L'APPLICATION EST-ELLE INJECTIVE ? SURJECTIVE ? BIJECTIVE ?

ET LE CAS ÉCHÉANT, COMMENT DÉTERMINER UNE EXPRESSION DE LA BIJECTION RÉCIPROQUE ?

Pour répondre à ces questions, il faut :

1) CONNAITRE PARFAITEMENT LES DÉFINITIONS

d'une fonction injective, surjective ou bijective et de la bijection réciproque.

Savoir les énoncer très rapidement et clairement (comme une ritournelle)!

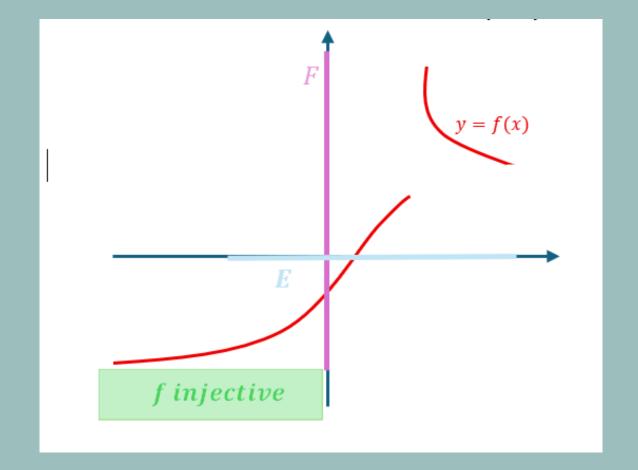
INJECTION trois définitions équivalentes

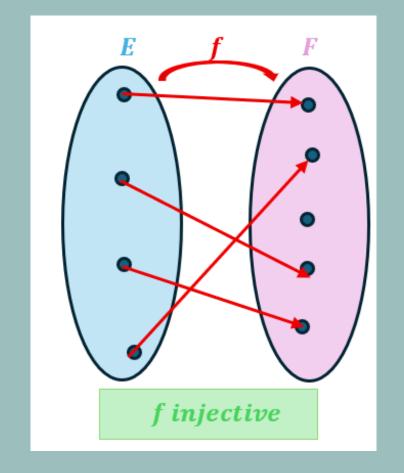
Considérons f une fonction définie sur un ensemble E et à valeurs dans un ensemble F i.e. $\forall x \in E, f(x) \ existe$ et $f(x) \in F$.

f est <u>injective</u> sur E lorsque tout élément de F a au plus un antécédent par f dans E.

f est <u>injective</u> sur E lorsque deux éléments distincts de E ont nécessairement des images distinctes par f i.e. lorsque $\forall (x_1, x_2) \in E^2$, $x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2)$.

f est <u>injective</u> sur E lorsque deux éléments de E qui ont la même image par f sont nécessairement égaux i.e. lorsque $\forall (x_1, x_2) \in E^2$, $f(x_1) = f(x_2) \Longrightarrow x_1 = x_2$.

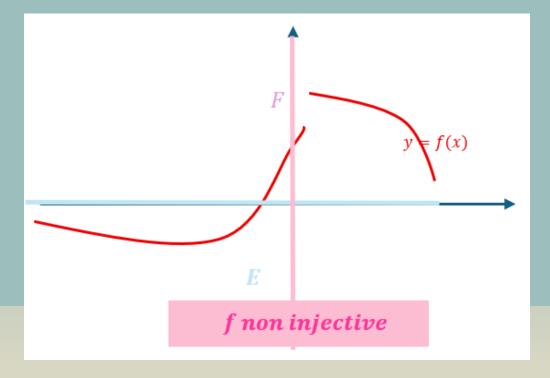




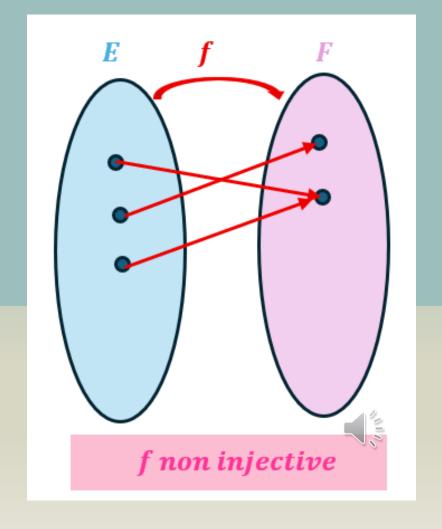
INJECTION

Illustration

f n'est <u>pas injective</u> sur E dès que deux éléments distincts de E ont la même image par f ou encore dès qu'un élément de F a au moins deux antécédents distincts dans E par f.



NON INJECTIVE?



Toute fonction réelle strictement monotone est injective car si f est strictement croissante sur D alors pour tous réels x et y de D distincts, ou bien x > y et alors f(x) > f(y) donc $f(x) \neq f(y)$., ou bien x < y et alors f(x) < f(y) donc $f(x) \neq f(y)$.,

Toute fonction réelle paire n'est pas injective car pour tout réel x non nul de Df, $x \neq -x$ et f(-x) = f(x).

La fonction $f: (x \mapsto x^2 + x + 1)$ n'est pas injective sur $\mathbb R$. En effet, pour tout réel x, $f(x) = \left(x + \frac{1}{2}\right)^2 + \frac{3}{4}$; par conséquent, f(0) = f(-1) = 1. Deux réels distincts ont donc la même image et f n'est pas injective.

Mais f est injective sur $\left[-\frac{1}{2}, +\infty\right[$. En effet, considérons x_1 et x_2 deux réels de

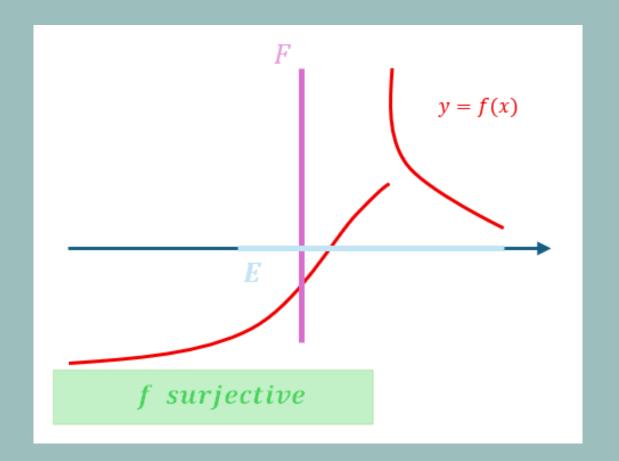
$$[-\frac{1}{2}, +\infty[\text{ tels que } f(x_1) = f(x_2) ; \text{ alors } \left(x_1 + \frac{1}{2}\right)^2 + \frac{3}{4} = \left(x_2 + \frac{1}{2}\right)^2 + \frac{3}{4} \operatorname{donc} \left(x_1 + \frac{1}{2}\right)^2 = \left(x_2 + \frac{1}{2}\right)^2 \operatorname{et comme} x_1 + \frac{1}{2} \operatorname{et } x_2 + \frac{1}{2} \operatorname{sont positifs}, x_1 + \frac{1}{2} = x_2 + \frac{1}{2} \operatorname{et ainsi}, x_1 = x_2.$$

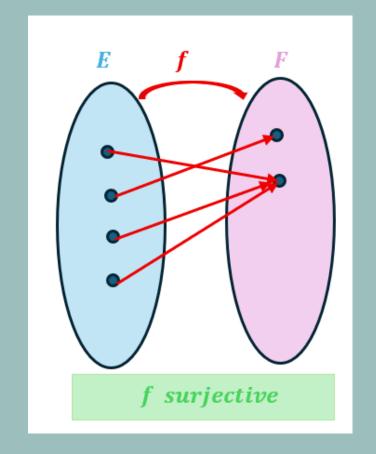
SURJECTION deux définitions équivalentes

Considérons f une fonction définie sur un ensemble E et à valeurs dans un ensemble F i.e. $\forall x \in E, f(x) \ existe$ et $f(x) \in F$.

f est <u>surjective</u> de E sur F lorsque tout élément de F a au moins un antécédent par f dans E.

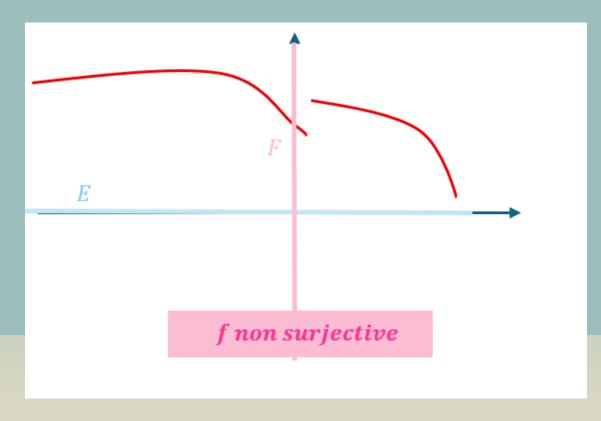
f est surjective de E sur F lorsque f(E) = F.



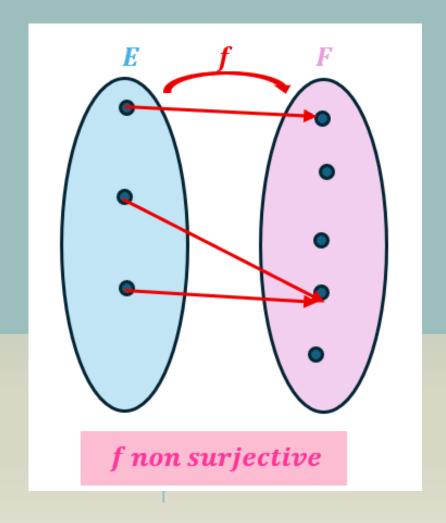


SURJECTION

f n'est <u>pas surjective</u> <u>de</u> E sur F dès qu'un élément de n'a pas d'antécédent dans E par f.



NON SURJECTIVE ?



Toute fonction f de E dans F est surjective de E sur f(E).

La fonction $f: (x \mapsto x^2 + x + 1)$ n'est pas surjective de $\mathbb R$ sur $\mathbb R$ car pour tout réel x, $f(x) = \left(x + \frac{1}{2}\right)^2 + \frac{3}{4} \ge \frac{3}{4}$; par conséquent, tout réel strictement inférieur à $\frac{3}{4}$ n'a pas d'antécédents par f. Mais, elle est surjective de $\mathbb R$ sur $\left[\frac{3}{4}, +\infty\right[$ car si $y \in \left[\frac{3}{4}, +\infty\right[$ alors $y = \left(x + \frac{1}{2}\right)^2 + \frac{3}{4} \Leftrightarrow \left(x + \frac{1}{2}\right)^2 = y - \frac{3}{4} \Leftrightarrow \left|x + \frac{1}{2}\right| = \sqrt{y - \frac{3}{4}} \Leftrightarrow x + \frac{1}{2} = \pm \sqrt{y - \frac{3}{4}}$ et ainsi, $y = f(x) \Leftrightarrow x = -\frac{1}{2} \pm \sqrt{y - \frac{3}{4}}$; donc $-\frac{1}{2} + \sqrt{y - \frac{3}{4}}$ est un antécédent de y par f.

EXEMPLES

BIJECTION

définitions u caractérisations équivalentes

Considérons f une fonction définie sur un ensemble E et à valeurs dans un ensemble F i.e. $\forall x \in E, f(x)$ existe et $f(x) \in F$.

f est <u>bijective</u> de E sur F lorsque tout élément de F a exactement un antécédent par f dans E.

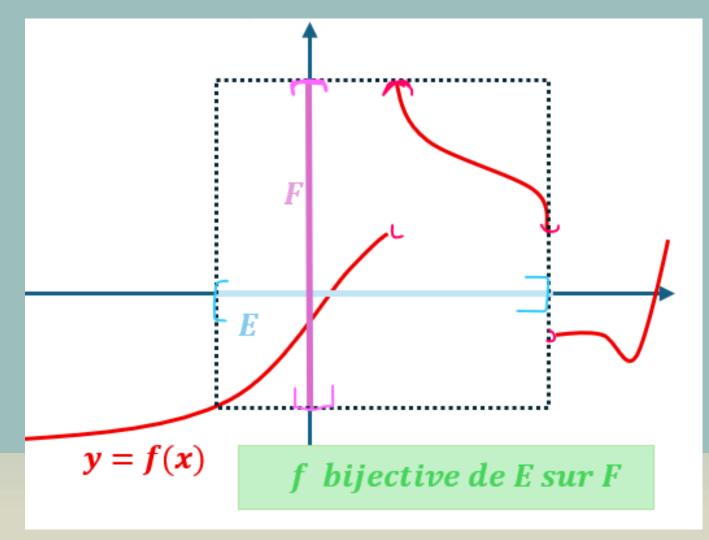
f est bijective de E sur F lorsque f est injective sur E et surjective de E sur F.

f est <u>bijective</u> de E sur F lorsqu'il exixste une fonction g de F vers E telle que :

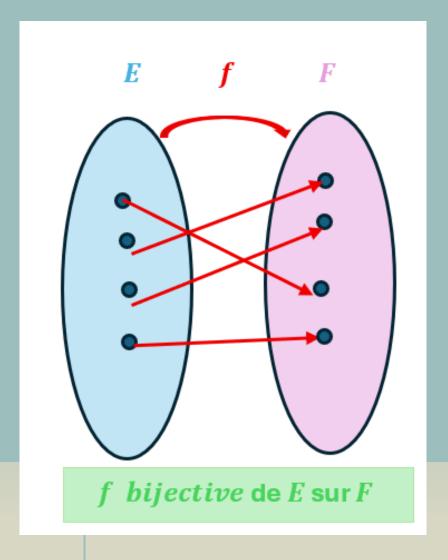
$$\begin{cases} y = f(x) \\ x \in E \end{cases} \Leftrightarrow \begin{cases} x = g(y) \\ y \in F \end{cases} \quad (alors \ f^{-1} = g).$$

f est <u>bijective</u> de E sur F lorsqu'il existe une fonction g de F vers E telle que :

$$\forall x \in E, g(f(x)) = x \text{ et } \forall y \in F, y = f(g(y)) \text{ (alors } f^{-1} = g).$$



BIJECTION



Illustration

La fonction identité $id_E : {E \to E \choose x \mapsto x}$ est bijective de E sur E.

La fonction $f: (x \mapsto x^2 + x + 1)$ n'est pas bijective de \mathbb{R} sur \mathbb{R} puisque f n'est pas injective sur \mathbb{R} mais est bijective de $[-\frac{1}{2}, +\infty[$ sur $[\frac{3}{4}, +\infty[$. En effet, pour tout réel $x, f(x) = \left(x + \frac{1}{2}\right)^2 + \frac{3}{4} \ge \frac{3}{4}$ et par conséquent, $\forall x \in [-\frac{1}{2}, +\infty[$, $f(x) \in [\frac{3}{4}; +\infty[$; puis considérons $y \in [\frac{3}{4}, +\infty[$ et $x \in [-\frac{1}{2}, +\infty[$ alors $y = f(x) \Leftrightarrow y = \left(x + \frac{1}{2}\right)^2 + \frac{3}{4} \Leftrightarrow \left(x + \frac{1}{2}\right)^2 = y - \frac{3}{4} \Leftrightarrow x + \frac{1}{2} = \sqrt{y - \frac{3}{4}};$ $x + \frac{1}{2} \ge 0$

et ainsi, "y" = $f(x) \Leftrightarrow = -\frac{1}{2} + \sqrt{y - \frac{3}{4}}$; donc pour chaque $y \in [\frac{3}{4}, +\infty[, -\frac{1}{2} + \sqrt{y - \frac{3}{4}}]$

est l'unique antécédent de y par f dans $\left[-\frac{1}{2}, +\infty\right]$,

EXEMPLES

BIJECTION RECIPROQUE trois définitions equivalentes

Considérons f une fonction définie sur un ensemble E et à valeurs dans un ensemble F i.e. $\forall x \in E, f(x) \ existe$ et $f(x) \in F$.

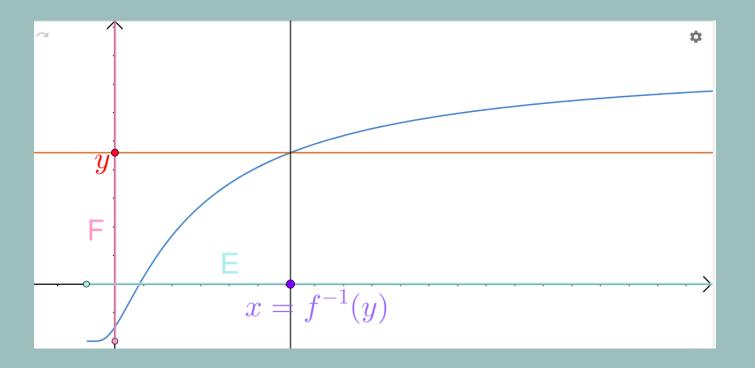
Lorsque f est bijective de E sur F, on définit la bijection réciproque $f^{-1}:(F \to E)$ de f par : $\forall y \in F, f^{-1}(y)$ est l'unique antécédent de g par f dans g ;

$$f^{-1}$$
 est donc l'unique application de F dans E telle que :
$$\begin{cases} y = f(x) \\ x \in E \end{cases} \Leftrightarrow \begin{cases} x = f^{-1}(y) \\ y \in F \end{cases}.$$

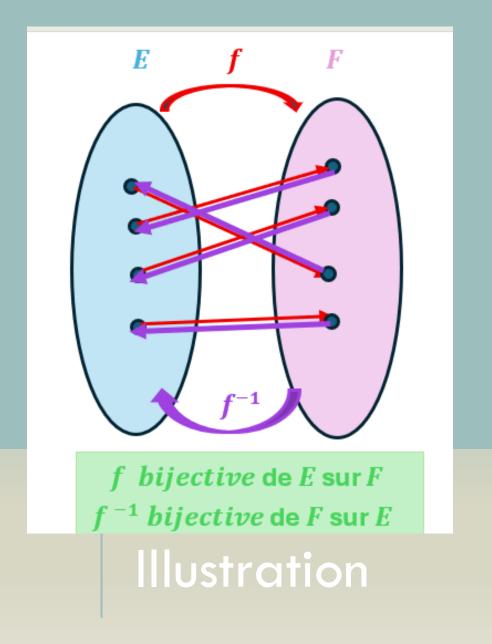
 f^{-1} est l'unique application de F dans E vérifiant ;

$$\forall x \in E, \ f^{-1}(f(x)) = x \ \text{ et } \ \forall y \in F, \ f(f^{-1}(y)) = y.$$

Conséquence : f^{-1} est alors bijective de F sur E et $(f^{-1})^{-1} = f$.



BIJECTION RÉCIPROQUE



La fonction identité $id_E : {E \to E \choose x \mapsto x}$ est bijective de E sur E et $id_E^{-1} = id_E$ car $y = x \Leftrightarrow x = y$.

La fonction $f: (x \mapsto \sqrt{e^x + 1})$ est bijective de \mathbb{R} sur $]1, +\infty[$. En effet, pour tout réel $x, e^x + 1 > 1$ donc f(x) > 1. Considérons maintenant $y \in]1, +\infty[$ et $x \in \mathbb{R}$; alors, $y = f(x) \Leftrightarrow y = \sqrt{e^x + 1} \Leftrightarrow y^2 = e^x + 1 \Leftrightarrow x = \ln(y^2 - 1)$.

Ainsi, pour chaque $y \in]1, +\infty[$, $ln(y^2 - 1)$ est l'unique antécédent de y par f. J'en conclus que f est est bijective de \mathbb{R} sur $]1, +\infty[$ et $f^{-1}(y) = ln(y^2 - 1)$.

La fonction $f: (x \mapsto x - 2\sqrt{x} + 1)$ est bijective de [0,1] sur [0,1] et $f^{-1} = f$ car : pour tout réel $x \in [0,1]$, $f(x) = (1-\sqrt{x})^2 \in [0,1]$ donc f(f(x)) existe et

$$f(f(x)) = \left(1 - \sqrt{(1 - \sqrt{x})^2}\right)^2 = \sum_{\substack{c \text{ air} \\ 1 - \sqrt{x} \ge 0}} (1 - (1 - \sqrt{x})^2) = \sqrt{x}^2 = x.$$

J'en déduis que f est bijective de [0,1] sur [0,1] et $f^{-1}=f$.

EXEMPLES

```
Je remarque que : pour tout x \in \mathbb{R}, en posant k = \lfloor x \rfloor,
on a :x \in [k; k+1[, donc \ f(x) = x+k \in [2k; 2k+1[ \ i.e. \ [f(x)] = 2k]]
Donc, toutes les images par f ont une partie entière paire. Par conséquent, 3 n'est pas image
de f. f n'est donc pas surjective de \mathbb{R} sur \mathbb{R} et f(\mathbb{R}) \subset \bigcup_{k \in \mathbb{Z}} [2k; 2k+1].
Considérons x_1 et x_2 deux réels distincts.
     Ou bien k = [x_1] = [x_2]; alors, f(x_1) = k + x_1 \neq k + x_2 = f(x_2).
    Ou bien k = \lfloor x_1 \rfloor < \lfloor x_2 \rfloor = k'; alors, x_1 < k + 1 \le k' = x_2; donc, f(x_1) = k + x_1 < k' + x_2 = f(x_2).
    Ou bien k = [x_1] > [x_2] = k'; alors, de même, f(x_1) > f(x_2).
    J'en déduis que f(x_1) \neq f(x_2).
```

J'en conclus que f est injective.

Soit $f: (x \mapsto x + \lfloor x \rfloor)$. Tout d'abord $Df = \mathbb{R}$.

Enfin, prenons $y \in \bigcup_{k \in \mathbb{Z}} [2k; 2k + 1]$. Cela signifie qu'il existe un entier k tel que $y \in [2k; 2k + 1]$. Alors, [y] = 2k donc $k = \frac{1}{2}[y]$. Posons $x = y - k = y - \frac{1}{2}[y]$. Alors $x \in [k; k + 1[$ donc k = [x] et f(x) = x + k = y. Donc x est un antécédent de y par \tilde{f} . Comme f est injective, y a au plus un antécédent par f. J'en conclus que $x = y - k = y - \frac{1}{2}[y]$ est l'unique antécédent de y par f. J'en déduis que f est bijective de \mathbb{R} sur $\bigcup_{k\in\mathbb{Z}}[2k;2k+1[$ et $\forall y\in\bigcup_{k\in\mathbb{Z}}[2k;2k+1[$, $f^{-1}(y)=y-\frac{1}{2}[y]$.

EXEMPLE

2) SAVOIR JUSTIFIER RAPIDEMENT QUE LA FONCTION N'EST PAS INJECTIVE OU N'EST PAS SURJECTIVE (DONC PAS BIJECTIVE).

meimuve karive pour prouver qu'une fonction n^\prime est pas injective ou n^\prime est pas suriective

Soit f une fonction de E dans F .

1) Pour prouver que f n'est pas injective sur E, on trouve deux éléments de E qui ont la même image par f.

2) Pour prouver que f n'est pas surjective E sur F, on cherche un élément de F qui n'a pas d'antécédent par f.

 $f: \binom{\mathbb{R} \to \mathbb{C}}{\theta \mapsto e^{i\theta}}$ n'est pas injective car $f(0) = f(2\pi)$.

 $f: \binom{\mathbb{R} \to \mathbb{C}}{\theta \mapsto e^{i\theta}}$ n'est pas surjective de \mathbb{R} sur \mathbb{C} car pour tout réel $\theta, e^{i\theta}$ est un complexe de module 1; par conséquent, le complexe 1 + i qui est de module $\sqrt{2}$ n'a pas d'antécédent par f.

La fonction $f: (x \mapsto \frac{x+1}{x+2})$ n'est pas surjective de $\mathbb{R}\setminus\{-2\}$ sur \mathbb{R} car 1 n'a pas d'antécédent par f, étant donné que pour tout réel x, $x+1\neq x+2$.

EXEMPLES

3) COMPRENDRE ET SAVOIR APPLIQUER LA MÉTHODE DE L'ÉQUATION

meihoue de l'equation pour déterminer si une fonction est injective, suriective ou bijective.

Soit f une fonction .

On cherche à savoir si f est injective, surjective ou bijective de E sur F.

- 1) On vérifie d'abord que $\forall x \in E, f(x) \ existe \ \text{et} \ f(x) \in F$.
- 2) On considère un élément y de F arbitraire.
- 3) On cherche ensuite tous les antécédents de y par f dans E. Pour cela, on résout l'équation f(x) = y d'inconnue $x \in E$.
- 4) On interprète le résultat.

INTERPRÉTATION DU RÉSULTAT

- 1) Si pour certaines valeurs de y, l'équation n'a pas de solutions alors f n'est pas surjective de E sur F. Posons alors $F^{'}$ le sous-ensemble de F obtenu en ôtant à F ces valeurs particulières, f est alors surjective de E sur F'.
- 2) Si pour certaines valeurs de y, l'équation admet plus de deux solutions alors f n'est pas injective. Posons E' le sous-ensemble de E obtenu en ôtant les solutions multiples, f est alors injective sur E'.
- 3) Si pour toute valeur de y, l'équation admet une unique solution x = g(y) alors f est bijective de E sur F et pour tout $y \in F$, $f^{-1}(y) = g(y)$.

Soit $f: \left(x \mapsto \frac{2+3e^x}{e^x-1}\right)$. Tout d'abord $Df = \mathbb{R}^*$.

Prenons un réel y. Cherchons tous les antécédents de y par f. Soit x un réel non nul.

$$f(x) = y \Leftrightarrow \frac{2+3e^x}{e^x-1} = y \Leftrightarrow 2+3e^x = y(e^x-1) \Leftrightarrow e^x(3-y) = -2-y \Leftrightarrow e^x = \frac{y+2}{y-3}. \text{ Donc,}$$

$$f(x) = y \Leftrightarrow \begin{cases} x = \ln\left(\frac{y+2}{y-3}\right) & \text{si } \frac{y+2}{y-3} > 0\\ impossible & \text{si } \frac{y+2}{y-3} \le 0 \end{cases}.$$

Or, grâce à un tableau de signe, on a : $\frac{y+2}{y-3} > 0$ sietssi $y \in]-\infty, -2[\cup]3, +\infty[$. De plus, $\frac{y+2}{y-3} \neq 1$ donc

 $\ln\left(\frac{y+2}{y-3}\right) \in \mathbb{R}^*$. Alors, on obtient:

$$f(x) = y \Leftrightarrow \begin{cases} x = \ln\left(\frac{y+2}{y-3}\right) & \text{si } y \in]-\infty, -2[\cup]3, +\infty[\\ & \text{impossible si } y \in [-2,3] \end{cases} \text{ ou encore } \begin{cases} f(x) = y\\ x \in \mathbb{R}^* \end{cases} \Leftrightarrow \begin{cases} x = \ln\left(\frac{y+2}{y-3}\right)\\ y \in]-\infty, -2[\cup]3, +\infty[\end{cases}.$$

J'en déduis que chaque réel y a au plus un antécédent par f. f est donc injective. Par contre, aucun réel compris entre -2 et 3 n'a d'antécédent par f donc f n'est pas surjective de Df sur \mathbb{R} . Cependant, tout réel $y \in]-\infty, -2[\cup]3, +\infty[$ admet $x=\ln\left(\frac{y+2}{y-3}\right)$ comme unique antécédent. J'en déduis que f est bijective de \mathbb{R}^* sur $]-\infty, -2[\cup]3, +\infty[$ et que $\forall y \in]-\infty, -2[\cup]3, +\infty[$, $f^{-1}(y)=\ln\left(\frac{y+2}{y-3}\right)$.

EXEMPLE

Soit $f: \begin{pmatrix} \mathbb{R}^2 \to \mathbb{C} \\ (x,y) \mapsto (5x+2y) + i(4y-3x) \end{pmatrix}$. Tout d'abord $Df = \mathbb{R}^2$.

Soit $z = a + ib \in \mathbb{C}$ où a = Re(z) et b = Im(z) réels. Cherchons tous les antécédents de z par f. Pour cela, résolvons l'équation f(x,y) = z d'inconnue $(x,y) \in \mathbb{R}^2$.

$$f(x,y) = z \Leftrightarrow (5x + 2y) + i(4y - 3x) = a + ib$$

$$\Leftrightarrow \begin{cases} 5x + 2y = a \\ 4y - 3x = b \end{cases} \Leftrightarrow \begin{cases} 13x = 2a - b \\ 26y = 3a + 5b \end{cases}$$

$$\Leftrightarrow \begin{cases} x = \frac{2a - b}{13} \\ y = \frac{3a + 5b}{26} \end{cases}$$

Donc, $\left(\frac{2a-b}{13}, \frac{3a+5b}{26}\right)$ est l'unique antécédent de z=a+ib par f. J'en conclus que f est bijective de \mathbb{R}^2 sur \mathbb{C} et $\forall z \in \mathbb{C}, f^{-1}(z) = \left(\frac{2Re(z)-Im(z)}{13}, \frac{3Re(z)+5Im(z)}{26}\right)$.

EXEMPLE

4) CONNAITRE PARFAITEMENT LE THÉORÈME DES BIJECTIONS CONTINUES ET STRICTEMENT MONOTONE

Savoir l'énoncer très rapidement et clairement (comme une ritournelle)!

le Théorème des Bijections Continues et Strictement Monotones. TBCSM

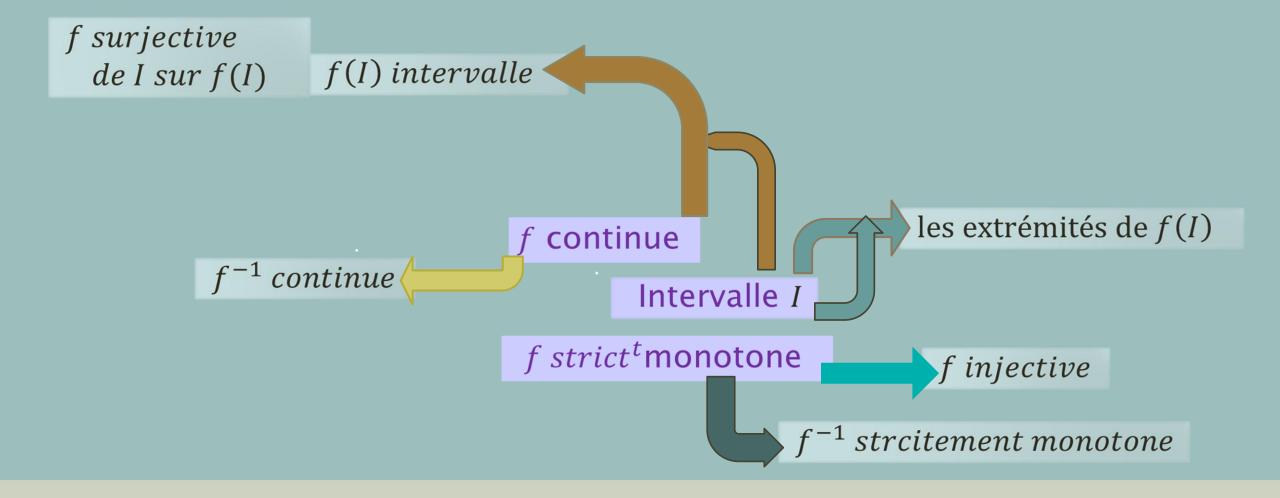
Soit $f \colon \mathbb{R} \to \mathbb{R}$ une fonction.

Si f est définie et **STRICTEMENT MONOTONE** et **CONTINUE** sur un **INTERVALLE** I alors

J=f(I) est l'intervalle de $\mathbb R$ de même nature que I (ouvert, seglent, semi-ouvert) et dont les extrémités sont les limites de f aux extrémités de I.

f est bijective de I sur J.

 f^{-1} est continue sur J et strictement monotone sur J de même monotonie que f.



EXPLICATION

Soit $f:(x \mapsto x + sin(x))$. Montrons que f est bijective de $\mathbb{R} \, sur\mathbb{R}$. Déterminer $f^{-1}(k\pi)$ pour $k \in \mathbb{Z}$.

- Tout d'abord $Df = \mathbb{R}$.
- f est continue et dérivable sur l'intervalle \mathbb{R} . Et, $\forall x \in \mathbb{R}$, $f'(x) = 1 + \cos(x)$. Donc, $f'(x) \geq 0$ et f'(x) ne s'annule qu'aux points isolés $(2k+1)\pi$ tels que $k \in \mathbb{Z}$. J'en déduis que f est strictement croissante sur l'intervalle \mathbb{R} .

Le TBCSM assure a:ors que :

- 1) $J = f(\mathbb{R})$ est l'intervalle $\lim_{x \to -\infty} f(x)$, $\lim_{x \to +\infty} f(x)$ [.
- 2) f est bijective de \mathbb{R} sur \hat{J} .
- 3) f^{-1} est continue et strictement croissante sur J.
- Déterminons $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$

$$f(x) = x \left(1 + \sin(x) \times \frac{1}{x}\right)$$
. Comme sin est bornée et $\lim_{x \to +\infty} \frac{1}{x} = 0$, $\lim_{x \to +\infty} \sin(x) \times \frac{1}{x} = 0$ et par conséquent, $\lim_{x \to +\infty} f(x) = +\infty$. De même, $\lim_{x \to -\infty} f(x) = -\infty$.

Donc, $J = \mathbb{R}$.

Ainsi, f est bijective de \mathbb{R} sur \mathbb{R} .

• Soit $k \in \mathbb{Z}$. $f^{-1}(k\pi) = x \Leftrightarrow k\pi = f(x)$. Or, $f(k\pi) = k\pi$. Donc $f^{-1}(k\pi) = k\pi$.

EXEMPLE