUE NON AUTORISES. DUREE 4 HEURES. INTERDICTION DE SORTIR DE LA SALLE LA PREMIERE HEURE

Le sujet comporte 2 pages (1 feuille recto-verso). Les exercices sont indépendants. QUELQUES CONSIGNES :

- Bien lire tout le sujet avant de commencer.
- Traiter les exercices dans l'ordre que vous souhaitez.
- Justifier toutes vos réponses. Bien relire chaque raisonnement et s'assurer que :
- •Vous <u>n'avez pas d'emblée affirmé que la propriété à démontrer est vraie</u> (sans justifier). Posez vous les bonnes questions : je sais que ? ou je cherche quand ou qui ? ou je veux montrer que ?
- •Le <u>raisonnement</u> est clairement exposé : avec une syntaxe correcte en maths et en français. Relisez-vous pour vous assurer que vous avez bien écrit ce que vous vouliez dire (en maths comme en français).
- •Les <u>liens logiques</u> (donc, si et seulement si, car, alors, si, par conséquent, je sais que, en conclusion, ..., \Leftrightarrow , \Rightarrow) sont utilisés et utilisés à bon escient.
- •La <u>phrase réponse</u>, attendue et soulignée (ou encadrée ou surlignée) répond clairement à la question posée.

Si vous avez un doute sur l'énoncé (erreur d'énoncé ??), n'hésitez pas à demander au professeursurveillant.

EXERCICE 1 Des inégalités ; les parties A, B et C sont indépendantes.

Soit n un entier supérieur à 2 et $a_1, a_2, ..., a_n$ des réels strictement positifs.

A. Une première comparaison

1. Montrer grâce à une fameuse inégalité du cours que :

$$1 \le |1 - a_1| + |a_1 - a_2| + |a_2 - a_3| + |a_3 - a_4| + \dots + |a_{n-1} - a_n| + |a_n|.$$

- B. Comparaison de moyennes
- 2. Montrer que $\forall x \in \mathbb{R}^{+*}$, $\ln(x) \leq x 1$.
- 3. On pose:

$$\begin{split} m &= \frac{1}{n} \sum_{k=1}^n a_k \text{ la moyenne arithm\'etique des r\'eels } a_1, a_2, \dots, a_n \\ g &= \sqrt[n]{\prod_{k=1}^n a_k} \text{ la moyenne g\'eom\'etrique des r\'eels } a_1, a_2, \dots, a_n \\ h &= \frac{n}{\sum_{k=1}^n \frac{1}{a_k}} \text{ la moyenne harmonique des r\'eels } a_1, a_2, \dots, a_n \;. \end{split}$$

- a. En appliquant l'inégalité obtenue au 2. à chaque réel $\frac{a_k}{m}$, montrer que $g \leq m$.
- b. En appliquant l'inégalité obtenue au 3. a. aux réels $\frac{1}{a_k}$, montrer que $h \leq g$.

C. Autre comparaison

- 4. Montrer que $\forall (i,j) \in [1,n]^2, \frac{a_i}{a_i} + \frac{a_j}{a_i} \geq 2$.
- 5. En déduire que $(\sum_{k=1}^n a_k)(\sum_{k=1}^n \frac{1}{a_k}) \ge n^2$.
- 6. Redémontrer cette dernière inégalité à l'aide d'une autre fameuse inégalité de cours.

EXERCICE 2 Formule du binôme de Newton-Partie entière.

Soit $n \in \mathbb{N}$.

- 1. Notons $u_n = (\sqrt{3} + 1)^{2n} = \overbrace{((\sqrt{3} + 1)^2)^n}^{**} \text{ et } v_n = (\sqrt{3} 1)^{2n} = \overbrace{((\sqrt{3} 1)^2)^n}^{**}.$
 - a. Montrer que $(2+\sqrt{3})^n + (2-\sqrt{3})^n$ est un entier pair.
 - b. En déduire que 2^{n+1} divise $u_n + v_n$. (on utilisera les expressions ** de u_n et v_n)
- 2. En déduire que 2^{n+1} divise $\left| (\sqrt{3}+1)^{2n} \right| + 1$. En déduire la parité de $\left| (\sqrt{3}+1)^{2n} \right|$.

EXERCICE 3 Une somme et un produit trigonométriques ; les parties \emph{A} et \emph{B} sont indépendantes.

A. Le produit

Soit $x \in]0,\pi[$. Pour tout entier naturel n, on pose $P_n(x) = \prod_{k=0}^n \cos\left(\frac{x}{2^k}\right)$.

- 1. On pose $u_n = sin\left(\frac{x}{2^n}\right)P_n(x)$. Montrer que la suite (u_n) est géométrique.
- 2. En déduire une autre expression de $P_n(x)$ (sans \prod

B. Une somme

- 3. Rappeler la formule de factorisation de cos(p) + cos(q).
- 4. Soit m un entier naturel non nul.

Résoudre l'équation (e_m) : $\cos(x) + \cos((2m+1)x) = 0$ d'inconnue x réelle.

On note D l'ensemble des réels qui <u>ne sont</u> solutions <u>d'aucune</u> équation (e_m) .

Autrement dit, $D = \mathbb{R} \setminus \bigcup_{m \in \mathbb{N}} Sol(e_m)$.

Soit
$$a \in D$$
 . On pose $S_n(a) = \frac{1}{\cos(a) + \cos(3a)} + \frac{1}{\cos(a) + \cos(5a)} + \dots + \frac{1}{\cos(a) + \cos((2n+1)a)}$.

- 5. Compléter $S_n(a) = \sum_{m=1}^n \frac{1}{\cos(a) + \cdots }$
- 6. Soit x et y deux réels tels que tan(x) et tan(y) existent.

Montrer que : $tan(x) - tan(y) = \frac{sin(x-y)}{cos(x)cos(y)}$

7. Déduire de tout ce qui précède, une expression (sans Σ) de $S_n(a)$ (attention à ne pas diviser par 0).

EXERCICE 4 Un peu des complexes de module 1.

Soient a , b, c trois nombres complexes de module 1 tous distincts.

- 1. Montrer que : $\frac{a(c-b)^2}{b(c-a)^2} \in \mathbb{R}^+$.
- 2. Montrer que : $Re(3 + 4a + a^2) \ge 0$.

EXERCIE 5 Une fonction périodique.

Soit f une fonction de $\mathbb R$ dans $\mathbb R$ définie sur $\mathbb R$, telle que : $\forall x \in \mathbb R$, $f(x) \neq 3$ et $f(x+1) = \frac{f(x)-5}{f(x)-3}$.

- 1. Calculer f(x + 2) en fonction de f(x).
- 2. En déduire que f est 4-périodique.

Fin.

Bonnes vacances à lous! Reposez-vous, ressourcez-vous.

Organisez-vous pour travailler régulièrement!