Les dernières fonctions usuelles.

1 RAPPEL: Si f est une fonction <u>continue sur un intervalle</u> I alors

- 1. f admet une primitive sur I
- 2. deux primitives F et G de f sur I vérifient : $\exists c \in \mathbb{R}/\forall x \in I, G(x) = F(x) + c$
- 3. en fixant $a \in I$ et $b \in \mathbb{R}$ il existe une et une seule primitive F de f sur I qui vérifie : F(a) = b.
- **2 RAPPEL**: Si f est une fonction monotone sur]a,b[(où a et b réels ou infinis) alors $\lim_{a \to a} f$ et $\lim_{b \to a} f$ existent.
- **3 RAPPEL**: par définition, $u(x)^{v(x)} = e^{v(x)ln(u(x))}$.

I Fonctions logarithmes et exponentielles.

1. Fonction logarithme népérien

4Déf: On appelle logarithme népérien, notée $\ln(ou \log)$, la primitive, sur \mathbb{R}^{+*} , de la fonction $(t \mapsto \frac{1}{t})$ qui s'annule en 1.

- **5 Conséquences**: $\mathbf{1} \cdot \ln(1) = 0$. La fonction $\ln n$ est définie, continue et dérivable sur \mathbb{R}^{+*} et $\forall x \in \mathbb{R}^{+*}$, $\ln'(x) = \frac{1}{x}$.
- 2. $\lim_{x \to 1} \frac{\ln(x)}{x-1} \stackrel{TA}{=} 1$ ou encore $\lim_{t \to 0} \frac{\ln(1+t)}{t} \stackrel{TA}{=} 1$.
- **3.** La fonction ln est strictement croissante sur \mathbb{R}^{+*} .
- **4.** $(x \mapsto x \ln(x) x)$ est une primitive de $(x \mapsto \ln(x))$ sur \mathbb{R}^{+*}

6Exercice: Soit a et b deux réels. Calculer $\lim_{x \to +\infty} \left(1 + \frac{a}{x}\right)^{bx}$

7Prop: Si u est dérivable et ne s'annule pas sur un domaine D alors $\varphi = ln|u|$ est dérivable sur D et $\forall x \in D$, $\varphi'(x) = \frac{u'(x)}{u(x)}$.

8Conséquence Si u est dérivable et ne s'annule pas sur D, $(x \mapsto ln|u(x)|)$ est une primitive de $(x \mapsto \frac{u'(x)}{u(x)})$ sur D. En particulier, une primitive de $(x \mapsto \frac{1}{x})$ sur \mathbb{R}^* est $(x \mapsto ln|x|)$.

9Premières propriétés algébriques :

- **1.** $\forall (x,y) \in (\mathbb{R}^{+*})^2$, ln(xy) = ln(x) + ln(y). Généralisation :
- **2.** $\forall x \in \mathbb{R}^{+*}$, $ln\left(\frac{1}{x}\right) = -ln(x)$
- 3. $\forall (x,y) \in (\mathbb{R}^{+*})^2$, $\ln\left(\frac{x}{y}\right) = \ln(x) \ln(y)$
- **4.** $\forall x \in \mathbb{R}^{+*}$, $\forall r \in \mathbb{Q}$, $ln(x^r) = rln(x)$.

10Prop:
$$\lim_{x\to 0} \ln(x) = -\infty$$
 et $\lim_{x\to +\infty} \ln(x) = +\infty$

11Prop

- **1.** $\forall x \in \mathbb{R}^{+*}$, $\ln(x) \le x 1$. Donc la courbe de \ln est sous sa tangente au point A(1;0).
- **2.** $\forall t \in]-1; +\infty[, t-\frac{t^2}{2} \le \ln(1+t) \le t$

12Les premières croissances comparées :

1. $\lim_{x\to+\infty}\frac{\ln(x)}{x}=0$. Croissance beaucoup plus lente que id; on dit que la courbe de ln a <u>une branche parabolique de direction asymptotique (0x)</u> en $+\infty$

 $2. \quad \lim_{n \to \infty} x ln(x) = 0 \ .$

La courbe se confond avec sa **tangente** en A au voisinage de A.

en A

-1 -0.5

0.5

1.5

2 2.5

3 3.5

4 4.5

5 5.5

6 6.5

7 7.5

8

Croissance lente : ln tend lentement vers $+\infty$.

2. Fonction exponentielle

14Déf: le logarithme népérien ln est continue sur \mathbb{R}^{+*} et strictement croissante sur \mathbb{R}^{+*} , donc bijective de \mathbb{R}^{+*} sur \mathbb{R} . Sa bijection réciproque est, par définition, la fonction exponentielle notée $exp:(x\mapsto e^x)$.

15Par conséquent,

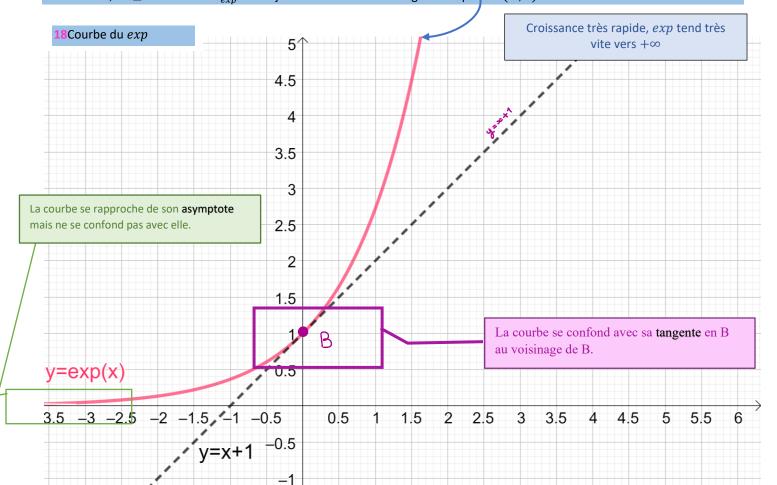
- 1. exp est donc une bijection de \mathbb{R} sur \mathbb{R}^{+^*} de bijection réciproque ln. La fonction exp est définie, continue et strictement croissante sur \mathbb{R} .
- 2. $e^0 = 1$, $\lim_{x \to +\infty} e^x = +\infty$ et $\lim_{x \to -\infty} e^x = 0$. Donc, C_{exp} a une asymptote horizontale en $-\infty$.
- 3. $\forall x \in \mathbb{R}^{+*}, e^{\ln(x)} = x \text{ et } \forall x \in \mathbb{R}, \ln(e^x) = x \text{ et } \forall x > 0, \forall y \in \mathbb{R}, (y = \ln(x) \Leftrightarrow x = e^y).$
- 4. La fonction exp est dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}$, $exp'(x) = exp(x) = e^x$ et $\lim_{x \to 0} \frac{e^{x-1}}{x} \stackrel{TA}{=} 1$.
- 5. Si u est une fonction dérivable sur D alors $h: (x \mapsto e^{u(x)})$ est dérivable sur D et $\forall x \in D, h'(x) = u'(x)e^{u(x)}$.

16Propriétés algébriques : $\forall (a, b) \in \mathbb{R}^2, \forall r \in \mathbb{Q}$,

- $1. \quad e^{a+b} = e^a e^b$
- Généralisation:
- 2. $e^{-b} = \frac{1}{e^b}$
- $3. \quad e^{a-b} = \frac{e^a}{e^b}$
- 4. $e^{ra} = (e^a)^r$ et $\forall x > 0$, $x^r = e^{rln(x)}$

17Autres propriétés :

- 1. $\lim_{x\to +\infty} \frac{e^x}{x} = +\infty$. Croissance très rapide beaucoup plus rapide que id: on dit que C_{exp} a une <u>branche parabolique de direction asymptotique (Oy).</u>
- $2. \quad \lim^{x \to +\infty} x e^x = 0$
- 3. $\forall x \in \mathbb{R}, e^x \ge x + 1$. Donc C_{exp} est toujours au-dessus de sa tangente au point B(0; 1).



19Théorème: Pour tout réel a non nul, $\left(x\mapsto \frac{1}{a}e^{ax}\right)$ est une primitive sur \mathbb{R} de $\left(x\mapsto e^{ax}\right)$. Si u est dérivable sur D alors $\left(x\mapsto e^{u(x)}\right)$ est une primitive sur D de $\left(x\mapsto u'(x)e^{u(x)}\right)$.

3. Logarithme et exponentielle de base a

Déf : soit a un réel strictement positif et distinct de 1.

Pour tout réel x strictement positif, on définit $log_a(x) = \frac{\ln{(x)}}{\ln{(a)}}$ le logarithme de base a de x.

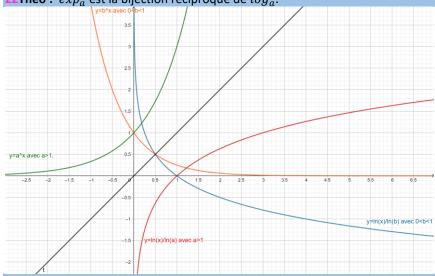
Pour tout réel x, on définit $exp_a(x) = e^{xln(a)}$ l'exponentielle de base a de x. Autre notation : $a^x = exp_a(x) = e^{xln(a)}$.

On définit ainsi les fonctions log_a et exp_a logarithme et exponentielle de base a

21NB: $ln = log_e$ et $exp = exp_e$.

Définition cohérente avec celle de $u(x)^{v(x)}$

2Théo : exp_a est la bijection réciproque de log_a .



23 Courbes de exp_a et log_a

- Si a > 1 alors ln(a) > 0 donc les courbes de log_a et ln ont la même allure. Idem pour les courbes de exp et exp_a .
- Si 0 < b < 1 alors ln(b) < 0 donc les courbes de log_b et -ln ont la même allure. Idem pour les courbes de exp_h et $(x \mapsto e^{-x})$.

Propriétés algébriques : log_a et exp_a vérifient les mêmes propriétés algébriques que leurs homologues respectifs ln et exp. A savoir : soit a et b des réels strictement positif et distincts de 1.

Pour tous réels x et y strictement positifs et tout rationnel α ,

$$log_a(xy) = log_a(x) + log_a(y)$$

$$log_a\left(\frac{1}{y}\right) = -log_a(y)$$

$$\log_a\left(\frac{x}{y}\right) = \log_a(x) - \log_a(y)$$

$$log_a(x^\alpha) = \alpha log_a(x)$$

Pour tous réels x et y et tout rationnel α ,

$$exp_a(x + y) = exp_a(x) \times exp_a(y)$$
 i.e.

$$a^{x+y} = a^x a^y$$

$$exp_a(-x) = \frac{1}{exp_a(y)}$$

$$i.e. a^{-x} = \frac{1}{a^x}$$

$$exp_a(x - y) = \frac{exp_a(x)}{exp_a(y)}$$

i.e.
$$a^{-x} = \frac{1}{a^x}$$
i.e.
$$a^{x-y} = \frac{a^x}{a^y}$$

$$(axn_{\alpha}(x))^{\alpha} = axn_{\alpha}(x)$$

$$i.c. \qquad \alpha = \frac{a^y}{a^y}$$

$$(exp_a(x))^n = exp_a(\alpha x)$$

 $exp_a(x) = exp_a(\alpha x)$

i.e.
$$(a^x)^\alpha = a^{\alpha x}$$

$$exp_{ab}(x) = exp_a(x) \times exp_b(x)$$

$$a^x b^x = (ab)^x$$

$$exp_{a/b}(x) = \frac{exp_a(x)}{exp_b(x)}$$

$$e.$$
 $\frac{a^x}{b^x} = \left(\frac{a}{b}\right)^x$

$$exp_a(x) = \underset{exp_a(y)}{exp_a(y)} \qquad \text{i.e.} \qquad a^x = \underset{a^y}{a^x}$$

$$exp_a(x-y) = \underset{exp_a(y)}{exp_a(y)} \qquad \text{i.e.} \qquad a^{x-y} = \underset{a^y}{a^x}$$

$$(exp_a(x))^\alpha = exp_a(\alpha x) \qquad \text{i.e.} \qquad (a^x)^\alpha = a^{\alpha x}$$

$$exp_{ab}(x) = exp_a(x) \times exp_b(x) \qquad \text{i.e.} \qquad a^x b^x = (ab)^x$$

$$exp_{a/b}(x) = \underset{exp_h(x)}{exp_h(x)} \qquad \text{i.e.} \qquad \underset{b^x}{a^x} = \left(\frac{a}{b}\right)^x$$

$$25\text{NB}: \text{Si } a < b \text{ alors } \lim_{x \to +\infty} \frac{a^x}{b^x} = 0 \text{ i.e. } a^x \leq b^x$$

26Ex : Montrer que $C_{log_{\underline{1}}}$ sont symétriques par rapport à (Ox) et que $C_{exp_{\underline{1}}}$ sont symétriques par rapport à (0y).

Il Fonctions puissances réelles

Déf: Soit α un réel. Pour tout réel x strictement positif, on définit: $x^{\alpha} = e^{\alpha l n(x)}$ la puissance α du réel x. On définit ainsi la fonction puissance réelle α que l' on notera f_{α} . f_{α} est donc définie sur \mathbb{R}^{+*} par : $f_{\alpha}(x) = x^{\alpha}$.

28Rques: Si $\alpha=0$ alors f_{α} est la fonction constante égale à 1 sur \mathbb{R}^{+^*} .

Si $\alpha = 1$ alors f_{α} coincide avec l'identité $id: (x \to x)$ sur \mathbb{R}^{+^*} .

Si $\alpha \in \mathbb{Z}$ $ie \ \alpha = n$ alors f_{α} coïncide avec $(x \to x^n)$ sur \mathbb{R}^{+^*} .

Si $\alpha = \frac{1}{n}où n \in \mathbb{N}^*$ alors f_{α} coïncide avec $(x \to \sqrt[n]{x})$ sur \mathbb{R}^{+*} .

Propriétés algébriques des puissances réelles :

Soit α , β deux réels .Soit x, y deux réels strictement positifs .

$$(xy)^{\alpha} = x^{\alpha}y^{\alpha} \qquad \left(\frac{x}{y}\right)^{\alpha} = \frac{x^{\alpha}}{y^{\alpha}}$$

$$x^{\alpha}x^{\beta} = x^{\alpha+\beta} \qquad x^{-\alpha} = \frac{1}{x^{\alpha}}$$

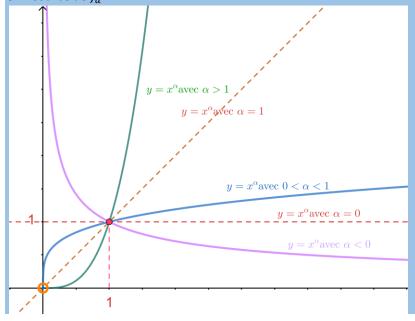
$$x^{\alpha-\beta} = \frac{x^{\alpha}}{x^{\beta}} \qquad (x^{\alpha})^{\beta} = x^{\alpha\beta}$$

$$\ln(x^{\alpha}) = \alpha\ln(x) \qquad (e^{x})^{\beta} = e^{\beta x}$$

Généralisations : Soient α , α_1 , α_2 , ..., α_n des réels, x, x_1 , x_2 , ..., x_n des réels strictement positifs. $(\prod_{k=1}^{n} x_k)^{\alpha} = \prod_{k=1}^{n} x_k^{\alpha}$ et $\prod_{k=1}^{n} x^{\alpha_k} = x^{\sum_{k=1}^{n} \alpha_k}$

Propriétés de la fonction puissance réelle α

- **1.** $f_{\alpha}(1) = 1$.
- f_{α} est bijective de \mathbb{R}^{+*} sur \mathbb{R}^{+*} et $(f_{\alpha})^{-1} = f_{\underline{1}}$.
- **3.** f_{α} est définie, continue et dérivable sur \mathbb{R}^{+*} et pour tout réel x > 0, $f'_{\alpha}(x) = \alpha x^{\alpha-1}$.
- $\lim_{t \to 1} \frac{x^{\alpha} 1}{x 1} \stackrel{TA}{=} \alpha \text{ ie. } \lim_{t \to 0} \frac{(1 + t)^{\alpha} 1}{t} = \alpha.$
- 5. Si $\alpha < 0$ alors f_{α} est strictement décroissante et C f_{α} admet deux asymptotes l'une verticale en 0 et l'autre horizontale d'équation y = 0 en $+\infty$.
- 6. Si $0 < \alpha < 1$ alors f_{α} est strictement croissante, f_{α} est prolongeable par continutié en 0 par la valeur 0 et $C\widetilde{f}_{\alpha}$ a une tangente verticale en O. (Donc, Cf_{α} admet le point limite O qu'elle approche en se collant à l'axe des ordonnées) et Cf_{α} admet une branche parabolique de direction asymptotique (Ox) en $+\infty$.
- Si $\alpha>1$ alors f_{α} est strictement croissante, f_{α} est prolongeable par continutié en 0 par la valeur 0 et $C\widetilde{f}_{\alpha}$ a une tangente horizontale en O (Cf_{α} admet le point limite O qu'elle approche en se collant à l'axe des abscisses) et Cf_{α} admet une branche parabolique de direction asymptotique (Oy) en $+\infty$.
- **8.** Courbe de f_{α}



- **9**. si u est dérivable sur D et $\forall x \in D, u(x) > 0$ 0 alors φ : $(x \mapsto u^{\alpha}(x))$ est dérivable sur D et $\forall x \in D, \varphi'(x) = \alpha u'(x) u(x)^{\alpha - 1}.$
- **10** . $Si \alpha \neq -1$ alors $(x \mapsto \frac{1}{\alpha+1}x^{\alpha+1})$ est une primitive de $(x \mapsto x^{\alpha})$ sur \mathbb{R}^{+*} . $Si \alpha = -1 \text{ alors } (x \mapsto \ln(x)) \text{ est une}$ primitive de $(x \mapsto x^{\alpha})$ sur \mathbb{R}^{+*} .
- **32NB**: Soit α et β deux réels tels que $\alpha < \beta$. Au voisinage de $+\infty$, $x^{\alpha} \ll_{+\infty} x^{\beta}$. Au voisinage de 0, $x^{\beta} \ll_0 x^{\alpha}$.

Théorème des croissances comparées. Soit α, β, γ des réels strictement positifs.

$$\lim_{x\to +\infty} \frac{(\ln(x))^{\alpha}}{x^{\beta}} = \lim_{x\to 0^+} x^{\beta} |\ln(x)|^{\alpha} = 0 \qquad et \qquad \lim_{x\to +\infty} \frac{x^{\beta}}{e^{\gamma x}} = \lim_{x\to -\infty} |x|^{\beta} e^{\gamma x} = 0$$
Conséquences : Si $\alpha>0, \beta>0$ et $\alpha>1$ alors $\ln^{\alpha}(x)\ll_{+\infty} x^{\beta}\ll_{+\infty} a^{x}$.

- **34Exercices**: 1. Soit $f(x) = \ln(1 + \pi^x x^\pi)$. Déterminer l'asymptote oblique de Cf en $+\infty$.
 - **2.** Etudier la fonction $f:(x \mapsto x^x)$ dans le but de tracer sa courbe.

III Fonctions cosinus et sinus hyperboliques.

Déf: pour tout réel x, $ch(x) = \frac{e^x + e^{-x}}{2}$ est le cosinus hyperbolique de x et $sh(x) = \frac{e^x - e^{-x}}{2}$ est le sinus hyperbolique de x. On définit ainsi deux fonctions : la fonction sinus hyperbolique sh et la fonction cosinus hyperbolique ch sur tout $\mathbb R$.

Propriétés algébriques des sinus et cosinus hyperboliques

Pour tous réels a et b.

1.
$$ch^2a - sh^2a = 1$$

2.
$$ch(a+b) = ch(a)ch(b) + sh(a)sh(b)$$

3.
$$sh(a+b) = sh(a)ch(b) + sh(b)ch(a)$$

4.
$$ch(2a) = ch^2(a) + sh^2(a) = 2ch^2(a) - 1 = 1 + 2sh^2(a)$$

5.
$$sh(2a) = 2sh(a)ch(a)$$

6.
$$1 - e^a = -2sh\left(\frac{a}{2}\right)e^{\frac{a}{2}}$$

7.
$$1 + e^a = 2ch(\frac{a}{2})e^{\frac{a}{2}}$$

Propriétés des fonctions sh et ch

Les fonctions ch et sh sont définies, continues et dérivables sur \mathbb{R} .

Pour tout réel
$$x$$
, $ch'(x) = sh(x)$ et $sh'(x) = ch(x)$.

Si u est dérivable sur D alors $ch(u)et \ sh(u)$ sont dérivables sur D et

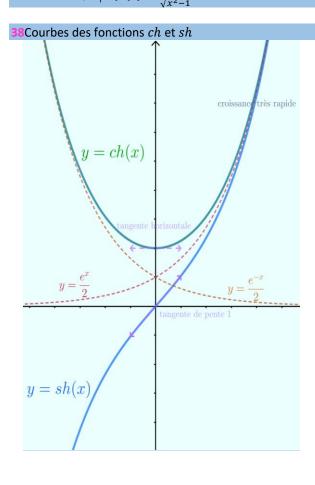
$$\forall x \in D, (ch(u))'(x) = u'(x)sh(u(x)) \text{ et } (sh(u))'(x) = u'(x)ch(u(x))$$

ch est paire, sh est impaire.

Pour tout réel x, $ch(x) \ge 1$ et $ch(x) > \max\left(\frac{e^x}{2}, \frac{e^{-x}}{2}\right) > |sh(x)| \ge |x|$ et $(shx > 0 \ sietssi \ x > 0)$. $\lim_{x \to 0} \frac{shx}{x} = 1 \quad , \quad \lim_{x \to 0} \frac{chx - 1}{x} = 0 \quad , \quad \lim_{x \to 0} \frac{chx - 1}{x^2} = \frac{1}{2} \quad .$ $\lim_{x \to +\infty} \frac{shx}{x} = +\infty \quad , \quad \lim_{x \to +\infty} \frac{chx}{x} = +\infty \quad , \quad \lim_{x \to +\infty} \frac{chx}{shx} = 1 \quad \lim_{x \to +\infty} \frac{chx}{e^x} = \frac{1}{2} \quad .$ Donc les courbes de ch et sh ont des branches paraboliques de direction asymptotiques (0y) en $+\infty$ $et - \infty$.

7. sh est bijective de \mathbb{R} sur \mathbb{R} et $\forall x, sh^{-1}(x) = ln(x + \sqrt{x^2 + 1})et$ sh^{-1} est dérivable sur \mathbb{R} et $\forall x, (sh^{-1})'(x) = \frac{1}{\sqrt{x^2 + 1}}$

ch induit une bijection ch_{\parallel} de \mathbb{R}^+ sur $[1; +\infty[$ et $\forall x \geq 1, ch_{\parallel}^{-1}(x) = ln(x + \sqrt{x^2 - 1})$ et ch_{\parallel}^{-1} est dérivable sur]1; $+\infty[$ et $\forall x > 1, (ch_{|}^{-1})'(x) = \frac{1}{\sqrt{x^2-1}}$



Primitive

1. ch est une primitive de sh sur \mathbb{R} et sh est une primitive $de ch sur \mathbb{R}$.

2. Si a est un réel non nul alors $(x \mapsto \frac{1}{a}ch(ax))$ est une primitive de $(x \mapsto sh(ax))$ sur \mathbb{R} et $(x \mapsto \frac{1}{a}sh(ax))$ est une primitive de $(x \mapsto ch(ax))$ sur \mathbb{R} .

3. $(x \mapsto ln(x + \sqrt{x^2 + 1}))$ est une primitive de $(x \mapsto \frac{1}{\sqrt{x^2 + 4}})$

4. $(x \mapsto ln(x + \sqrt{x^2 - 1}))$ est une primitive de $(x \mapsto \frac{1}{\sqrt{x^2 - 1}})$ $sur]1;+\infty[$.

Equations:

$$sh(x) = sh(y) \Leftrightarrow x = y$$

$$y = sh(x) \Leftrightarrow x = \ln(y + \sqrt{y^2 + 1})$$

$$ch(x) = ch(y) \Leftrightarrow x = \pm y$$

$$y = ch(x) \Leftrightarrow x = \pm \ln(y + \sqrt{y^2 - 1})$$

40bisExercice:

Etudier la fonction tangente hyperbolique $th(x) = \frac{sh(x)}{ch(x)}$

Montrer que la fonction th est bijective de $\mathbb R$ sur un domaine à déterminer et trouver une expression de sa bijection réciproque.

3. Déterminer $\lim_{x\to 0} \frac{th(x)}{x}$. En déduire $\lim_{x\to 0} \frac{th(3x)}{sh(4x)}$

IV Fonctions Arcsinus, Arccosinus et Arctangente

1. Arcsinus

Sinus est continue et strictement croissante sur l'intervalle $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$. Donc, sin induit une bijection sin_{\parallel} de $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ sur [-1;1].

41Déf. 1) Soit $sin_{|:}\left(\left[-\frac{\pi}{2},\frac{\pi}{2}\right]\to [-1,1]\right)$. La fonction Arcsin est, par définition, la bijection réciproque de $sin_{|:}$. La fonction $x\mapsto sin(x)$

Arcsin est définie sur [-1,1] et à valeurs dans $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ par l'équivalence : $\begin{cases} y = \sin(x) \\ x \in \left[-\frac{\pi}{2},\frac{\pi}{2}\right] \end{cases} \Leftrightarrow \begin{cases} Arcsin(y) = x \\ y \in [-1,1] \end{cases}$

2) Soit $y \in [-1; 1]$ Le réel Arcsin(y) est donc l'unique réel de $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ dont le sinus vaut y.

42Valeurs particulières :

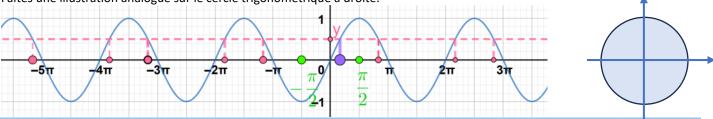
t = sin(y) $Arcsin(t) = y$	0	$\frac{1}{\pi}$	-1 $-\frac{\pi}{2}$	$\frac{\sqrt{2}}{\frac{2}{\pi}}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{\frac{2}{\pi}}$	$-\frac{\sqrt{2}}{2}$ $-\frac{\pi}{2}$	$-\frac{1}{2}$ $-\frac{\pi}{2}$	$-\frac{\sqrt{3}}{2}$ $-\frac{\pi}{2}$	sin
,,,,		2	$-{2}$	4	6	3	$-\frac{1}{4}$	$-\frac{1}{6}$	$-\frac{1}{3}$	

Equations : Soit $y \in [-1, 1]$. Les antécédents de y par sin sont donc tous les réels de la forme $Arcsin(y) + 2k\pi$ tels ou de la forme $\pi - Arcsin(y) + 2k\pi$ tels que $k \in \mathbb{Z}$.

Autrement dit, $y = \sin(x) \Leftrightarrow [x \equiv Arcsin(y)[2\pi] \text{ ou } x \equiv \pi - Arcsin(y)[2\pi]]$

44Illustration: plaçons dans le plan ci-dessous les antécédents de y par sin et donner leurs expressions à l'aide de Arcsin(y).

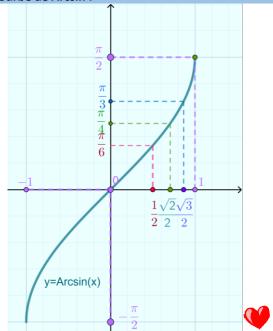
Faites une illustration analogue sur le cercle trigonométrique à droite.



Propriétés :

- $\forall x \in [-1; 1], \cos(Arcsin(x)) = \sqrt{1 x^2}.$
- $\forall x \in \mathbb{R}, \operatorname{Arcsin}(\sin(x)) \text{ existe mais, } x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \Leftrightarrow \operatorname{Arcsin}(\sin(x)) = x.$
- $\forall x \in [-1,1], \sin(\operatorname{Arcsin}(x)) = x$

Courbe de Arcsin:



46Théorème:

- 1. Arcsin est impaire, continue et strictement croissante sur
- **2.** Arcsin est dérivable que sur] -1,1[et

$$\forall x \in]-1,1[,Arcsin'(x)=\frac{1}{\sqrt{1-x^2}}.$$

Autrement dit, Arcsin est une primitive de $\left(x \mapsto \frac{1}{\sqrt{1-x^2}}\right)$ sur]-1,1[.

- 3. Arcsin n'est pas dérivable en 1 ni en -1 et la courbe de Arcsina deux tangentes verticales aux points d'abscisses 1 et en -1.

4. Taux d'accroissements :
$$\lim_{x \to 0} \frac{Arcsin(x)}{x} = 1$$
,
$$\lim_{x \to 1} \frac{Arcsin(x) - \frac{\pi}{2}}{x - 1} = +\infty \qquad \text{et } \lim_{x \to -1} \frac{Arcsin(x) + \frac{\pi}{2}}{x + 1} = +\infty.$$

47Exercices:

- 1. Calculer $Arcsin(sin\frac{23\pi}{5})$), $Arcsin\left(cos\left(\frac{117\pi}{7}\right)\right)$.
- **2.** Tracer la courbe de $Arcsin \circ sin$.

2. Arccosinus

Cosinus est continue et strictement décroissante sur l'intervalle $[0,\pi]$. Donc \cos induit une bijection \cos de $[0,\pi]$ sur [-1;1].

48Def

1. Soit $cos_{|}$: $\binom{[0,\pi] \to [-1,1]}{x \mapsto cos(x)}$. La fonction Arccosinus est la bijection réciproque de $cos_{|}$. La fonction Arccos est définie sur [-1,1] et à valeurs dans $[0,\pi]$ par l'équivalence : $\begin{cases} y = \cos(x) \\ x \in [0,\pi] \end{cases} \Leftrightarrow \begin{cases} Arccos(y) = x \\ y \in [-1,1] \end{cases}$

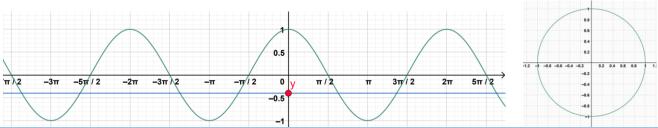
2. Soit $y \in [-1; 1]$. Le réel Arccos(y) est donc l'unique réel de $[0, \pi]$ dont le cosinus vaut y.

49Des valeurs particulières :

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{\sqrt{3}}{2}$ $\frac{5\pi}{6}$
--	---------------------------------------

50Equations: Les antécédents de y par cos sont donc tous les réels de la forme $Arccos(y) + 2k\pi$ ou $-Arccos(y) + 2k\pi$ tels que $k \in \mathbb{Z}$ Autrement dit, $y = cos(x) \Leftrightarrow x \equiv Arccos(y)[2\pi]$ ou $x \equiv -Arccos(y)[2\pi]$

51Illustration : Placer les antécédents de y par cos et les exprimer à l'aide de Arccos(y). Faites une représentation analogue sur le cercle trigonométrique.



52Propriétés :

1. $\forall x \in [-1; 1], Arccos(-x) = \pi - Arccos(x)$ (la courbe de Arccos est symétrique par rapport au point $A(0, \frac{\pi}{2})$)

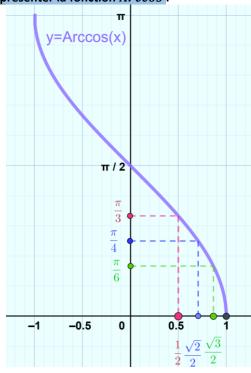
2. $\forall x \in [-1; 1], \sin(Arccos(x)) = \sqrt{1 - x^2}$

3. $\forall x \in [-1; 1], Arccos(x) + Arcsin(x) = \frac{\pi}{2}$

4. $\forall x \in \mathbb{R}, Arccos(\cos(x)) \ existe. \ Mais \ Arccos(\cos(x)) = x \Leftrightarrow x \in [0, \pi].$

5. $\forall x \in [-1; 1], cos(Arccso(x)) = x$

53 Représenter la fonction Arccos:



54Théorème

1. Arccos est continue et strictement décroissante sur [-1,1] Arccos est dérivable uniquement sur]-1,1[et

$$\forall x \in]-1,1[,Arccos'(x)=-\frac{1}{\sqrt{1-x^2}}.$$

2. Arccos n'est pas dérivable en 1 ni en -1 et la courbe de Arccos a deux tangentes verticales aux points d'abscisses 1 et en -1.

$$\text{Ainsi, } \lim_{x\to 0}\frac{\operatorname{Arccos}(x)-\frac{\pi}{2}}{x}=-1 \text{ , } \lim_{x\to 1}\frac{\operatorname{Arccos}(x)}{x-1}=-\infty \text{ et } \lim_{x\to -1}\frac{\operatorname{Arccos}(x)-\pi}{x+1}=-\infty \text{ .}$$

55NB: *Arcsin* et *Arccos* sont deux nouvelles fonctions qui ne sont pas dérivables sur tout leur domaine de définition.

56Conséquence : Si u est dérivable sur I et $\forall x \in I, u(x) \in]-1; 1[$ alors Arccos(u) est dérivable sur I et $\forall x \in I$, $(Arccos(u))'(x) = \frac{-u'(x)}{\sqrt{1-u^2(x)}}$.

57Exercices:

1. Calculer $tan(Arccos(\frac{1}{3})))$ et $Arccos(sin(\frac{23\pi}{5}))$

2. Simplifier $Arccos(1-2x^2)$ en effectuant un bon changement de variable.

3. Arctangente

tan est continue et strict^t croissante sur l'intervalle $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$. Donc, tan induit une bijection tan_{\parallel} de $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ sur \mathbb{R} .

Définition : 1. Soit $tan_{|\cdot|} = \left(\frac{1-\frac{\pi}{2}, \frac{\pi}{2}[\rightarrow \mathbb{R}]}{x \mapsto tan(x)}\right)$. La fonction Arctangente est la bijection réciproque de $tan_{|\cdot|}$. La fonction Arctangente

est définie sur \mathbb{R} et à valeurs dans $]-\frac{\pi}{2},\frac{\pi}{2}[$ par l'équivalence : $\begin{cases} y=\tan{(x)} \\ x\in]-\frac{\pi}{2},\frac{\pi}{2}[\end{cases} \Leftrightarrow \begin{cases} Arctan(y)=x \\ y\in\mathbb{R} \end{cases}$.

2. Soit $y \in \mathbb{R}$. Le réel Arctan(y) est donc l'unique réel de $]-\frac{\pi}{2},\frac{\pi}{2}[$ dont la tangente vaut y.

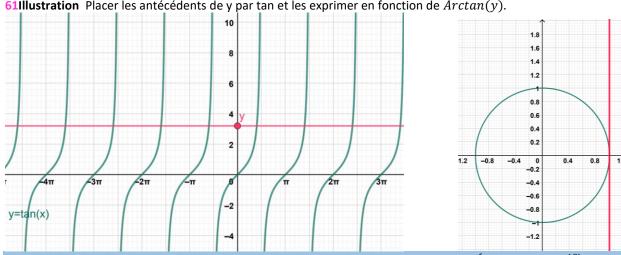
59Valeurs

particulières	:

	t = tan(y)	0	1	-1	$\sqrt{3}$	$\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	-√3	
Arctan	Arctan(t) = y	0	$\frac{\pi}{4}$	$-\frac{\pi}{3}$	$\frac{\pi}{3}$	$\frac{\pi}{6}$	$\frac{\pi}{-\frac{\pi}{6}}$	$-\frac{\pi}{3}$	tan

Equation: Les antécédents de y par tan sont tous les réels $Arctan(y) + k\pi tq k \in \mathbb{Z}$. Autrement dit, $y = \tan(x) \Leftrightarrow x \equiv Arctan(y)[\pi]$.

61Illustration Placer les antécédents de y par tan et les exprimer en fonction de Arctan(y).



 $x \equiv Arctan\left(\frac{\beta}{\alpha}\right)[2\pi] si \alpha > 0$ **Application**: Soit α et β deux réels tels que $\alpha^2 + \beta^2 = 1$ et $\alpha \neq 0$. $\begin{cases} \cos(\alpha) = \alpha \\ \sin(\alpha) = \beta \end{cases} \Leftrightarrow \begin{cases} \cos(\alpha) = \alpha \\ \sin(\alpha) = \beta \end{cases}$ $x \equiv \pi + Arctan\left(\frac{\beta}{\alpha}\right)[2\pi] si \alpha < 0$

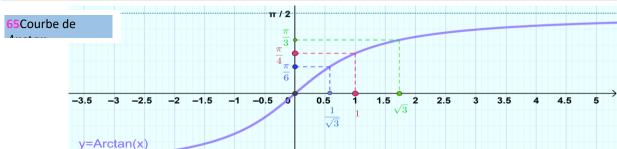
Propriétés

- $\forall x \in D_{tan}, Arctan(\tan(x)) \text{ existe mais } Arctan(\tan(x)) = x \Leftrightarrow x \in]-\frac{\pi}{2}, \frac{\pi}{2}[. .$ $\forall x \in \mathbb{R}, \tan(Arctan(x)) = x, \cos(Arctan(x)) = \frac{1}{\sqrt{1+x^2}} \text{ et } \sin(Arctan(x)) = \frac{x}{\sqrt{1+x^2}}$
- $\forall x \in [-1,1] \setminus \{0\}, \ \tan(\operatorname{Arccos}(x)) = \frac{\sqrt{1-x^2}}{x} \ \ \text{et} \ \forall x \in]-1,1[, \ \tan(\operatorname{Arcsin}(x)) = \frac{x}{\sqrt{1-x^2}}.$

Théorème:

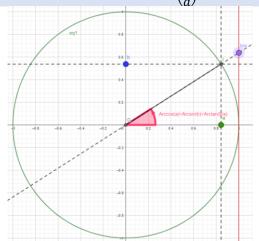
- **1.** Arctan est impaire, continue, strictement croissante, bornée sur \mathbb{R} et $\lim_{x \to +\infty} Arctan(x) = \frac{\pi}{2}$ et $\lim_{x \to +\infty} Arctan(x) = -\frac{\pi}{2}$.
- 2. Arctan est dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}$, $Arctan'(x) = \frac{1}{1+x^2}$. Donc, $\lim_{x \to 0} \frac{Arctan(x)}{x} = 1$.
- 3. Arctan est donc une primitive de $\left(x \mapsto \frac{1}{1+x^2}\right)$ sur \mathbb{R} ..
- **Conséquence** : Si u est dérivable sur I alors Arctan(u) est dérivable sur I et $\forall x \in I$, $(Arctan(u))'(x) = \frac{u'(x)}{1+u^2(x)}$

Propriété: $\forall x \in \mathbb{R}^*, Arctan(x) + Arctan(\frac{1}{x}) = \begin{cases} \frac{\pi}{2} si \ x > 0 \\ -\frac{\pi}{2} si \ x < 0 \end{cases}$



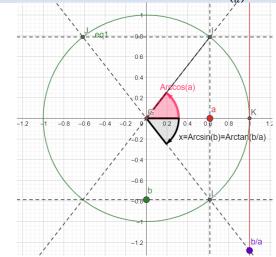
• Soit a et b deux réels strictement positifs tels que $a^2 + b^2 = 1$. Alors l'unique réel $x \in \left]0, \frac{\pi}{2}\right[$ tel que : $\begin{cases} \cos(x) = a \\ \sin(x) = b \end{cases}$ vérifie :

$$x = Arccos(a) = Arcsin(b) = Arctan(\frac{b}{a}).$$



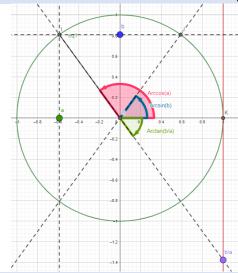
• Soit a et b deux réels tels que: a>0 et b<0 et $a^2+b^2=1$. Alors l'unique réel $x\in\left]-\frac{\pi}{2}$, $0\right[$ tel que : $\left\{\cos\left(x\right)=a\right\}\sin\left(x\right)=b$ vérifie :

$$x = -Arccos(a) = Arcsin(b) = Arctan(\frac{b}{a}).$$



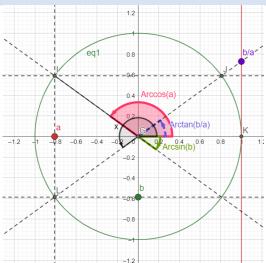
• Soit a et b deux réels tels que: a < 0 et b > 0 et $a^2 + b^2 = 1$. Alors l'unique réel $x \in \left] \frac{\pi}{2}, \pi \right[$ tel que : $\begin{cases} \cos{(x)} = a \\ \sin{(x)} = b \end{cases}$ vérifie :

 $x = Arccos(a) = \pi - Arcsin(b) = Arctan\left(\frac{b}{a}\right) + \pi.$



• Soit a et b deux réels tels que: a < 0 et b < 0 et $a^2 + b^2 = 1$. Alors l'unique réel $x \in \left] -\pi, -\frac{\pi}{2} \right[$ tel que : $\begin{cases} \cos{(x)} = a \\ \sin{(x)} = b \end{cases}$ vérifie :

 $x = -Arccos(a) = -\pi - Arcsin(b) = Arctan(\frac{b}{a}) - \pi.$



Equations-inéquations : Soit a et b deux réels.

- Si $(a,b) \in [-1;1]^2$ alors, $[Arcsin(a) = Arcsin(b) \Leftrightarrow a = b]$ et $[Arcsin(a) < Arcsin(b) \Leftrightarrow a < b]$.
- Si $a \in [-1,1]$ et $b \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ alors $[b = Arcsin(a) \Leftrightarrow a = sin(b)]$.
- Si $a \in [-1,1]$ et $b \in \mathbb{R}$ alors $[a = sin(b) \Leftrightarrow \exists k \in \mathbb{Z}/b = Arcsin(a) + 2k\pi \text{ ou } b = \pi Arcsin(a) + 2k\pi].$
- Si $(a,b) \in [-1;1]^2$ alors $[Arccos(a) = Arccos(b) \Leftrightarrow a = b]$ et $[Arccos(a) < Arccos(b) \Leftrightarrow a > b]$.
- Si $b \in [0,\pi]$ et $a \in [-1;1]$ alors $[b = Arccos(a) \Leftrightarrow a = cos(b)]$.
- Si $b \in \mathbb{R}$ et $a \in [-1; 1]$ alors $[a = cos(b) \Leftrightarrow b = \pm Arcos(a) + 2k\pi \operatorname{tq} k \in \mathbb{Z}]$.
- Si a et b réels alors, $[Arctan(a) = Arctan(b) \Leftrightarrow a = b]$ et $[Arctan(a) < Arctan(b) \Leftrightarrow a < b]$.
- $Si\ b \in]-\frac{\pi}{2}, \frac{\pi}{2}[$, alors $[b = Arctan(a) \Leftrightarrow a = tan(b)]$
- Si $b \in \mathbb{R} \setminus \{\frac{\pi}{2} + p\pi/p \in \mathbb{Z}\}\$, alors $[a = \tan(b) \Leftrightarrow b = Arctan(a) + k\pi \operatorname{tq} k \in \mathbb{Z}]$.

PLAN D'ETUDE DE FONCTIONS

- 1. Domaine de définition
- 2. Parité-Périodicité-Symétrie de la courbe. Réduction du domaine d'étude.
- 3. Continuité
- 4. Dérivabilité. Calcul de la dérivée
- 5. Variations
- 6. Tangentes particulières
- 7. Limites aux bords du domaine de définition
- 8. Asymptotes
- 9. Prolongement par continuité : étude de la dérivabilité au point de prolongement.
- 10. Représentation