
DM : Intégrales, Dérivées, DL

Exercice 1

Pour tout x réel, on définit :

φ(x) = e−x2

∫ x

0
et

2
dt

1. Montrer que φ est bien définie sur R et exprimer φ(−x) en fonction de φ(x).
Pour tout x ∈ R, la fonction t 7→ et

2 est continue sur [0, x] donc l’intégrale st bien définie pour tout
x ∈ R.

Si x ∈ R, alors

φ(−x) = e−(−x)2
∫ −x

0
et

2
dt on effectue alors le changement de variable u = −t

= −e−x2

∫ x

0
eu

2
du = −φ(x)

2. Montrer que φ est dérivable sur R et exprimer φ′ en fonction de φ.
La fonction φ est le produit de deux fonctions dérivables sur R (l’intégrale est la primitive de t 7→ et

2

qui s’annule en 0) donc φ est dérivable.
Si x ∈ R, alors

φ′(x) = −2xe−x2

∫ x

0
et

2
dt+ e−x2

ex
2

= −2xe−x2

∫ x

0
et

2
dt+ 1

= −2xφ(x) + 1

3. Monter que φ est de classe C∞ sur R et montrer :

Pour tout x ∈ R, pour tout n ∈ N∗, φ(n+1)(x) = −2xφ(n)(x)− 2nφ(n−1)(x)

Montrons par récurrence sur n ∈ N∗ la propriété suivante : “Hn : φ est de classe Cn+1 et φ(n+1)(x) =
−2xφ(n)(x)− 2nφ(n−1)(x)”

Initialisation : D’après la question précédente, φ est de classe C1 et φ′(x) = −2xφ(x) + 1. On en déduit
que φ est de classe C2 (car composée de fonction C1) et

φ′′(x) = −2φ(x)− 2xφ′(x)

La propriété H1 est donc vraie.
Propagation : Soit n ∈ N∗ et on suppose la propriété “Hn” vraie. On en déduit que φ(n+1) est dérivable

et :
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φ(n+2)(x) = −2φ(n)(x)− 2xφ(n+1) − 2nφ(n)

= −2xφ(n+1) − 2(n+ 1)φ(n)

La fonction φ(n+2) est donc continue (car composée de fonction continues) et la relation est bien vérifiée au
rang n+ 1 : on en déduit que Hn+1 est vraie.

4. Justifier que φ admet un DLn(0) pour tout n ∈ N. On note φ(x) = a0 + a1x + . . . + anx
n + ox→0(x

n) ce
DL.

La fonction φ est de classe C∞, donc d’après la formule de Taylor-Young, elle admet un DL en 0 à tout
ordre.

5. Trouver une relation reliant ak+2 et ak pour tout k ∈ N. Calculer le DL7(0) de φ.
On utilise la relation obtenue à la question 3 avec x = 0 :

φ(n+1)(0) = −2nφ(n−1)(0)

φ(n+2)(0) = −2(n+ 1)φ(n)(0)

et on utilise an =
φ(n)(0)

n!
et on obtient :

an+2 = −2(n+ 1)× n!

(n+ 2)!
an

an+2 =
−2

(n+ 2)
an

On obtient : a0 = φ(0) = 0, donc an = 0 pour tout n pair. Pour les valeurs impaires a1 = φ′(0) = 1,

a3 = −2

3
, a5 =

4

15
et a7 = − 8

105
. Donc :

φ(x) = x− 2

3
x3 +

4

15
x5 − 8

105
x7 + o(x7)

6. Démontrer, en utilisant deux IPP successives que pour tout x ∈]0; +∞[ :∫ x

1
et

2
dt =

ex
2

2x
+

ex
2

4x3
− 3e

4
+

3

4

∫ x

1

et
2

t4
dt

On commencera par écrire : et2 =
1

2t
(2tet

2
) On fait une IPP dans l’intégrale suivante :∫ x

1
et

2
dt =

∫ x

1

1

2t
(2tet

2
)dt

= [
1

2t
(et

2
)]x1 −

∫ x

1
− 1

2t2
et

2
dt

=
ex

2

2x
− e

2
+

∫ x

1

1

2t2
et

2
dt

=
ex

2

2x
− e

2
+

∫ x

1

1

4t3
2tet

2
dt

=
ex

2

2x
− e

2
+ [

1

4t3
(et

2
)]x1 −

∫ x

1
− 3

4t4
et

2
dt

=
ex

2

2x
− e

2
+

ex
2

4x3
− e

4
+

3

4

∫ x

1

et
2

t4
dt

=
ex

2

2x
+

ex
2

4x3
− 3e

4
+

3

4

∫ x

1

et
2

t4
dt
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7. Montrer que la fonction h : t 7→ et
2

t2
est croissante sur [1;+∞[.

La fonction h est dérivable sur [1; +∞[ et :

h′(x) =
2tet

2
t2 − et

2
2t

t4

=
2et

2

t3
(t2 − 1)

On en déduit que h′(t) > 0 pour tout t ∈ [1; +∞[, donc h est croissante sur [1;+∞[.

8. En déduire : ∫ x

1

et
2

t4
dt ⩽

ex
2

x2

∫ x

1

1

t2
dt

Si x > 1, la fonction h est croissante sur [1;x], donc pour tout t ∈ [1;x] :

et
2

t4
= h(t)

1

t2
⩽

1

t2
h(x) =

1

t2
ex

2

x2

On en déduit : ∫ x

1

et
2

t4
dt ⩽

∫ x

1

1

t2
ex

2

x2
dt =

ex
2

x2

∫ x

1

1

t2
dt

9. En déduire un équivalent de
∫ x

1
et

2
dt quand x → +∞ et montrer que φ(x) ∼x→+∞

1

2x
.

On utilise le résultat de la question 6 :

2x

ex2

∫ x

1
et

2
dt = 1 +

1

2x2
− 3xe

2ex2 +
3x

2ex2

∫ x

1

et
2

t4
dt

et on utilise :
3x

2ex2

∫ x

1

et
2

t4
dt ⩽

3

2x

∫ x

1

1

t2
dt ⩽

3

2x

pour en déduire :

lim
x→+∞

2x

ex2

∫ x

1
et

2
dt = 1

donc ∫ x

1
et

2
dt ∼x→+∞

ex
2

2x

Pour l’équivalent de φ on utilise pour x > 1 :

φ(x) = e−x2

∫ x

0
et

2
dt = e−x2

(∫ 1

0
et

2
dt+

∫ x

1
et

2
dt

)

Comme
∫ x
1 et

2
dt ∼x→+∞

ex
2

2x
tend vers +∞ quand x tend vers +∞,

∫ 1
0 et

2
dt+

∫ x
1 et

2
dt ∼x→+∞

ex
2

2x
. On en

déduit que φ(x) ∼x→+∞
1

2x
.
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Exercice 2

1. Soit g la fonction définie sur R∗ par g(x) =
ex − 1

x
. Donner un DL4(0) de la fonction g.

Pour obtenir le DL4(0) de g il faut tout d’abord utiliser le DL5(0) de ex − 1 :

ex − 1 = x+
x2

2
+

x3

6
+

x4

24
+

x5

120
+ o(x5)

On obtient donc :

g(x) = 1 +
x

2
+

x2

6
+

x3

24
+

x4

120
+ o(x4)

2. Montrer que g peut être prolongée par continuité en 0 et étudier la dérivabilité de g en 0.
On en déduit que limx→0 g(x) = 1, donc g peut-être prolongée par continuité en 0 en posant g(0) = 1.

De même on obtient
g(x)− g(0)

x
=

1

2
+

x

6
+

x2

24
+

x3

120
+ o(x3)

donc g est dérivable en 0 et g′(0) = 1
2 .

On considère maintenant la fonction f définie par f(x) =
1

x
ln(g(x)).

3. Donner le domaine de définition de f .
Pour tout x ∈ R, g(x) > 0, donc f est définie sur R∗

4. Donner un DL4(0) de la fonction f .
On écrit ln(g(x)) = ln(1+u(x)) où u(x) = x

2 +
x2

6 + x3

24 +
x4

120+
x5

720+o(x5), en particulier limx→0 u(x) = 0.
On utilise le DL5(0) de ln(1 + u)

ln(1 + u) = u− u2

2
+

u3

3
− u4

4
+

u5

5
+ o(x5)

On obtient donc :

u(x) =
x

2
+

x2

6
+

x3

24
+

x4

120
+

x5

720
+ o(x5)

u(x)2 =
x2

4
+

x3

6
+

x4

36
+

x4

24
+

x5

72
+

x5

120
+ o(x5)

u(x)2 =
x2

4
+

x3

6
+

5x4

72
+

x5

45
+ o(x5)

u(x)3 =
x3

8
+

x4

12
+

5x5

144
+

x5

45
+

x4

24
+

x5

36
+

x5

96
+ o(x5)

u(x)3 =
x3

8
+

x4

8
+

137x5

1440
+ o(x5)

u(x)4 =
x4

16
+

x5

16
+

x5

48
+ o(x5)

u(x)4 =
x4

16
+

x5

12
+ o(x5)

u(x)5 =
x5

32
+ o(x5)
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On en déduit :

ln(1 + u(x)) =
x

2
+

x2

6
+

x3

24
+

x4

120
+

x5

720

−x2

8
− x3

12
− 5x4

144
− x5

90

+
x3

24
+

x4

24
+

137x5

4320

−x4

64
− x5

48

+
x5

160
+ o(x5)

=
1

2
x+

1

24
x2 − 1

2880
x4 +

1

135
x5 + o(x5)

On obtient finalement,

f(x) =
1

2
+

1

24
x− 1

2880
x3 +

1

135
x4 + o(x4)

5. Montrer que f peut être prolongée par continuité en 0 et étudier la dérivabilité de f en 0.
On en déduit que limx→0 f(x) =

1
2 , donc f peut-être prolongée par continuité en 0 en posant f(0) = 1

2 .
De même on obtient

f(x)− f(0)

x
=

1

24
+ o(x)

donc f est dérivable en 0 et f ′(0) = 1
24 .

6. Etudier les variations de f .
La fonction f est dérivable et pour x ̸= 0 :

f ′(x) = − 1

x2
ln(g(x)) +

1

x

g′(x)

g(x)

et
g′(x) =

exx− (ex − 1)

x2

donc
g′(x)

g(x)
=

exx− (ex − 1)

x2
x

ex − 1
=

ex

ex − 1
− 1

x

f ′(x) =
1

x2

(
− ln(

ex − 1

x
) +

xex

ex − 1
− 1

)
=

1

x2
h(x)

h′(x) = − ex

ex − 1
+

1

x
+

(1 + x)ex(ex − 1)− xexex

(ex − 1)2

h′(x) = −xex(ex − 1)

x(ex − 1)2
+

(ex − 1)2

x(ex − 1)2
+

xe2x + x2e2x − xex − x2ex − x2e2x

x(ex − 1)2

h′(x) =
−xe2x + xex + e2x − 2ex + 1 + xe2x + x2e2x − xex − x2ex − x2e2x

x(ex − 1)2

h′(x) =
e2x − 2ex + 1− x2ex

x(ex − 1)2
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h′(x) = ex
2 ch(x)− 2− x2

x(ex − 1)2

Il faut donc étudier la fonction u(x) = 2 ch(x) − 2 − x2. On obtient u′(x) = 2sh(x) − 2x et u′′(x) =
2 ch(x) − 1 > 0 pour tout x ∈ R. On en déduit u′ est strictement croissante et comme u′(0) = 0, on a
u′(x) > 0 si x > 0 et u′(x) < 0 si x < 0.

x

u′(x)

u

−∞ 0 +∞

− 0 +

00

On en déduit que u est strictement positive sur R∗, donc pour x ̸= 0, h′(x) est du signe de x :

x

h′(x)

h

−∞ 0 +∞

− +

Comme limx→0 h(x) = 0, on en déduit que f ′(x) > 0 pour tout x ̸= 0 et comme f ′(0) > 0, on en déduit
que f est strictement croissante sur R.

7. Déterminer les limites de f en −∞ et en +∞.
Pour x > 0, on écrit :

f(x) =
ln( e

x(1−e−x)
x )

x

f(x) =
ln(ex)

x
+

ln(1− e−x)

x
− ln(x)

x

f(x) = 1 +
ln(1− e−x)

x
− ln(x)

x

Comme limx→+∞
ln(1−e−x)

x = 0 et limx→+∞
ln(x)
x = 0, on obtient :

lim
x→+∞

f(x) = 1

Pour x < 0, on écrit

f(x) =
ln(1−ex

−x )

x
=

ln(1− ex)

x
+

ln(−x)

x
On en déduit :

lim
x→−∞

f(x) = 0

6


