$q = sh^{-1}(2) - ch_{|}^{-1}(2)$

 $r = \log_4\left(4^{\sqrt{2}}\right)$

TD 5 Fonctions usuelles 1

https://view.genially.com/6735b09e44907f45b8213883/interactivecontent-courbes-de-fonctions

Ex 0

A. Des calculs de base pour apprendre et penser à simplifier au maximum des expressions exponentielles ou logarithmiques

Simplifier: $a = e^{-3\ln(x)}$ $b = \frac{\ln(x^2)}{\ln(x^4)}$ $c = e^{\ln(x^2+1)-3\ln(x)}$ $d = \ln(\sqrt{e^4}) - \ln(\sqrt{e^2})$ $h = \ln(\sqrt{\exp(x)})$ $m = \cosh\left(-\frac{1}{3}\ln(e^{-3})\right)$ $p = sh\left(-\frac{3}{2}\ln\left(\frac{1}{\sqrt[3]{3x^2+1}}\right)\right)$

B. Tracer les courbes des fonctions suivantes :

B. Tracer les courbes des fonctions sulvantes.	<u> </u>
$f:(x\mapsto ln(x))Df = \dots et Df' = \dots$	$f:(x\mapsto x^{\pi}=\dots Df=$ et
$\forall x \in \dots, f'(x) = \dots$	Df' =
	$\forall x \in, f'(x) =$
$f:(x \mapsto ch(x) = \dots Df = \dots et$	$f: (x \mapsto e^{-x} = \dots)Df = \dots et Df' = \dots$
$Df' = \dots f'(x) = \dots f'(x)$	$\forall x \in \dots, f'(x) = \dots$
	,, , ,
$f:(x\mapsto \pi^x=\dots)Df=\dots$ et	$f:(x\mapsto=sh(x=et$
$Df' = \dots , f'(x) = \dots , f'(x) = \dots$	$Df' = \dots $ et $\forall x \in \dots $, $f'(x) = \dots$
-,,, (.,	- ,, (,
$f: (x \mapsto x^{-\sqrt{2}} = \dots et$	f (, , , , , , , , , , , , , , , , , ,
$Df' = \dots f'(x) = \dots f'(x) = \dots f'(x)$	$f: (x \mapsto x^{\frac{1}{n}} = \dots et$
D_j , (x) =	$Df' = \dots f'(x) = \dots f'(x)$
1	1

$f: (x \mapsto x^5 = \underbrace{\qquad} et Df = \underbrace{\qquad} et$ $Df' = \underbrace{\qquad} et \forall x \in \underbrace{\qquad} f'(x) = \underbrace{\qquad} et$	$f: (x \mapsto x^{\frac{1}{5}} = \dots et$ $Df' = \dots f'(x) = \dots f'(x) = \dots f'(x) = \dots f'(x)$

Ex 1 Equations et inéquations

A. Soit y un paramètre réel. Résoudre les (in-)équations suivantes d'inconnue x réelle (on réfléchira préalablement : l'équation peut-elle se résoudre algébriquement ou non?)

1.
$$e^{-6x^2+1} - \sqrt{e} > 0$$

2.
$$ln(x) + ln(3x)$$

$$log_2(x) + log_x(2) = \frac{5}{2}$$

$$e^{-6x^{2}+1} - \sqrt{e} > 0$$

$$\ln(x) + \ln(3x^{2} - 4) > \ln(x^{2} - 2)$$

$$\log_{2}(x) + \log_{x}(2) = \frac{5}{2}$$

$$3x\log_{10}(x) + 2(x - 1) = 0$$

$$2^{2x} - 3^{x} - \frac{1}{2} = 3^{x} - 2^{2x} - 1$$

$$\frac{e^{3x} - 2e^{2x} - e^{x} + 4 + 2e^{4}}{\ln^{2}x - 1} > 0$$

$$\frac{1}{2} - \frac{e^{3x} - 2e^{2x} - e^{x} + 4 + 2e^{4}}{\ln^{2}x - 1} > 0$$

$$\frac{1}{2} - \frac{e^{3x} - 2e^{2x} - e^{x} + 4 + 2e^{4}}{\ln^{2}x - 1} > 0$$

$$\frac{1}{2} - \frac{e^{3x} - 2e^{2x} - e^{x} + 4 + 2e^{4}}{\ln^{2}x - 1} > 0$$

$$2^{2x} - 3^{x - \frac{1}{2}} = 3^{x + \frac{1}{2}} - 2^{2x - 1}$$

$$\frac{e^{3x}-2e^{2x}-e^{x+4}+2e^4}{\ln^2 x-1} > 0$$

$$\frac{e^{3x} - 2e^{2x} - e^{x+4} + 2e^4}{e^{3x} - 2e^{3x} - 2e^{3x} - 2e^{3x}} > 0$$

$$11. \quad x < \ln(x)$$

$$12. \quad \frac{\ln(x+1)}{\ln(x+1)} \le 1$$

 $sh(x) = x^2$

$$12. \ \frac{\ln(x+1)}{\ln(x-2)} \le$$

$$12. \ \frac{\ln(x+1)}{\ln(x-2)} \le$$

$$13. \quad 2ch(x) \le x^2$$

14.
$$xln(2-x) = 1$$

15.
$$sh^3(x) - 14sh(x) + 5 < 5ch^2(x)$$

16.
$$3sh(x) - ch(x) = 1$$

17. $x^x = \frac{1}{\sqrt{2}}$
18. $ch^5x - sh^5x = 1$

17.
$$x^x = \frac{1}{\sqrt{2}}$$

18.
$$ch^5x - sh^5x = 1$$

B. Résoudre: (S):
$$\begin{cases} log_y(x) + log_x(y) = \frac{50}{7} \text{ d'inconnue } (x,y) \in \mathbb{R}^2. \\ xy = 256 \end{cases}$$

Ex 2 Autour du calcul de limite

I En se plaçant au voisinage du point où l'on étudie la limite

A. Soit $h: (x \mapsto x - \lfloor x \rfloor)$ et $g: (x \mapsto \lfloor 2x - 1 \rfloor)$. Montrer que $f = g \circ h$ est continue sur $\mathbb R$.

B. Montrer que φ : $(x \mapsto [1-2x])$ n'est pas continue sur \mathbb{R} .

III En faisant apparaître le produit d'une fonction de limite nulle et d'une fonction bornée Soit a un réel. Calculer $\lim_{x\to 0} x^a \sin\left(\frac{1}{x}\right)$ quand cette limite existe (On justifiera qu'elle n'existe pas le cas échéant)

IV Faire annaraitre les limites usuelles. Soit a et h des réels

<u>IV Faire apparaître les limites usuelles</u> Soit a et b des reels .						
	FI " ⁰ / ₀ "	FI " ∞ − ∞ "	FI " 0 × ∞ "	FI " ∞ "	FI "1°"." 0° " ou " $(+\infty)$ °"	
 2. 3. 4. 5. 6. 7. 8. 9. 	$ \frac{\ln \frac{\sqrt[3]{2x-2}}{x-4}}{\sqrt{x-4}} $ $ \lim_{x\to 4} \frac{\sqrt{x^2-2}}{\sqrt{x-4}} $ $ \lim_{x\to 4} \frac{(x^3-64)\cos(\pi x)}{\sqrt{x-2}} $ $ \lim_{x\to 1} \frac{(a-1)x+x^2-a}{x^3+a^3} $ $ \lim_{x\to 1} \frac{(x^3-1)}{\ln(x)} $ $ \lim_{x\to 0} \frac{\ln(1+3x^2+\cos(x^2))-\ln(2)}{\sin(x)} $ $ \lim_{x\to 0} \frac{e^{sh(x)-ch(x)}}{\sin(x)} $ $ \lim_{x\to 0} \frac{e^{-\frac{1}{x^2}}}{x\ln(x^2)-3x^2} $ $ \lim_{x\to 0} \frac{\sin(ax)}{\tan(bx)} (b\neq 0) $ $ \lim_{x\to 0} \frac{x^4-a^a}{x^b-a^b} (a,b>0) $ $ \lim_{x\to 0} \frac{e^{3x-1}}{x^b-a^b} $	11. $\lim_{\substack{x \to +\infty \\ \text{où } y \in \mathbb{R}^{+*} fix\acute{e}.}} (x+y)^a - x^a - y^a$ $\text{où } y \in \mathbb{R}^{+*} fix\acute{e}.$ 12. $\lim_{\substack{x \to +\infty \\ x \to +\infty}} \sqrt{4x^2 - 1} - (ax+b)$ 13. $\lim_{\substack{x \to +\infty \\ x \to +\infty}} \ln(x) - \ln(\ln(x)) - \sqrt[3]{x}$	14. $\lim_{x\to 0} (2\sqrt[3]{x} - 3x^2) \ln^2(x^4 - 3x)$ 15. $\lim_{x\to -\infty} xe^{-\sqrt{\ln(x^2)}}$ 16. $\lim_{x\to 0} \ln(x) \ln(1+x)$.		"10"," 00" ou" $(+\infty)^0$ " 1. $\lim_{x \to +\infty} \left(1 + \frac{1}{bx}\right)^{ax} b \neq 0$ 2. $\lim_{x \to 0} (1 + \sinh(x))^{\ln(x)}$ 3. $\lim_{x \to 0} (\cos(x))^{\ln(x)}$ 4. $\lim_{x \to -\infty} (1 + 3ch(x))^{e^x}$ 5. $\lim_{x \to 0} sh(x)^{\sin(x)}$ 6. $\lim_{x \to +\infty} sh(x)^{\frac{1}{3\sqrt{x}}}$	
	$x \to 0$ sh $(x)(5+ch^2(x))$	la famatiam du agland da limi				

V APPLICATIONS à l'étude de fonction du calcul de limites :

1) Continuité et dérivabilité :

- Soit m un entier naturel non null et a un réel. Justifier que la fonction $f:(x\mapsto x^m)$ est dérivable en a et $f'(a)=ma^{m-1}$. Puis montrer que la fonction $g:(x\mapsto x^{\frac{1}{m}})$ est dérivable en tout rée non nul a de Dg et $g'(a)=\frac{1}{m}a^{\frac{1}{m}-1}$.
- Pour quelles valeurs du réel α , la fonction $f:\left(x\mapsto\frac{\sinh{(x)}}{x^{\alpha}}\right)$ est -elle prolongeable par continuité en 0 ? On suppose maintenant que $\alpha<1$. Le prolongement par continuité de f est-il dérivable en 0 ?
- Soit $f(x) = \begin{cases} x^2 \cos\left(\frac{1}{x}\right) si \ x < 0 \\ 0 \ si \ x = 0 \\ \frac{\ln(\cos(x))}{x} si \ x > 0 \end{cases}$. Montrer que f est continue sur \mathbb{R} mais dérivable sur \mathbb{R}^* uniquement et donner une expression de f'. Quelle est l'allure de Cf au voisinage de 0?

2) Asymptote Soit $f(x) = xexp\left(\frac{x}{x^2-1}\right) = xe^{\frac{x}{x^2-1}}$ et $\varphi(t) = \frac{e^{\frac{t}{1-t^2}-1}}{t}$. Calculer la limite de φ en 0. En déduire que Cf admet une même asymptote en $+\infty$ et en $-\infty$ dont on donnera une équation.

Ex 3 Asymptotes simples

- Soit $f:(x\mapsto \ln(3^x-x-1))$. On munit le plan d'un repère orthonormé. On donne $a=-\frac{\ln(\ln(3))}{\ln(2)}\approx -0.086$.
 - Montrer qu'il existe un réel b tel b < a et $Df =]-\infty; b[\cup]0, +\infty[$.
 - Montrer que f induit une bijection notée f_{\parallel} de $]0, +\infty[$ sur un domaine J à déterminer. (NB : $f_{\parallel} = f_{/|0, +\infty[})$.
 - Etudier la continuité, monotonie et dérivabilité de f_{\parallel}^{-1} sur J. Calculer $f_{\parallel}^{-1}(1)$ $et(f_{\parallel}^{-1})'(1)$.
 - Déterminer l'asymptote de Cf en $+\infty$. Que peut-on en déduire sur C_{f_1} -1?
 - Tracer C_f et $C_{f_{\parallel}^{-1}}$.
- **B.** Soit $f: (x \mapsto \ln(1+e^x) + \frac{1}{2}\ln(1+e^{-x}))$.
 - Déterminer l'asymptote de Cf en $+\infty$. Faire de même en $-\infty$.
 - Etudier les variations de f. Tracer Cf.
- C. Soit $f:(x\mapsto \sqrt{3x^2-4x+5})$. Déterminer l'asymptote de Cf en $+\infty$. Faire de même en $-\infty$. De même avec $f:(x\mapsto \frac{4x-5x^2}{1-2x})$

Ex 4 Des études complètes de fonctions . Etudier g et représenter la courbe de g :

1.
$$g(x) = th(x) = \frac{sh(x)}{ch(x)}$$

2.
$$g(x) = e^{\frac{1}{x}} \sqrt{x^2 + x}$$

3. $g(x) = x^x$

3.
$$g(x) = x^x$$

4.
$$f(x) = \ln(x + \sqrt{1 + x^2})$$
 (déjà faite à retravailler)

5.
$$g(x) = \sqrt[3]{x^2(x-2)}$$

6.
$$g(x) = \ln(ch(x))$$

Ex 5 Des sommes et produits Soit $n \in \mathbb{N}$ et x, a et b des réels fixés indépendants de n

1) Montrer que si
$$b$$
 est non nul alors $\sum_{k=0}^{n} \operatorname{ch}\left(a+kb\right) = \frac{sh\left(\frac{(n+1)b}{2}\right)}{sh\left(\frac{b}{2}\right)} \operatorname{ch}\left(a+\frac{nb}{2}\right)$.

2) Calculer pour
$$n \ge 3$$
: $S_n = \sum_{p=3}^n \log_{10} \left(\frac{2p^2 - 2p - 4}{3p^2 + 3p - 6} \right)$, $T_n(a, b) = \sum_{k=n}^{n^2} (-1)^k a^{(bk)}$, $W_n = \sum_{k=0}^{n-3} \binom{n-1}{k+1} 5^{n-\frac{k}{a}} \sqrt[n]{2}$ et $P_n(a) = \prod_{k=3}^n \binom{k^2 - 1}{k^2 - 4}^n \sqrt[n]{2}$.

3) On pose
$$p_n(x)=\prod_{k=0}^n ch\left(\frac{x}{2^k}\right)$$
. Calculer $p_n(x)sh\left(\frac{x}{2^n}\right)$. En déduire $\lim_{n\to+\infty}p_n(x)$

Ex 6 Des inégalités à prouver

- Montrer que pour tout réel x, $ch^2(x) + shx > 0$ et $|sh(x)| \ge |x + \frac{x^3}{6}|$. 1.
- Montrer que pour tout réel x de]0,1[, $x^x(1-x)^{1-x} \ge \frac{1}{2}$. 2.
- 3.

- Montrer que : $\forall x > 0$, $\left(1 + \frac{1}{x}\right)^x < e < \left(1 + \frac{1}{x}\right)^{x+1}$. Montrer que : $\forall n \in \mathbb{N} \setminus \{0,1,2\}$, $\sqrt[n]{n} > \sqrt[n+1]{n+1}$. Est-elle vraie pour n=2? Montrer que : $\forall x \in \mathbb{R}^{+*}, \forall y \in \mathbb{R}^{+*}, \forall t \in [0,1], tln(x) + (1-t)ln(y) \leq ln(tx + (1-t)y)$. Soit $\alpha \in \mathbb{R}^{+*} \setminus \{1\}$. Montrer que : $[\forall (x,y) \in (\mathbb{R}^{+*})^2, (x+y)^\alpha < x^\alpha + y^\alpha] \Leftrightarrow \alpha \in]0,1[$. Soit a et b deux réels. Montrer que : $\left(0 < a < b \Rightarrow \frac{b-a}{b} \leq ln(b) ln(a) \leq \frac{b-a}{a}\right)$. 7.

Ex 7 Des bijections Montrer que les applications suivantes sont bijectives de Df sur un ensemble J à déterminer.

Déterminer une expression de la bijection réciproque lorsque cela est possible. Etudier la dérivabilité de f^{-1} et calculer $(f^{-1})'(b)$.

1.
$$f(x) = \frac{4^x}{4^x + 2}$$
; $b \in J$

2.
$$f(x) = \frac{sh(x)}{ch(x)} (\equiv th(x)); b \in J$$

3.
$$f(x) = ch(e^{x\sqrt{5}})$$
; $b = \frac{e^2 + e^{-2}}{2}$

2.
$$f(x) = \frac{sh(x)}{ch(x)} (\equiv th(x)) ; b \in J$$

5. $f(x) = sh(x) + \frac{x^2}{2} ; b = \frac{e^2 + e - 1}{2e}$

4.
$$f(x) = x + 2^{\sqrt{x}}$$
; $b = 1$

Ex 8 Des suites On définit trois suites $P, T \ et \ u \ ; \ \forall n > 0 \ P_n = \prod_{k=1}^n \left(1 + \frac{1}{k^2}\right) \ T_n = \prod_{k=1}^n \left(1 + \frac{k}{n^2}\right) \ et \ u_0 = -1 \ et \ \forall n, \ \sqrt[5]{u_n} \sqrt[3]{u_{n+1}} = e.$

- Justifier que la suite P est strictement croissante et convergente
- 2) Montrer que *T* est convergente et déterminer sa limite.
- Donner une expression explicite de u.

Ex 9 Une fonction à paramètre Soit $a \in \mathbb{R}^{+*}$. Etudier $g: \left(x \mapsto \frac{\ln(1+ax)}{\ln(1-ax)}\right)$.

Ex 10 Une inégalité à paramètre Déterminer tous les réels a tels que $\forall x \in \mathbb{R}, ch(x) \le e^{ax^2}$.

Ex 11 Etudes de fonctions imbriquées

- Etudier le signe de f(x) = (x-1)ln(x+1) xln(x) sur $[1; +\infty[$. 1.
- En déduire les variations de $\varphi(x) = \ln(x+1)\ln\left(1+\frac{1}{x}\right)$ sur $[1;+\infty[$. 2.
- En calculant $\varphi\left(\frac{1}{z}\right)$, en déduire les variations de φ sur]0,1]. 3.
- Montrer que pour tous réels strictement positifs, $\ln\left(1+\frac{a}{b}\right)\ln\left(1+\frac{b}{a}\right) \le \left(\ln(2)\right)^2$.

Ex 12 Limite par encadrement

Soit $t \in]0;$ 1[. Pour tout $x \in]0;$ 1[, on pose $f_t(x) = min\{n \in \mathbb{N}^*/x^n \le t\}.$ Montrer que pour tout $x \in]0;$ 1[, $\frac{\ln(t)}{\ln(x)} \le f_t(x) < \frac{\ln(t)}{\ln(x)} + 1.$ En déduire $\lim_{x \to 1^-} (1-x)f_t(x).$

Ex 13 une suite de fonctions

Ex 13 une suite de fonctions $\text{Soit } (f_n)_{n \in \mathbb{N}} \text{ une suite d'applications de } [0,1] \text{ vers } \mathbb{R} \text{ définie par} : \forall n \in \mathbb{N}, f_n(x) = \begin{cases} nx^n & \text{si } x \in [0,\frac{n}{n+1}] \\ n^{n+1}(1-x)^n & \text{si } x \in [\frac{n}{n+1},1] \end{cases}$

- 1. Etudier la continuité de chaque f_n .
 2. Déterminer, pour x fixé, la limite de la suite $(f_n(x))_{n\in\mathbb{N}}$.
 3. Puis déterminer la limite de $(f_n(\frac{n}{n+1}))_{n\in\mathbb{N}}$.