CORRIGE JOUR 6

Ex 1 Racines 4ièmes complexes

Calculer de deux manières les racines quatrièmes de $1+i\sqrt{3}$. En déduire les valeurs de $\cos\frac{13\pi}{12}$ et $\sin\frac{13\pi}{12}$.

1ère méthode : $a=1+i\sqrt{3}=2\left(\frac{1}{2}+\frac{i\sqrt{3}}{2}\right)=2e^{i\frac{\pi}{3}}$. Donc $2^{\frac{1}{2}}e^{i\frac{\pi}{12}}$ est une racine quatrième de a et par

<u>1ère méthode</u>: $a=1+i\sqrt{3}=2\left(\frac{1}{2}+\frac{i\sqrt{3}}{2}\right)=2e^{i\frac{\pi}{3}}$. Donc $2^{\frac{1}{4}}e^{i\frac{\pi}{12}}$ est une racine quatrième de a et par

conséquent, les complexes $2^{\frac{1}{4}}e^{i\frac{\pi}{12}}$, $2^{\frac{1}{4}}ie^{i\frac{\pi}{12}}$, $-2^{\frac{1}{4}}ie^{i\frac{\pi}{12}}$, $-2^{\frac{1}{4}}ie^{i\frac{\pi}{12}}$ sont les 4 racines quatrièmes de a.

 $2^{\rm eme}$ méthode: on va chercher une racine carrée d'une racine carrée de $1+i\sqrt{3}$.

$$z^2 = a \Longleftrightarrow \begin{cases} z^2 = a \\ |z^2| = |a| \end{cases} \Longleftrightarrow \begin{cases} (x+iy)^2 = a \\ |z|^2 = |a| \end{cases} \Longleftrightarrow \begin{cases} x^2 - y^2 + 2ixy = 1 + i\sqrt{3} \\ x^2 + y^2 = 2 \end{cases} \Longleftrightarrow \begin{cases} x^2 - y^2 = 1 \\ 2xy = \sqrt{3} \\ x^2 + y^2 = 2 \end{cases}$$

$$\begin{cases} 2x^2 = 3\\ 2xy = \sqrt{3} \Leftrightarrow \begin{cases} x^2 = \frac{3}{2}\\ xy = \frac{\sqrt{3}}{2} \Leftrightarrow \end{cases} \begin{cases} x = \pm \sqrt{\frac{3}{2}}\\ xy = \frac{\sqrt{3}}{2} \end{cases} \Leftrightarrow \begin{cases} x = \pm \sqrt{\frac{3}{2}}\\ xy = \frac{\sqrt{3}}{2} \end{cases} \Leftrightarrow \begin{cases} x = \frac{\sqrt{3}}{\sqrt{2}}\\ y = \pm \sqrt{\frac{1}{2}} \end{cases} ou \begin{cases} x = -\frac{\sqrt{3}}{\sqrt{2}}\\ y = -\frac{1}{\sqrt{2}} \end{cases}.$$

Donc, $b = \frac{\sqrt{3}}{\sqrt{2}} + i\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\sqrt{3} + i\right)$ est une racine carrée complexe de a.

• Cherchons z = x + iy tel que $z^2 = b$.

$$z^2 = b \Longleftrightarrow \begin{cases} z^2 = b \\ |z^2| = |b| \end{cases} \Longleftrightarrow \begin{cases} (x + iy)^2 = b \\ |z|^2 = |b| \end{cases} \Longleftrightarrow \begin{cases} x^2 - y^2 + 2ixy = \frac{\sqrt{3}}{\sqrt{2}} + i\frac{1}{\sqrt{2}} \\ x^2 + y^2 = \sqrt{2} \end{cases} \Longleftrightarrow \begin{cases} x^2 - y^2 = \frac{\sqrt{3}}{\sqrt{2}} \\ 2xy = \frac{1}{\sqrt{2}} \\ x^2 + y^2 = \sqrt{2} \end{cases} \Longleftrightarrow \begin{cases} x^2 - y^2 - 2ixy = \frac{\sqrt{3}}{\sqrt{2}} + i\frac{1}{\sqrt{2}} \\ x^2 + y^2 = \sqrt{2} \end{cases} \Longleftrightarrow \begin{cases} x^2 - y^2 - 2ixy = \frac{\sqrt{3}}{\sqrt{2}} + i\frac{1}{\sqrt{2}} \\ x^2 + y^2 = \sqrt{2} \end{cases} \Longleftrightarrow \begin{cases} x^2 - y^2 - 2ixy = \frac{\sqrt{3}}{\sqrt{2}} + i\frac{1}{\sqrt{2}} \\ x^2 - y^2 - 2ixy = \frac{\sqrt{3}}{\sqrt{2}} + i\frac{1}{\sqrt{2}} \\ x^2 - y^2 - 2ixy = \frac{\sqrt{3}}{\sqrt{2}} \end{cases} \Longleftrightarrow \begin{cases} x^2 - y^2 - 2ixy = \frac{\sqrt{3}}{\sqrt{2}} + i\frac{1}{\sqrt{2}} \\ x^2 - y^2 - 2ixy = \frac{\sqrt{3}}{\sqrt{2}} + i\frac{1}{\sqrt{2}} \\ x^2 - y^2 - 2ixy = \frac{\sqrt{3}}{\sqrt{2}} \end{cases} \Longleftrightarrow \begin{cases} x^2 - y^2 - 2ixy = \frac{\sqrt{3}}{\sqrt{2}} \\ x^2 - y^2 - 2ixy = \frac{\sqrt{3}}{\sqrt{2}} \\ x^2 - y^2 - 2ixy = \frac{\sqrt{3}}{\sqrt{2}} \end{cases}$$

$$\begin{cases} 2x^2 = \frac{\sqrt{3}}{\sqrt{2}} + \sqrt{2} \\ 2xy = \frac{1}{\sqrt{2}} \iff \begin{cases} x^2 = \frac{2+\sqrt{3}}{2\sqrt{2}} \\ xy = \frac{1}{2\sqrt{2}} \\ y^2 = \sqrt{2} - \frac{\sqrt{3}}{\sqrt{2}} \end{cases} \Leftrightarrow \begin{cases} x = \frac{1}{2\sqrt{2}} \\ xy = \frac{1}{2\sqrt{2}} \\ y = \pm \sqrt{\frac{2-\sqrt{3}}{2\sqrt{2}}} \end{cases} \Leftrightarrow \begin{cases} x = \sqrt{\frac{2+\sqrt{3}}{2\sqrt{2}}} \\ y = \sqrt{\frac{2-\sqrt{3}}{2\sqrt{2}}} \end{cases} ou \begin{cases} x = -\sqrt{\frac{2+\sqrt{3}}{2\sqrt{2}}} \\ y = -\sqrt{\frac{2-\sqrt{3}}{2\sqrt{2}}} \end{cases}$$

Ainsi, $c=\sqrt{\frac{2+\sqrt{3}}{2\sqrt{2}}}+i\sqrt{\frac{2-\sqrt{3}}{2\sqrt{2}}}$ est une racine carrée de b. Alors $c^4=(c^2)^2=b^2=a$. Donc, c est une racine quatrième de a. Par conséquent, c, ci, -c et -ic sont les quatre racines quatrièmes de a. Ainsi, $\left\{\sqrt{\frac{2+\sqrt{3}}{2\sqrt{2}}}+i\sqrt{\frac{2-\sqrt{3}}{2\sqrt{2}}},i\sqrt{\frac{2+\sqrt{3}}{2\sqrt{2}}}+\sqrt{\frac{2-\sqrt{3}}{2\sqrt{2}}},-\sqrt{\frac{2+\sqrt{3}}{2\sqrt{2}}}-i\sqrt{\frac{2-\sqrt{3}}{2\sqrt{2}}},-i\sqrt{\frac{2+\sqrt{3}}{2\sqrt{2}}}+\sqrt{\frac{2-\sqrt{3}}{2\sqrt{2}}}\right\}=$

Ainsi,
$$\left\{\sqrt{\frac{2+\sqrt{3}}{2\sqrt{2}}} + i\sqrt{\frac{2-\sqrt{3}}{2\sqrt{2}}}, i\sqrt{\frac{2+\sqrt{3}}{2\sqrt{2}}} + \sqrt{\frac{2-\sqrt{3}}{2\sqrt{2}}}, -\sqrt{\frac{2+\sqrt{3}}{2\sqrt{2}}} - i\sqrt{\frac{2-\sqrt{3}}{2\sqrt{2}}}, -i\sqrt{\frac{2+\sqrt{3}}{2\sqrt{2}}} + \sqrt{\frac{2-\sqrt{3}}{2\sqrt{2}}}\right\} = 0$$

 $\left\{2^{\frac{1}{4}}e^{i\frac{\pi}{12}}, 2^{\frac{1}{4}}ie^{i\frac{\pi}{12}}, -2^{\frac{1}{4}}ie^{i\frac{\pi}{12}}, -2^{\frac{1}{4}}ie^{i\frac{\pi}{12}}\right\}$. En comparant le signe des parties réelles et imaginaires de ces quatre

Complexes, je peux animier que :
$$2\frac{1}{4}e^{i\frac{13\pi}{122}} = -2\frac{1}{4}e^{i\frac{\pi}{12}} = -\sqrt{\frac{2+\sqrt{3}}{2\sqrt{2}}} - i\sqrt{\frac{2-\sqrt{3}}{2\sqrt{2}}} \text{ i.e. } 2\frac{1}{4}\left(\cos\left(\frac{13\pi}{12}\right)\right) + 2\frac{1}{4}\left(\sin\left(\frac{13\pi}{12}\right)\right) = -\sqrt{\frac{2+\sqrt{3}}{2\sqrt{2}}} - i\sqrt{\frac{2-\sqrt{3}}{2\sqrt{2}}}.$$
 Ainsi, $\cos\left(\frac{13\pi}{12}\right) = -\frac{1}{2\frac{1}{4}}\sqrt{\frac{2+\sqrt{3}}{2\sqrt{2}}} = -\frac{1}{2\frac{1}{4}}\sqrt{\frac{2+\sqrt{3}}{2}} = -\frac{1}{2\frac{1}{2}}\sqrt{\frac{2+\sqrt{3}}{2}} = -\frac{1}{2\frac{1}{2}}\sqrt{\frac{2+\sqrt{3}}{2}} = -\frac{1}{2\frac{1}{2}}\sqrt{2+\sqrt{3}} \text{ et } \sin\left(\frac{13\pi}{12}\right) = -\frac{1}{2}\sqrt{2-\sqrt{3}}.$

<u>Vérification</u>: $2\left(-\frac{1}{2}\sqrt{2+\sqrt{3}}\right)^2 - 1 = \frac{1}{2}(2+\sqrt{3}) - 1 = \frac{\sqrt{3}}{2} = \cos\left(\frac{13\pi}{6}\right)$ OK!

1, i, -1, -i (i.e. les complexes

Si $a\in\mathbb{C}^*$ et z_0 est une racine nième de aalors les racines nièmes de a sont les nnombres complexes obtenues en multpliant z_0 par les n racines nièmes de

Si $a=re^{i\theta}\in\mathbb{C}^*$ tq $r\in\mathbb{R}^{+*}$ et $\theta\in\mathbb{R}$ alors $\sqrt[n]{r}e^{\frac{i\theta}{n}}$ est une racine nième de a

1. Si $a \in \mathbb{C}^*$ alors $\delta = x + iy$ est une racine carrée de $a \Leftrightarrow \begin{cases} Re(\delta^2) = Re(a) \\ Im(\delta^2) = Im(a) \\ |\delta|^2 = |a| \end{cases}$

Ex 2 Dérivée d'un produit et d'une composée Soit $f(x) = xe^{\frac{\hat{x}}{x^2-1}}$. Déterminer le domaine de définition D de f. Justifier que f est dérivable sur D et calculer f'(x) pour $x \in D$.

f(x) existe sietssi $x^2 - 1 \neq 0$ sietssi $(x - 1)(x + 1) \neq 0$ sietssi $x \neq 1$ et $x \neq -1$. Donc $D = D_f = \mathbb{R} \setminus \{-1, 1\}.$

Dans l'expression de f, toutes les fonctions sont dérivables sur tout leur propre domaine

Dans l'expression de
$$f$$
, toutes les fonctions sont dérivables sur tout leur propre domaine définition. Donc f est elle-même dérivable sur tout son domaine de définition D .
$$\begin{cases} v(x) = e^{\frac{x}{x^2-1}} = e^{w(x)} \ avec \ w(x) = \frac{x}{x^2-1} \\ v'(x) = w'(x)e^{w(x)} \end{cases}.$$

$$v'(x) = w'(x)e^{w(x)}$$
.
$$w'(x) = \frac{x^2-1-2x\times x}{(x^2-1)^2} = \frac{-x^2-1}{(x^2-1)^2}$$

$$Donc \ f'(x) = x \times \frac{-x^2-1}{(x^2-1)^2} \times e^{\frac{x}{x^2-1}} + e^{\frac{x}{x^2-1}} = e^{\frac{x}{x^2-1}} \Big[x \times \frac{-x^2-1}{(x^2-1)^2} + 1 \Big] = e^{\frac{x}{x^2-1}} \Big[\frac{-(x^3+x)+(x^2-1)^2}{(x^2-1)^2} \Big].$$
 Ainsi, $f'(x) = e^{\frac{x}{x^2-1}} \Big[\frac{x^4-x^3-2x^2-x+1}{(x^2-1)^2} \Big].$

Donc
$$f'(x) = x \times \frac{-x^2 - 1}{(x^2 - 1)^2} \times e^{\frac{x}{x^2 - 1}} + e^{\frac{x}{x^2 - 1}} = e^{\frac{x}{x^2 - 1}} \left[x \times \frac{-x^2 - 1}{(x^2 - 1)^2} + 1 \right] = e^{\frac{x}{x^2 - 1}} \left[\frac{x}{(x^2 + 1)^2} + \frac{x}{(x^2 - 1)^2} \right]$$
Ainci $f'(x) = e^{\frac{x}{x^2 - 1}} \left[\frac{x^4 - x^3 - 2x^2 - x + 1}{(x^2 - 1)^2} \right]$

 $u(x)v(x) \xrightarrow{dérive} u(x)v'(x) + u'(x)v(x)$ $\underline{u(x)} \xrightarrow{dérive} \underline{u'(x)v(x) - u(x)v'(x)}$

Ex 3 Se ramener à une limite en 0 Calculer $\lim_{x \to -1} \frac{\sin{(1+x)}}{\sqrt{1-x^2}}$

$$\begin{aligned} \operatorname{Soit} f(x) &= \frac{\sin(1+x)}{\sqrt{1-x^2}}. \text{ Alors, } Df =]-1 \text{ ; } 1[.\operatorname{Posons} \forall x \in Df, t = x+1 \text{ } et \text{ } g(t) = f(x). \\ &\quad t \in]0 \text{ ; } 2[\\ \operatorname{Alors,} \left\{ \begin{aligned} & t \in]0 \text{ ; } 2[\\ x &= t-1 \text{ } et \text{ } g(t) = f(t-1) \text{ } et \text{ } f(x) = g(x+1) \text{ } . \\ &\quad \lim_{x \to -1} t = 0 \text{ } et \text{ } \lim_{t \to 0} x = -1 \end{aligned} \right. \\ \operatorname{Donc,} \text{ } \frac{\text{d'après le cours, }}{\text{d'après le cours, }} f \text{ } \operatorname{tend vers } L \text{ } \operatorname{en } -1 \text{ } \operatorname{sietssi} g \text{ } \operatorname{tend vers } L \text{ } \operatorname{en } 0. \end{aligned}$$

Etudions donc la limite de g en 0.

$$\forall \ t \in]0 \ ; 2[, \ g(t) = \frac{\sin(1+(t-1))}{\sqrt{1-(t-1)^2}} = \frac{\sin(t)}{\sqrt{2t-t^2}} = \frac{\sin(t)}{\sqrt{2t}\left(1-\frac{t}{2}\right)} = \frac{\sin(t)}{\sqrt{2}\sqrt{t}\sqrt{\left(1-\frac{t}{2}\right)}} = \frac{\sin(t)}{t} \times \frac{\sqrt{t}}{\sqrt{2}\sqrt{1-\frac{t}{2}}}.$$

Limites par taux d'accroissements :
$$\lim_{t\to 0} \frac{\sin{(t)}}{t} \stackrel{T.A}{=} 1 \ et \ \lim_{t\to 0} \frac{\ln{(1+t)}}{t} \stackrel{T.A}{=} 1 \ .$$

Limite par continuité

Si f est continue en a alors

Se ramener à une limite en 0

Comme $\lim_{t\to 0}\frac{\sin(t)}{t}\stackrel{TA}{\cong} 1$ et $\lim_{t\to 0}\sqrt{1-\frac{t}{2}}\stackrel{cont.}{\cong} 1$ et $\lim_{t\to 0}\sqrt{t}\stackrel{cont.}{\cong} 0$, alors $\lim_{t\to 0}g(t)=0$. J'en déduis $\lim_{x\to -1}f(x)=0.$ Opération: Soit a et β des

Soit a un réel et L un réel ou infini $\lim_{x\to a} f(x) = L \Leftrightarrow \lim_{t\to 0} f(t+a) = L$

Opérations sur les limites

```
Operations set to set in the set of sets of of
```