Programme de colle 9

Chap 6 Dernières fonctions usuelles

Logarithme népérien :

- Définition comme l'unique primitive de $\left(x \mapsto \frac{1}{x}\right)$ sur \mathbb{R}^{+*} s'annulant en 1.
- Dérivabilité et dérivée, monotonie, limite par taux d'accroissement : $\lim_{t \to 0} \frac{\ln (1+t)}{t}$.
- Une primitive de ln sur \mathbb{R}^{+*} .
- Propriétés algébriques : $\ln(xy)$, $\ln\left(\frac{1}{x}\right)$, $\ln\left(\frac{x}{y}\right)$, $\ln(x^r)$ où $r \in \mathbb{Q}$.
- Inégalités usuelles $\forall x \ge 0, x \frac{x^2}{2} \le \ln(1+x) \le x$ et interprétation géométrique.
- Limites usuelles et premières croissances comparées : $\lim_{x\to 0} \ln(x)$, $\lim_{x\to +\infty} \ln(x)$, $\lim_{x\to 0} x \ln(x)$, $\lim_{x\to +\infty} \frac{\ln(x)}{x}$.
- Représentation : courbe de ln.

Exponentielle:

- Définition comme la bijection réciproque de ln. Autre notation : $e^x = \exp(x)$.
- Continuité, monotonie, dérivabilité et dérivée, limite par taux d'accroissement : $\lim_{n \to \infty} \frac{e^{t-1}}{t}$.
- Une primitive de exp et de $u'(x)e^{u(x)}$.
- Propriétés algébriques : $\exp(x+y)$, $\exp(-x)$, $\exp(x-y)$, $\exp(rx)$ où $r \in \mathbb{Q}$, $\ln(e^x)$, $e^{\ln(x)}$.
- Inégalités usuelles $\forall x, \exp(x) \ge 1 + x$ et interprétation géométrique.
- Limites usuelles et autres croissances comparées : $\lim_{x \to -\infty} e^x$, $\lim_{x \to +\infty} e^x$, $\lim_{x \to -\infty} x e^x$, $\lim_{x \to +\infty} \frac{e^x}{x}$.
- Représentation : courbe de exp.

Logarithme et exponentielle de base $a \in \mathbb{R}^{+*} \setminus \{1\}$:

- **Définitions**
- Relation entre log_a et exp_a .
- Représentation : courbe de log_a et exp_a en fonction de a.
- Propriétés algébriques.

Puissances réelles :

- Soit $\alpha \in \mathbb{R}$. Définition de x^{α} .
- Propriétés algébriques : $x^{\alpha+\beta}$, $x^{-\alpha}$, $x^{\alpha-\beta}$, $x^{\alpha\beta}$, $x^{\alpha}y^{\alpha}$, $\frac{x^{\alpha}}{y^{\alpha}}$, $\ln(x^{\alpha})$, $(e^x)^{\alpha}$
- Fonctions f_{α} : $(x \mapsto x^{\alpha})$. Continuité, monotonie, dérivabilité et dérivée, limite par taux d'accroissement : $\lim_{x\to 1} \frac{x^{\alpha}-1}{x-1} ou \lim_{t\to 0} \frac{(1+t)^{\alpha}-1}{t}$, prolongement par continuité éventuel en 0, dérivabilité en 0 du prolongement, asymptotes éventuelles, branches paraboliques éventuelles.
- Représentation : courbe de f_{α} .
- Croissances comparées : $\lim_{x \to -\infty} |x|^{\alpha} e^{\gamma x}$, $\lim_{x \to +\infty} \frac{e^{\gamma x}}{x^{\alpha}}$, $\lim_{x \to 0} x^{\alpha} |\ln(x)|^{\beta}$, $\lim_{x \to +\infty} \frac{\ln^{\beta}(x)}{x^{\alpha}}$.
- Définition des fonctions de la forme $u(x)^{v(x)}$. Nouvelles formes indéterminées.

Cosinus et sinus hyperboliques.

- Définition
- Propriétés algébriques : $ch^2 sh^2$, ch(a + b), sh(a + b), ch(2a), sh(2a).
- Propriétés des fonctions : parité, continuité, dérivabilité et fonction dérivée et tracé de la courbe fonctions
- Bijections $ch_{/\mathbb{R}^+}=ch_{|}$ et sh et leur bijection réciproque respective.
- Inégalités : $\forall x, ch(x) \ge 1$ et $|x| \le |sh(x)| < \frac{e^{|x|}}{2} < ch(x)$.
- Bijection (induite) et le cas échéant, bijection réciproque. Primitive de $\left(x\mapsto \frac{1}{\sqrt{x^2-1}}\right)$ et de $\left(x\mapsto \frac{1}{\sqrt{x^2+1}}\right)$.

Arcsinus, Arccosinus et Arctangente.

- Définition de chacune de ces fonctions.
- Valeurs particulières.
- Résolution des équations y = sin(x), y = cos(x) et y = tan(x) d'inconnue x réelle.
- Propriétés algébriques : simplification de

```
o \sin(Arsin(x)) et Arcsin(sin(x))
```

- \circ $\cos(Arccos(x))$ et $Arccos(\cos(x))$
- o tan(Arctan(x)), Arctan(tan(x)).
- \circ Arcsin(-x), Arccos(-x), Arctan(-x)
- \circ Arcsin(x) + Arccos(x)
- \circ Arctan(x) + Arctan($\frac{1}{x}$).
- \circ cos (Arcsin(x)) et sin(Arccos(x))
- \circ $\cos(Arctan(x))$ et $\sin(Arctan(x))$
- tan(Arcsin(x)) et tan(Arccos(x))0
- Propriétés des fonctions :
 - o domaine de définition
 - parité, symétrie de la courbe
 - continuité 0
 - o monotonie
 - dérivabilité et expression des dérivées
- Courbe des fonctions Arcsin, Arccos, Arctan.
- Primitive de $\left(x \mapsto \frac{1}{\sqrt{1-x^2}}\right)$ et de $\left(x \mapsto \frac{1}{1+x^2}\right)$.

Fonction composée (**): Soit u une fonction réelle et dérivable sur I. Dérivabilité et fonction dérivée de :

$$(x \mapsto Arccos(u(x)))$$

 $(x \mapsto Arcsin(u(x)))$

$$(x \mapsto Arctan(u(x)).$$

 $(x \mapsto e^{u(x)})$

 $(x \mapsto Arcsin(u(x)))$

 $(x \mapsto ln|u(x)|)$

 $(x \mapsto u(x)^{\alpha})$

TOUS LES ENONCES DES DEFINITIONS, PROPRIETES ET THEOREMES DOIVENT ETRE CONNUS.

Question de cours : énoncer une définition et /ou une propriété de cours

énoncer et démontrer les résultats suivants:

- **1.** $\forall (x,y) \in \mathbb{R}^{+*}, \forall n \in \mathbb{N}^*,$
 - \checkmark $\ln(xy) = \ln(x) + \ln(y)$
 - $\ln\left(\frac{1}{y}\right) = -\ln(y)$
 - $\ln\left(\frac{x}{y}\right) = \ln(x) \ln(y)$
- 2. Montrer que $\forall x > 0$, $\ln(1+x) \le x$ puis $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$.
- 3. Enoncer et démontrer le caractère bijectif de sh Déterminer l'expression de sa bijection réciproque et de la dérivée de cette bijection réciproque.
- **4.** Compléter et démontrer : $\forall x \in \cdots$, $Arcsin(x) + Arccos(x) = \cdots$ et $\forall x \in \cdots$, $Arctan(x) + Arctan(\frac{1}{x}) = \cdots$
- 5. Compléter et savoir démontrer :
 - $\checkmark \forall x \in \cdots, \cos(Arcsin(x)) = \cdots$ $et \sin(Arccos(x)) = \cdots$
 - $\forall x \in \cdots$, $\cos(Arctan(x)) = \cdots$ et $\sin(Arctan(x)) = \cdots$
 - $\forall x \in \cdots$, $tan(Arccos(x)) = \cdots et \ \forall x \in \cdots$, $tan(Arcsin(x)) = \cdots$

+ connaître parfaitement les dérivées usuelles et les composées (**)

+ savoir tracer rapidement ET précisément (avec tangentes particulières, asymptotes et branches paraboliques, points limites) la courbe de chacune des fonctions usuelles.

Pour vous exercer:

https://view.genially.com/6735b09e44907f45b8213883/interactive-content-courbes-de-fonctions

le tableau ci-dessous (un tableau interactif avec exemples sera mis très bientôt dans cahier de prépa)

f(x)	D _{f'}	f'(x)	u est une fonction dérivable sur E et v est une fonction dérivable sur F.	f est dérivable au moins sur	f'(x)
			$v \circ u(x) = v(u(x))$	$x \in E/u(x) \in \mathit{F})$	u'(x)v'(u(x))
ax + b	R	а	v(ax + b) où a et b constantes réelles.	$\{x\in\mathbb{R}/ax+b\in F\}$	av'(ax+b)
sin (x)	R	cos (x)	sin(u(x))	Е	$u'(x)\cos(u(x))$
cos(x)	R	-sin (x)	$\cos(u(x))$	Е	$-u'(x)\sin(u(x))$
tan (x)	$D_{tau} =$ $\mathbb{R} \setminus \{\frac{\pi}{2} + k\pi/k \in \mathbb{Z}\}$	$1 + tan^{2}(x)$ $= \frac{1}{cos^{2}(x)}$	tan (u(x))	$\{x\in E/u(x)\in D_{tox}\}$	$u'(x)(1 + tan^2(u(x)))$ $= \frac{u'(x)}{cos^2(u(x))}$
x^n avec $n \in \mathbb{N}$	Tapez un R	$nx^{n-1} si n$ $\neq 0$ 0 si n = 0	$u(x)^n$ avec $n \in \mathbb{N}^*$	E	$nu'(x)u(x)^{n-1}$
$\sqrt[n]{x}$ avec $n \in \mathbb{N}$ et $n \ge 2$	R* si n impair R**si x pair	$\frac{1}{n}x^{n-1}$	$u(x)^{\frac{1}{n}} = \sqrt[n]{u(x)}$	$\{x \in E/u(x) \in \mathbb{R}^*\}$ Ou $\{x \in E/u(x) \in \mathbb{R}^{+*}\}$	$\frac{1}{n}u'(x)u(x)^{\frac{1}{n}-1}$
$\frac{1}{x^n} = x^{-n}$ $a vec \ n \in x^n$	\mathbb{R}^*	$-nx^{-n-1}$ $= -\frac{n}{x^{n+1}}$	$\frac{1}{u(x)^n} = u(x)^{-n}$ avec $n \in \mathbb{N}^*$	$\{x\in E/u(x)\neq 0\}$	$nu'(x)u(x)^{-n-1}$ = $n\frac{u'(x)}{u(x)^{n+1}}$
x^{α} avec $\alpha \in \mathbb{R}^*$	R++	ax^{a-1}	$u(x)^{\alpha}$ avec $\alpha \in \mathbb{R}^*$	$\{x\in E/u(x)>0\}$	$\alpha u'(x)u(x)^{\alpha-1}$
x	R	$ \begin{cases} 1 & \text{si } x > 0 \\ -1 & \text{si } x < 0 \end{cases} $	u(x)	$\{x\in E/u(x)\neq 0\}$	$\begin{cases} u'(x) & \text{si } u(x) > 0 \\ -u'(x) & \text{si } u(x) < 0 \end{cases}$
ln (x)	R++	<u>1</u>	$\ln (u(x))$	$\{x\in E/u(x)>0\}$	$\frac{u'(x)}{u(x)}$
			$\ln (u(x))$	$\{x\in E/u(x)\neq 0\}$	$\frac{u'(x)}{u(x)}$
e^X	R	e^x	e ^{u(x)}	Е	$u'(x)e^{u(x)}$
ch(x)	R.	sh(x)	$ch\left(u(x)\right)$	Е	u'(x)sh(u(x))
sh(x)	R	ch(x)	sh (u(x))	Е	u'(x)ch(u(x))
Arcsin(x)] - 1; 1[$ \frac{1}{\sqrt{1-x^2}} $ -1	Arcsin(u(x))	$\{x \in E/-1 < u(x) < 1\}$	$\frac{u'(x)}{\sqrt{1-u^2(x))}}$
Arccos(x)] - 1; 1[$\frac{-1}{\sqrt{1-x^2}}$	Arccos (u(x))		$\frac{-u'(x)}{\sqrt{1-u^2(x))}}$
Arctan(x)	R	$\frac{1}{1+x^2}$	Arctan(u(x))	Е	$\frac{u'(x)}{1+u^2(x)}$
			$u(x)^{v(x)}$		$= \left[v'(x)\ln(u(x))\right] + v(x)\frac{u'(x)}{u(x)}]u(x)^{v(x)}$