
Corrigé du TD Suites 

Généralités sur les suites    

Ex 0 Soit 𝐿 𝑒𝑡 𝐿′ réels ou infinis.  

1. Compléter par un lien logique le plus précis possible :  
a. lim

𝑛→+∞
𝑢𝑛 = 𝐿  ⟹ lim

𝑛→+∞
|𝑢𝑛| = |𝐿|. 

b. lim
𝑛→+∞

𝑢𝑛 = 0    ⟺ lim
𝑛→+∞

|𝑢𝑛| = 0. 

c. Ici 𝐿 réel. lim
𝑛→+∞

𝑢𝑛 = 𝐿   ⟺ lim
𝑛→+∞

|𝑢𝑛 − 𝐿| = 0. 

d. lim
𝑛→+∞

𝑢𝑛 = 𝐿  ⟹ lim
𝑛→+∞

𝑢𝑛² = 𝐿².       

e.  

f. lim
𝑛→+∞

𝑢𝑛 = 𝐿  ⟺ lim
𝑛→+∞

𝑢𝑛
3 = 𝐿3  si  𝑢 est réelle 

lim
𝑛→+∞

𝑢𝑛 = 𝐿 ⟹ lim
𝑛→+∞

𝑢𝑛
3 = 𝐿3  si 𝑢 est cpxe 

g. lim
𝑛→+∞

𝑢3𝑛2+1 = 𝐿 ⟸   lim
𝑛→+∞

𝑢𝑛 = 𝐿. 

h. lim
𝑛→+∞

𝑢2𝑛 = 𝐿 𝑒𝑡 lim
𝑛→+∞

𝑢2𝑛+1 = 𝐿   ⟺ lim
𝑛→+∞

𝑢𝑛 = 𝐿 . 

2. VRAI ou FAUX : 

a. Une suite positive de limite nulle est décroissante à partir d’un certain rang. FAUX ¢ex :  𝑢𝑛 = {

1

𝑛
 𝑠𝑖 𝑛 𝑝𝑎𝑖𝑟

1

𝑛2
 𝑠𝑖 𝑛 𝑖𝑚𝑝𝑎𝑖𝑟

 

b. Une suite réelle croissante a toujours une limite. VRAI 

c. Deux suites bornées 𝑢 et 𝑣 telles que lim
𝑛→+∞

𝑢𝑛 −𝑣𝑛 = 0 convergent vers la même limite. FAUX ¢ex :  𝑢𝑛 = (−1)
𝑛 𝑒𝑡  𝑢𝑛 = (−1)

𝑛 +
1

𝑛
  

d. Si (⌊𝑢𝑛⌋) converge alors 𝑢 converge. FAUX ¢ex :  𝑢𝑛 = (−1)
𝑛 

e. Si 𝑢 et 𝑣 sont deux suites convergentes de limites respectives 𝐿 et 𝐿’ telles que : 𝐿 < 𝐿′ alors à partir d’un certain rang,  𝑢𝑛 < 𝑣𝑛. VRAI 
f. Si 𝑢 et 𝑣 sont deux suites de limites respectives 𝐿 et 𝐿’ alors lim

𝑛→+∞
𝑢𝑛 + 𝑣𝑛 = 𝐿 + 𝐿

′. FAUX : si 𝐿 + 𝐿’ est une FI 

g. Si 𝑢 et 𝑣 sont deux suites telles que à partir d’un certain rang 𝑢𝑛 < 𝑣𝑛 alors lim
𝑛→+∞

𝑢𝑛 < lim
𝑛→+∞

𝑣𝑛 . FAUX : 𝑢 et 𝑣 n’ont pas forcément de limite 

h. Si 𝑢 et 𝑣 sont deux suites admettant des limites et telles que à partir d’un certain rang 𝑢𝑛 < 𝑣𝑛 alors lim
𝑛→+∞

𝑢𝑛 <  lim
𝑛→+∞

𝑣𝑛 .  FAUX les limites peuvent être égales 

¢ex :  𝑢𝑛 = −
1

𝑛
 𝑒𝑡  𝑢𝑛 =

1

𝑛
  

i. Si lim
𝑛→+∞

𝑢𝑛 = +∞ = lim
𝑛→+∞

𝑣𝑛  et 𝑢𝑛~𝑣𝑛 alors ln(𝑢𝑛)~ ln(𝑣𝑛).  VRAI car si lim
𝑛→+∞

𝑢𝑛 = +∞ = lim
𝑛→+∞

𝑣𝑛  et 𝑢𝑛~𝑣𝑛    alors 𝑢𝑛 = 𝑣𝑛 + 𝑜(𝑣𝑛) = 𝑣𝑛(1 + 𝑜(1)) 

donc ln (𝑢𝑛) = ln (𝑣𝑛)⏟  

𝑛→+∞
→     +∞

+ ln(1 + 𝑜(1))⏟        

𝑛→+∞
→     0

~𝑛→+∞ ln(𝑣𝑛)  

j. Si lim
𝑛→+∞

𝑢𝑛 = 1 = lim
𝑛→+∞

𝑣𝑛 et 𝑢𝑛~𝑣𝑛 alors ln(𝑢𝑛)~ ln(𝑣𝑛). FAUX ¢ ex : 𝑢𝑛 = 1 +
1

𝑛
 et 𝑣𝑛 = 1,  ln(𝑢𝑛)~𝑛→+∞

1

𝑛
≠0~𝑛→+∞  ln(𝑣𝑛)   

k.  𝑢𝑛~𝑣𝑛 ⟺ lim
𝑛→+∞

𝑢𝑛 − 𝑣𝑛 = 0 .  FAUX pour les deux implications: ¢ex ⟹ : 𝑢𝑛 = 𝑛 + √𝑛 et 𝑣𝑛 = 𝑛  

et ¢ex⟸ : 𝑢𝑛 =
1

𝑛
 et 𝑣𝑛 =

1

𝑛2
.  

l. Si 𝑢𝑛~𝑣𝑛 alors 1 + 𝑢𝑛~1 +  𝑣𝑛 .  FAUX on ne somme pas les équivalents ¢ex : 𝑢𝑛 = −1 et 𝑣𝑛 = −1 +
1

𝑛
, 

m. Si lim
𝑛→+∞

𝑢𝑛 = +∞ = lim
𝑛→+∞

𝑣𝑛  et 𝑢𝑛~𝑣𝑛 alors 𝑒𝑢𝑛~𝑒𝑣𝑛 . FAUX on ne compose pas à gauche les équivalents ¢ex  : 𝑢𝑛 = 𝑛 + √𝑛 et 𝑣𝑛 = 𝑛 , alors 
𝑒𝑢𝑛

𝑒𝑣𝑛
= 𝑒√𝑛

𝑛→+∞
→    +∞. 

n. Si lim
𝑛→+∞

𝑢𝑛 = 0 = lim
𝑛→+∞

𝑣𝑛  et 𝑢𝑛~𝑣𝑛 alors 𝑒𝑢𝑛~𝑒𝑣𝑛 . VRAI car si lim
𝑛→+∞

𝑢𝑛 = 0 = lim
𝑛→+∞

𝑣𝑛  et 𝑢𝑛~𝑣𝑛    alors 𝑢𝑛 = 𝑣𝑛 + 𝑜(𝑣𝑛) = donc exp(𝑢𝑛) = exp(𝑣𝑛) ×

exp (o(𝑢𝑛))⏟        

𝑛→+∞
→     1

~𝑛→+∞ exp(𝑣𝑛) 

i. Si (∑ 𝑢𝑘
𝑛
𝑘=0 )𝑛∈ℕ est divergente alors (𝑢𝑛) ne tend pas vers 0. FAUX ¢ex : 𝑢𝑘 =

1

𝑘
 

j. Si lim
𝑛→+∞

𝑢𝑛 = 0  alors (∑ 𝑢𝑘
𝑛
𝑘=0 )𝑛∈ℕ est convergente FAUX ¢ex : 𝑢𝑘 =

1

𝑘
 

o. Si lim
𝑛→+∞

𝑢𝑛 + 𝑣𝑛 = +∞ alors lim
𝑛→+∞

𝑢𝑛 = +∞ 𝑜𝑢 lim
𝑛→+∞

𝑣𝑛 = +∞ . FAUX ¢ex : 𝑢𝑛 = {
𝑛2𝑠𝑖 𝑛 𝑝𝑎𝑖𝑟
1 𝑠𝑖 𝑛 𝑖𝑚𝑝𝑎𝑖𝑟

 et 𝑣𝑛 = {
−3 𝑠𝑖 𝑛 𝑝𝑎𝑖𝑟
𝑛 𝑠𝑖 𝑛 𝑖𝑚𝑝𝑎𝑖𝑟

, 

p. Si lim
𝑛→+∞

𝑢𝑛 = 1 alors lim
𝑛→+∞

𝑢𝑛
𝑛 = 1. FAUX ¢ex : 𝑢𝑛 = 1 +

1

𝑛
⟹ lim

𝑛→+∞
𝑢𝑛

𝑛 = 𝑒. 

q. Si lim
𝑛→+∞

𝑢𝑛 = L alors 𝑢𝑛~+∞𝑢𝑛+1. FAUX ¢ex : 𝑢𝑛 = {
𝑛2𝑠𝑖 𝑛 𝑝𝑎𝑖𝑟
𝑛 𝑠𝑖 𝑛 𝑖𝑚𝑝𝑎𝑖𝑟

. 

r. Si lim
𝑛→+∞

𝑢𝑛 = L et 𝐿 ∈ ℝ
∗ alors 𝑢𝑛~+∞𝑢𝑛+1. VRAI car lim

𝑛→+∞
𝑢𝑛 = L et 𝐿 ∈ ℝ

∗⟹ lim
𝑛→+∞

𝑢𝑛+1 = L et 𝐿 ∈ ℝ
∗ 𝑒𝑡 𝑢𝑛~+∞𝐿~+∞𝑢𝑛+1. 

 
3. Pour réfléchir :  

s. Trouver une suite convergente non monotone. 𝑢𝑛 =
(−1)𝑛

𝑛
 

t. Trouver une suite bornée non convergente. 𝑢𝑛 = (−1)
𝑛 

u. Trouver deux suites équivalentes dont la différence tend vers +∞.  𝑢𝑛 = 𝑛 + √𝑛 et 𝑣𝑛 = 𝑛 

v. Existe-t-il une suite convergente et non bornée ?  NON  

w. Trouver une suite 𝑢 décroissante minorée par 0 et de limite 2. 𝑢𝑛 = 2 +
1

𝑛
 

x. Trouver une suite 𝑢 divergente telle que : (𝑢2𝑛) 𝑒𝑡 (𝑢2𝑛+1) convergent. 𝑢𝑛 = {
3𝑠𝑖 𝑛 𝑝𝑎𝑖𝑟

−4 𝑠𝑖 𝑛 𝑖𝑚𝑝𝑎𝑖𝑟
 

y. Trouver une suite 𝑢 convergente telle que : (𝑢𝑛) 𝑒𝑡 (𝑢𝑛+1) ne sont pas équivalentes. 𝑢𝑛 = {

1

𝑛2
 𝑠𝑖 𝑛 𝑝𝑎𝑖𝑟

1

𝑛
 𝑠𝑖 𝑛 𝑖𝑚𝑝𝑎𝑖𝑟

 

z. Existe-t-il une suite 𝑢 telle que : lim
𝑛→+∞

𝑢𝑛 = 1   𝑒𝑡 lim
𝑛→+∞

𝑢𝑛+1 = −1 ? NON car (𝑢𝑛+1) est extraite de (𝑢𝑛). 

aa. Trouver une suite 𝑢 telle que : lim
𝑛→+∞

𝑢𝑛 = 0   𝑒𝑡 lim
𝑛→+∞

∑ 𝑢𝑘
𝑛
𝑘=1 =+∞.𝑢𝑛 =

1

𝑛
 

bb. Trouver une suite 𝑢 telle que : lim
𝑛→+∞

𝑢𝑛 = 0   𝑒𝑡 lim
𝑛→+∞

∑ 𝑢𝑘
𝑛
𝑘=1 ∈ ℝ. 𝑢𝑛 =

1

𝑛²
 

cc. Trouver deux suites 𝑢 et 𝑣 telles que  ∀𝑛 ∈ ℕ , 𝑢𝑛 ≤ 𝑣𝑛 et mais 𝑣 n’a pas de limite. 𝑢𝑛 =
1

𝑛
 𝑒𝑡 𝑣𝑛 = 2 + (−1)

𝑛 

Compléter alors cette affirmation pour la rendre correcte : (  ∀𝑛 ∈ ℕ , 𝑢𝑛 ≤ 𝑣𝑛 et 𝑙𝑒𝑠 𝑙𝑖𝑚𝑖𝑡𝑒𝑠 lim
𝑛→+∞

𝑢𝑛  et lim
𝑛→+∞

𝑣𝑛  existent)   ⇒ ( lim
𝑛→+∞

𝑢𝑛 ≤ lim
𝑛→+∞

𝑣𝑛)  

dd. Trouver une suite donnant la 𝐹𝐼 1+∞ quand 𝑛 → +∞ et dont la limite (après calcul) est 3. 𝑢𝑛 = 1 +
𝑎

𝑛
⟹ lim

𝑛→+∞
𝑢𝑛

𝑛 = 𝑒𝑎 …donc il suffit de prendre 𝑎 = 𝑙𝑛(3). 

 

Définition de la limite d’une suite : 

Soit 𝑢 une suite réelle telle que : ∀(𝑘, 𝑛) ∈ ℕ∗²  , 0 ≤ 𝑢𝑛 ≤
𝑘

𝑛
+
1

𝑘
 . Montrer que : 𝑙𝑖𝑚

𝑛→+∞
𝑢𝑛 = 0. 

Soit 𝜺 ∈ ℝ+∗.  

Comme lim
𝑘→+∞

1

𝑘
= 0, il existe 𝑘0 ∈ ℕ tel que 

1

𝑘0
<
𝜀

2
 . Alors ∀𝑛 ∈ ℕ∗, 0 ≤ 𝑢𝑛 ≤

𝑘0

𝑛
+

1

𝑘0
≤
𝑘0

𝑛
+
𝜀

2
.  

Comme lim
𝑛→+∞

𝑘0

𝑛
= 0 ( 𝑘0 étant fixé),  il existe 𝒏𝟎 ∈ ℕ tel que : ∀𝑛 ≥ 𝑛0,

𝑘0

𝑛
<
𝜀

2
 . Alors, ∀𝒏 ≥ 𝒏𝟎, 𝟎 ≤ 𝒖𝒏 ≤

𝜀

2
+
𝜀

2
 = 𝜺. J’en conclus , grâce à la définition 4 de cours, 

que 𝒍𝒊𝒎
𝒏→+∞

𝒖𝒏 = 𝟎. 



Démontrer que lim
𝑛→+∞

∫ sin𝑛(𝑥)𝑑𝑥
𝜋

2
0

= 0.   

Soit 𝜀 ∈]0, 𝜋[.  

∀𝑛 ∈ ℕ, 0 ≤ ∫ sin𝑛(𝑥)𝑑𝑥
𝜋

2
0

= ∫ sin𝑛(𝑥)𝑑𝑥
𝜋

2
−
𝜀

2
0

+ ∫ sin𝑛(𝑥)𝑑𝑥
𝜋

2
𝜋

2
−
𝜀

2

.   

D’une part, ∀𝑥 ∈ [
𝜋

2
−
𝜀

2
,
𝜋

2
] , (sin (𝑥))𝑛 ≤ 1, donc 0 ≤ ∫ (si n(𝑥))𝑛

𝜋

2
𝜋

2
−
𝜀

2

𝑑𝑥 ≤ ∫ 𝑑𝑥
𝜋

2
𝜋

2
−
𝜀

2

=
𝜀

2
 .  

D’autre part, ∀𝑥 ∈ [0,
𝜋

2
−
𝜀

2
] , 0 ≤ sin(𝑥) ≤ sin (

𝜋

2
−
𝜀

2
). Posons 𝑎 = sin (

𝜋

2
−
𝜀

2
). Alors  0 ≤ sin𝑛(𝑥) ≤ 𝑎𝑛 .J’en déduis que :  

 0 ≤ ∫ sin𝑛(𝑥)𝑑𝑥
𝜋

2
−
𝜀

2
0

≤ ∫ 𝑎𝑛𝑑𝑥
𝜋

2
−
𝜀

2
0

= (
𝜋

2
−
𝜀

2
)𝑎𝑛 ≤

𝜋

2
𝑎𝑛. Comme 𝑎 = sin(

𝜋

2
−
𝜀

2
) , 𝑎 ∈]0,1[ et par conséquent, lim

𝑛→+∞

𝜋

2
𝑎𝑛 = 0.  Alors,  il existe 𝑛0 ∈ ℕ tel que : ∀𝑛 ≥

𝑛0,
𝜋

2
𝑎𝑛 ≤

𝜀

2
 . Par suite,  ∀𝑛 ≥ 𝑛0, 0 ≤ ∫ sin𝑛(𝑥)𝑑𝑥

𝜋

2
−
𝜀

2
0

≤
𝜀

2
  et finalement,  

 ∀𝑛 ≥ 𝑛0, 0 ≤ ∫ sin
𝑛(𝑥)𝑑𝑥

𝜋

2
0

≤
𝜀

2
 +
𝜀

2
= 𝜀.  

Par conséquent, si 𝜀 ≥ 𝜋, il existe 𝑛0 ∈ ℕ tel que : ∀𝑛 ≥ 𝑛0, 0 ≤ ∫ sin
𝑛(𝑥)𝑑𝑥

𝜋

2
0

≤
𝜋

2
≤ 𝜀. 

Ainsi ∀𝜺 > 𝟎 , il existe 𝒏𝟎 ∈ ℕ tel que : ∀𝒏 ≥ 𝒏𝟎, 𝟎 ≤ ∫ 𝐬𝐢𝐧
𝒏(𝒙)𝒅𝒙

𝝅

𝟐
𝟎

≤ 𝜺. Cela signifie que lim
𝑛→+∞

∫ sin𝑛(𝑥)𝑑𝑥
𝜋

2
0

= 0.  

Césaro revisité : Soit 𝑢 une suite réelle , 𝐿 un réel et 𝑣 la suite définie par 𝑣𝑛 =
1

2𝑛
(∑ 2𝑘𝑢𝑘

𝑛−1
𝑘=0 ).  

Montrer que :  lim
𝑛→+∞

𝑢𝑛 = 0⟹ lim
𝑛→+∞

𝑣𝑛 = 0 . En déduire que : lim
𝑛→+∞

𝑢𝑛 = 𝐿 ⟹ lim
𝑛→+∞

𝑣𝑛 = 𝐿.   

a. ∙Je suppose que lim
𝑛→+∞

𝑢𝑛 = 0. Soit 𝜀 ∈ ℝ+∗. 

|𝑣𝑛| =  |
1

2𝑛
(∑ 2𝑘𝑢𝑘

𝑛−1
𝑘=0 )| =

1

2𝑛
|(∑ 2𝑘𝑢𝑘

𝑛−1
𝑘=0 )| =  ≤⏞

1è𝑟𝑒 𝐼.𝑇 
1

2𝑛
(∑ |2𝑘𝑢𝑘|

𝑛−1
𝑘=0 ) =

1

2𝑛
(∑ 2𝑘|𝑢𝑘|

𝑛−1
𝑘=0 ).  (∗∗) 

Comme lim
𝑛→+∞

𝑢𝑛 = 0, ∃𝑛0 ∈ ℕ tel que : ∀𝑛 ≥ 𝑛0, |𝑢𝑛| ≤
𝜖

2
 .  

Donc ∀𝑛 ≥ 𝑛0 + 1,∑ 2𝑘|𝑢𝑘|
𝑛−1
𝑘=𝑛0

≤ ∑ 2𝑘
𝜀

2

𝑛−1
𝑘=𝑛0

=
𝜀

2
∑ 2𝑘𝑛−1
𝑘=𝑛0

≤
𝜀

2

2𝑛−𝑛0−1

2−1
2𝑛0 =

𝜀

2
(2𝑛−𝑛0 − 1)2𝑛0 =

𝜀

2
(2𝑛 − 2𝑛0) ≤ 2𝑛

𝜀

2
. 

Alors, 
1

2𝑛
(∑ 2𝑘|𝑢𝑘|

𝑛−1
𝑘=0 ) =

1

2𝑛
(∑ 2𝑘|𝑢𝑘|

𝑛0−1
𝑘=0 + ∑ 2𝑘|𝑢𝑘|

𝑛−1
𝑘=𝑛0 ) =

1

2𝑛
(∑ 2𝑘|𝑢𝑘|

𝑛0−1
𝑘=0 ) +

1

2𝑛
(∑ 2𝑘|𝑢𝑘|

𝑛−1
𝑘=𝑛0 ) ≤

1

2𝑛
(∑ 2𝑘|𝑢𝑘|

𝑛0−1
𝑘=0 ) +

𝜀

2
.  

𝛼 = ∑ 2𝑘|𝑢𝑘|
𝑛0−1
𝑘=0  est indépendant de 𝑛 , est donc une constante. Par conséquent, lim

𝑛→+∞

1

𝑛
𝛼 = 0. Donc, ∃𝑛1 ∈ ℕ tel que : ∀𝑛 ≥ 𝑛1, |

1

𝑛
𝛼| =

1

𝑛
𝛼 ≤

𝜖

2
 . 

Posons 𝑁 = max(𝑛0, 𝑛1). Alors ∀𝑛 ≥ 𝑁,
1

2𝑛
(∑ 2𝑘|𝑢𝑘|

𝑛−1
𝑘=0 ) ≤

𝜀

2
+
𝜀

2
= 𝜀. Donc d’après l’inégalité (**),je peux affirmer que  ∀𝑛 ≥ 𝑁,  |𝑣𝑛| ≤ 𝜀 J’en conclus que la suite 

(𝑣𝑛) converge vers 0.  

∙∙Je suppose ici que lim
𝑛→+∞

𝑢𝑛 = 𝐿. ∈ ℝ ( 𝑜𝑢 ℂ). Posons 𝑎𝑛 = 𝑢𝑛 − 𝐿 𝑒𝑡 𝑏𝑛 =
1

2𝑛
(∑ 2𝑘𝑎𝑘

𝑛−1
𝑘=0 ). D’après ce ui précède  comme lim

𝑛→+∞
𝑎𝑛 = 0., 

lim
𝑛→+∞

𝑏𝑛 = 0. 

De plus,  𝑏𝑛 =
1

2𝑛
(∑ 2𝑘𝑎𝑘

𝑛−1
𝑘=0 ) =

1

2𝑛
(∑ 2𝑘(𝑢𝑘 − 𝐿)

𝑛−1
𝑘=0 ) =

1

2𝑛
(∑ 2𝑘𝑢𝑘

𝑛−1
𝑘=0 ) −

1

2𝑛
(∑ 2𝑘𝑛−1

𝑘=0 )𝐿 = 𝑣𝑛 −
2𝑛−1

2𝑛
[
1

2𝑛−1
(∑ 2𝑘𝑛−1

𝑘=0 )𝐿] = 𝑣𝑛 −
2𝑛−1

2𝑛
𝐿.  

 Donc,𝑣𝑛 = 𝑏𝑛 + (1 −
1

2𝑛
)𝐿. J’en conclus que lim

𝑛→+∞
𝑣𝑛 = 𝐿. 

A) Soit 𝑢 une suite réelle telle que  lim
𝑛→+∞

𝑢𝑛+1 − 𝑢𝑛 = 𝐿 ∈ ℝ
∗. Démontrer que 𝑢𝑛~+∞𝐿𝑛.   

Posons 𝑣𝑛 = 𝑢𝑛+1 − 𝑢𝑛 𝑒𝑡 𝑉𝑛 =
1

𝑛
∑ 𝑣𝑘
𝑛−1
𝑘=0 . Alors, 𝑉𝑛 =

1

𝑛
∑ (𝑢𝑘+1 − 𝑢𝑘)
𝑛−1
𝑘=0 =

1

𝑛
(𝑢𝑛 − 𝑢0). Or, d’après le théorème de Césaro, comme lim

𝑛→+∞
𝑣𝑛 = 𝐿 ∈ ℝ

∗,  lim
𝑛→+∞

𝑉𝑛 = 𝐿 

i.e. lim
𝑛→+∞

1

𝑛
(𝑢𝑛 − 𝑢0)  = 𝐿. Alors, 

1

𝑛
(𝑢𝑛 − 𝑢0) = 𝐿 + 𝑜0(1) et ensuite, 𝑢𝑛 − 𝑢0 = 𝑛𝐿 + 𝑛𝑜+∞(1) et finalement, 𝑢𝑛 = 𝑢0⏟

𝑜+∞(𝑛𝐿)

+ 𝑛𝐿 + 𝑛 × 𝑜+∞(1)⏟      
𝑜+∞(𝑛𝐿)

~+∞𝐿𝑛.   

 

Propriétés : caractère borné, opérations sur les limites, encadrement :  

On note 𝐵 = {√𝑎 − √𝑏/(𝑎; 𝑏) ∈ ℕ²}.Soit 𝑢 𝑒𝑡 𝑣 deux réels fixés tels que 0 < 𝑢 < 𝑣 .  

a) Justifier qu’il existe 𝑛0 ∈ ℕ tel que :  0 < √𝑛0 + 1− √𝑛0 < 𝑣 − 𝑢 .On pose 𝑧 = √𝑛0 + 1 −√𝑛0 𝑒𝑡 𝑘 = ⌊
𝑢

𝑧
⌋ + 1 .  

b) Montrer que : 𝑢 < 𝑘𝑧 < 𝑣. 

c) En déduire qu’il existe deux entiers naturels 𝑎 𝑒𝑡 𝑏 tels que : 𝑢 < √𝑎 − √𝑏 < 𝑣  .  
d) Montrer que 𝐵 est dense dans ℝ  i.e. qu’entre deux réels distincts , il y a toujours un élément de 𝐵.

a) √𝑛 + 1 − √𝑛 =
1

√𝑛+1+√𝑛
. Donc, lim

𝑛→+∞
√𝑛 + 1 − √𝑛 = 0+.  

Posons 𝜀 = 𝑣 − 𝑢 ∈ ℝ+∗. Alors il existe 𝑛0 ∈ ℕ tel que :  0 < √𝑛0 + 1 − √𝑛0 < 𝜀 = 𝑣 − 𝑢.  

b) On pose 𝑧 = √𝑛0 + 1 − √𝑛0 𝑒𝑡 𝑘 = ⌊
𝑢

𝑧
⌋ + 1 . Donc, 0 < 𝑧 < 𝑣 − 𝑢 𝑒𝑡  𝑘 − 1 ≤

𝑢

𝑧
< 𝑘.  

Alors, comme 𝑘 > 0,  𝑧𝑘 − 𝑧 ≤ 𝑢 < 𝑘𝑧 puis 𝑘𝑧 ≤ 𝑢 + 𝑧 < 𝑢 + 𝑣 − 𝑢 = 𝑣. Ainsi, 𝑢 < 𝑘𝑧 < 𝑣. 

c) 𝑘𝑧 = 𝑘√𝑛0 + 1 − 𝑘√𝑛0 =⏟
𝑐𝑎𝑟 𝑘≥0

√𝑘²(𝑛0 + 1) − √𝑘²(𝑛0). Donc, 𝑎 = 𝑘²(𝑛0 + 1) et 𝑏 = 𝑘²𝑛0 sont deux entiers naturels qui conviennent. 

d) Soit 𝑥 et 𝑦 deux réels tels que 𝑥 < 𝑦.  

Si 0 < 𝑥 < 𝑦 alors d’après 𝑏) , 𝑒𝑛 𝑝𝑟𝑒𝑛𝑎𝑛𝑡 𝑢 = 𝑥 𝑒𝑡 𝑣 = 𝑦, il existe deux entiers naturels 𝑎 𝑒𝑡 𝑏 tels que : 𝑥 < √𝑎 − √𝑏⏟    
∈𝐵

< 𝑦. Donc √𝑎 − √𝑏 est un élément de 

𝐵 coincé entre 𝑥 et 𝑦. 

Si 𝑥 < 0 < 𝑦 alors 0 ∈ 𝐵  et 0 est coincé entre 𝑥 et 𝑦. 

Si 𝑥 < 𝑦 < 0 alors 0 < −𝑦 < −𝑥 et d’après 𝑏) , 𝑒𝑛 𝑝𝑟𝑒𝑛𝑎𝑛𝑡 𝑢 = −𝑦 𝑒𝑡 𝑣 = −𝑥 et il existe deux entiers naturels 𝑎 𝑒𝑡 𝑏 tels que : −𝑦 < √𝑎 − √𝑏⏟    
∈𝐵

< −𝑥 . Donc 

𝑦 > √𝑏 − √𝑎⏟    
∈𝐵

> 𝑥 𝑒𝑡  √𝑏 − 𝑎 est un élément de 𝐵 coincé entre 𝑥 et 𝑦. 

Ainsi, entre deux réels, il y a toujours un élément de 𝐵. Donc 𝐵 est dense dans ℝ. 

 
Soit 𝑢 et 𝑣 deux suites réelles telles que 𝑢𝑛² + 𝑢𝑛𝑣𝑛 + 𝑣𝑛²  

𝑛→+∞
→    0 .  

1. Déterminer un réel 𝑎 tel que ∀𝑛 ∈ ℕ, 𝑣𝑛
2 ≤ 𝑎(𝑢𝑛

2 + 𝑢𝑛𝑣𝑛 + 𝑣𝑛
2) 

2. Montrer lim
𝑛→+∞

𝑢𝑛 = 0 = lim
𝑛→+∞

𝑣𝑛. 

 



1. Notons 𝐴𝑛 = 𝑢𝑛
2 + 𝑢𝑛𝑣𝑛 + 𝑣𝑛

2. ∀𝑛 ∈ ℕ,𝐴𝑛 = 𝑢𝑛
2 + 𝑢𝑛𝑣𝑛 + 𝑣𝑛

2 = (𝑢𝑛 +
1

2
𝑣𝑛)

2

−
1

4
𝑣𝑛
2 + 𝑣𝑛

2 = (𝑢𝑛 +
1

2
𝑣𝑛)

2

+
3

4
𝑣𝑛
2. Donc, 

4

3
𝐴𝑛 =

4

3
(𝑢𝑛 +

1

2
𝑣𝑛)

2

⏟        
≥0

+ 𝑣𝑛
2. Par 

conséquent, ∀𝑛 ∈ ℕ, 𝑣𝑛
2 ≤

4

3
𝐴𝑛.  De même, ∀𝑛 ∈ ℕ, 𝑢𝑛

2 ≤
4

3
𝐴𝑛.   

2. , ∀𝑛 ∈ ℕ, 0 ≤ 𝑣𝑛
2 ≤

4

3
𝐴𝑛. Comme lim

𝑛→+∞
𝐴𝑛 = 0, le théorème de limite par encadrement permet de conclure que lim

𝑛→+∞
𝑣𝑛 = 0. De même lim

𝑛→+∞
𝑢𝑛 = 0. 

 

Soit 𝑢 une suite réelle ou cpxe. Montrer que : (∑ 𝑢𝑘
𝑛
𝑘=0 )𝑛∈ℕ est convergente⟹ lim

𝑛→+∞
𝑢𝑛 = 0 et que la réciproque est fausse. Que peut-on en déduire sur les 

suites (∑ sin (𝑘)𝑛
𝑘=0 )𝑛∈ℕ et (∑ √𝑘𝑛

𝑘=0 )
𝑛∈ℕ

 ? et sur : (∑
1

𝑘𝑙𝑛(𝑘)
𝑛
𝑘=2 )

𝑛≥2
 ? 

Posons 𝑆𝑛 = ∑ 𝑢𝑘
𝑛
𝑘=0 . ∀𝑛 ∈ ℕ∗, 𝑢𝑛 = 𝑆𝑛 − 𝑆𝑛−1.  

Donc,  (𝑆𝑛)𝑛∈ℕ convergente vers 𝐿⟹ lim
𝑛→+∞

𝑆𝑛 = lim
𝑛→+∞

𝑆𝑛−1 = 𝐿 ⟹ lim
𝑛→+∞

𝑢𝑛 = lim
𝑛→+∞

𝑆𝑛 − 𝑆𝑛−1 =0 . Par contre, ( lim
𝑛→+∞

𝑢𝑛 = 0⟹ (𝑆𝑛)𝑛∈ℕ convergente) 

comme le prouve la suite 𝑢 telle que 𝑢𝑛 =
1

𝑛
 qui tend vers 0 alors que 𝑆 telle que 𝑆𝑛 = ∑

1

𝑘

𝑛
𝑘=1   tend vers +∞ ( Cf cours exemple33 ou TD 11 ex 7). Comme les 

suites (sin (𝑛))𝑛∈ℕ 𝑒𝑡 (√𝑛)𝑛∈ℕ 𝑠𝑜𝑛𝑡 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑡𝑒𝑠, 𝑙𝑒𝑠 𝑠𝑢𝑖𝑡𝑒𝑠 (∑ sin (𝑘)𝑛
𝑘=0 )𝑛∈ℕ et (∑ √𝑘𝑛

𝑘=0 )
𝑛∈ℕ

 sont aussi divergentes. 

Par contre, la suite (
1

𝑛ln(n)
)
𝑛∈ℕ

tend vers 0 , donc je ne peux rien conclure immédiatement sur 𝑆 = (∑
1

𝑘𝑙𝑛(𝑘)
𝑛
𝑘=2 )

𝑛≥2
 . Il faut faire une etude supplémentaire. Soit 

𝑛 ∈ ℕ\{0,1} 𝑒𝑡 𝑘 ∈ ⟦2, 𝑛⟧ 

∀𝑥 ∈ [𝑘, 𝑘 + 1],
1

(𝑘+1)𝑙𝑛(𝑘+1)
≤

1

𝑥𝑙𝑛(𝑥)
≤

1

𝑘𝑙𝑛(𝑘)
 donc∫

1

(𝑘+1)𝑙𝑛(𝑘+1)

𝑘+1

𝑘
𝑑𝑥 ≤ ∫

1

𝑥𝑙𝑛(𝑥)
𝑑𝑥

𝑘+1

𝑘
≤ ∫

1

𝑘𝑙𝑛(𝑘)

𝑘+1

𝑘
𝑑𝑥 i.e. 

1

(𝑘+1)𝑙𝑛(𝑘+1)
≤ [ln (ln(𝑢))]𝑘

𝑘+1 ≤
1

𝑘𝑙𝑛(𝑘)
. Ainsi, ∀𝑘 ∈ ⟦2, 𝑛⟧, ln(ln(𝑘 + 1)) − ln (ln(𝑘)) ≤

1

𝑘𝑙𝑛(𝑘)
.  

Par conséquent,∑ ln(ln(𝑘 + 1)) − ln (ln(𝑘)𝑛
𝑘=2⏟                    

𝑠𝑜𝑚𝑚𝑒
𝑡é𝑙𝑒𝑠𝑐𝑜𝑝𝑖𝑞𝑢𝑒

≤ ∑
1

𝑘𝑙𝑛(𝑘)
𝑛
𝑘=2 . Ainsi, ∀𝑛 ∈ ℕ\{0,1}, 𝑙𝑛(𝑙𝑛(𝑛 + 1)) − 𝑙𝑛𝑙𝑛(2)) ≤ ∑

1

𝑘𝑙𝑛(𝑘)
𝑛
𝑘=2 . Le théorème de limite par 

encadrement permet alors de conclure que lim
𝑛→+∞

∑
1

𝑘𝑙𝑛(𝑘)
𝑛
𝑘=2 = +∞ 

 

Des suites définies par des sommes  

1)∀𝑛 ∈ ℕ∗, on pose 𝑢𝑛 = ∑
1

𝑘2
𝑛
𝑘=1 . Montrer que 𝑢 converge.  

2) ∀𝑛 ∈ ℕ∗, on pose 𝑢𝑛 = ∑
1

𝑘

𝑛
𝑘=1 . Montrer que 𝑢2𝑛 − 𝑢𝑛 ≥

1

2
. Montrer l’existence puis la valeur de la limite de 𝑢.  

3) ∀𝑛 ∈ ℕ∗, on pose 𝑢𝑛 = ∑
1

𝑘²+𝑛²

𝑛
𝑘=1 . Montrer que 𝑢𝑛 = 𝑂+∞ (

1

𝑛
). 

4) On pose ∀𝑛 ∈ ℕ, 𝑢𝑛 = ∑
1

(
𝑛
𝑘
)

𝑛
𝑘=0 . Déterminer la limite de 𝑢. 

5) Soit 𝑛 ∈ ℕ∗. Calculer 𝑆𝑛 = ∑
1

1+2+⋯+𝑘

𝑛
𝑘=1 . En déduire la limite de (𝑆𝑛). 

 6) ∀𝑛 ∈ ℕ∗, on pose 𝑢𝑛 = ∑ 𝑙𝑛 (1 −
1

𝑘2
)𝑛

𝑘=2  . Montrer que 𝑢 est convergente et déterminer sa limite.  

 

1) Soit 𝑛 ∈ ℕ\{0,1}.  𝑢𝑛+1 − 𝑢𝑛 = ∑
1

𝑘2
𝑛+1
𝑘=1 − ∑

1

𝑘2
𝑛
𝑘=1 =

1

(𝑛+1)2
> 0. Donc 𝑢 est croissante.  

De plus, ∀𝑘 ∈ ⟦2, 𝑛⟧, 0 <
1

𝑘2
<

1

𝑘(𝑘−1)
=

1

𝑘−1
−
1

𝑘
. Donc, 0 ≤ ∑

1

𝑘2
𝑛
𝑘=2 ≤ ∑

1

𝑘−1
−
1

𝑘

𝑛
𝑘=2 = 1 −

1

𝑛
≤ 1. Donc,  0 ≤ ∑

1

𝑘2
𝑛
𝑘=1 ≤ 2 

J’en déduis que la suite u est majorée. Et ainsi 𝑢 est convergente.  

2) Soit 𝑛 ∈ ℕ\{0}.  𝑢2𝑛 − 𝑢𝑛 = ∑
1

𝑘

2𝑛
𝑘=1 . −∑

1

𝑘

𝑛
𝑘=1 . = ∑

1

𝑘

2𝑛
𝑘=𝑛+1 ≥⏟

𝑐𝑎𝑟 ∀𝑘∈⟦𝑛+1,2𝑛⟧,
1

𝑘
≥
1

2𝑛

∑
1

2𝑛

2𝑛
𝑘=𝑛+1 = 𝑛

1

2𝑛
=
1

2
. 

𝑢𝑛+1 − 𝑢𝑛 = ∑
1

𝑘

𝑛+1
𝑘=1 − ∑

1

𝑘

𝑛
𝑘=1 =

1

𝑛+1
> 0. Donc 𝑢 est croissante. Et par conséquent, 𝑢 admet une limite notée 𝐿 telle que réel ou 𝐿 = +∞.  

Si on imagine un instant que 𝐿 est un réel alors 

• lim
𝑛→+∞

𝑢2𝑛 = 𝐿 (car (𝑢2𝑛) est extraite de 𝑢). 

•  par suite lim
𝑛→+∞

𝑢2𝑛 − 𝑢𝑛 =⏟
𝑝𝑎𝑠 𝑑𝑒 𝐹𝑖
𝑐𝑎𝑟 𝐿 𝑟é𝑒𝑙

𝐿 − 𝐿 = 0.  

• Enfin, en passant à la limite dans l’inégalité∶  𝑢2𝑛 − 𝑢𝑛 ≥
1

2
, j’aboutis à 0 ≥

1

2
 ce qui est absurde.  

J’en déduis que la suite u ne tend pas vers une limite finie et ainsi lim
𝑛→+∞

𝑢𝑛 = 𝐿 = +∞. 

3)Soit 𝑛 ∈ ℕ∗. ∀𝑘 ∈ ⟦1, 𝑛⟧,
1

𝑛²+𝑛²
≤

1

𝑘2+𝑛2
≤

1

1+𝑛2
 𝑑𝑜𝑛𝑐 . ∑

1

𝑛²+𝑛²

𝑛
𝑘=1 ≤ ∑

1

𝑘2+𝑛2
𝑛
𝑘=1 ≤ ∑

1

1+𝑛2
𝑛
𝑘=1  i.e. 

𝑛

2𝑛²
≤ 𝑢𝑛 ≤

𝑛

1+𝑛²
.  

J’en déduis que ∀𝑛 ∈ ℕ,  
1

2
≤ 𝑛𝑢𝑛 ≤

𝑛²

1+𝑛²
≤ 1. La suite (

𝑢𝑛
1

𝑛

) est donc bornée, je peux en conclure que 𝑢𝑛 = 𝑂+∞ (
1

𝑛
) et par suite la suite 𝑢 converge vers 0.  

4) On pose ∀𝑛 ∈ ℕ, 𝑢𝑛 = ∑
1

(
𝑛
𝑘
)

𝑛
𝑘=0 . Déterminer la limite de 𝑢. 

Soit 𝑛 ∈ ℕ 𝑡𝑞 𝑛 ≥ 4, 𝑢𝑛 = ∑
1

(
𝑛
𝑘
)
=𝑛

𝑘=0
1

(
𝑛
0
)
+

1

(
𝑛
1
)
+

1

(
𝑛
2
)
+

1

(
𝑛
3
)
+⋯+

1

(
𝑛
𝑛−3

)
+

1

(
𝑛
𝑛−2

)
+

1

(
𝑛
𝑛−1

)
+

1

(
𝑛
𝑛
)
= 1 +

1

𝑛
+

2

𝑛(𝑛−1)
+

6

𝑛(𝑛−1)(𝑛−2)
… .+

6

𝑛(𝑛−1)(𝑛−2)
+

2

𝑛(𝑛−1)
+
1

𝑛
+ 1 

𝑢𝑛 = 2 +
2

𝑛
+ ∑

1

(
𝑛
𝑘
)

𝑛−2
𝑘=2 . 

Or, ∀𝑘 ∈ ⟦2, 𝑛 − 2⟧, (
𝑛
𝑘
) ≥ (

𝑛
2
) > 0 𝑑𝑜𝑛𝑐 0 <

1

(
𝑛
𝑘
)
≤

1

(
𝑛
2
)
 et par conséquent, 0 ≤ ∑

1

(
𝑛
𝑘
)

𝑛−2
𝑘=2 ≤ ∑

1

(
𝑛
2
)

𝑛−2
𝑘=2 = (𝑛 − 2 − 2 + 1)

1

(
𝑛
2
)
=
2(𝑛−3)

𝑛(𝑛−1)
≤
2

𝑛
.  

Cet encadrement permet d’affirmer que lim
𝑛→+∞

∑
1

(
𝑛
𝑘
)

𝑛−2
𝑘=2 = 0. Et par suite , lim

𝑛→+∞
𝑢𝑛 = 2.  

5) Soit 𝑛 ∈ ℕ∗. Calculer 𝑆𝑛 = ∑
1

1+2+⋯+𝑘

𝑛
𝑘=1 . En déduire la limite de (𝑆𝑛). 

𝑆𝑛 = ∑
1

𝑘(𝑘+1)

2

𝑛
𝑘=1 = 2∑

1

𝑘(𝑘+1)

𝑛
𝑘=1 = 2 ∑

1

𝑘
−

1

𝑘+1

𝑛
𝑘=1⏟        

𝑠𝑜𝑚𝑚𝑒 𝑡é𝑙𝑒𝑠𝑐𝑜𝑝𝑖𝑞𝑢𝑒

= 2 [1 −
1

𝑛+1
]. Et par suite , lim

𝑛→+∞
𝑆𝑛 = 2.  

6) 𝑢𝑛 = ∑ 𝑙𝑛 (1 −
1

𝑘2
)𝑛

𝑘=2 = ∑ 𝑙𝑛 (
(𝑘−1)(𝑘+1)

𝑘2
)𝑛

𝑘=2 = ∑ [ln(𝑘 − 1) + ln(𝑘 + 1) − 2ln (𝑘)]𝑛
𝑘=2   

= ∑ 𝑙𝑛(𝑘 − 1)𝑛
𝑘=2 − ln(𝑘) + ∑ 𝑙𝑛(𝑘 + 1)𝑛

𝑘=2 − ln(𝑘) = ln(1) − ln(𝑛) + ln(𝑛 + 1) − ln(2) = − ln(2) + ln (1 +
1

𝑛
)
𝑛→+∞
→    −ln (2).  



A. Cas particulier : Soit 𝑝 ∈ ℕ\{0,1}. Pour tout entier naturel 𝑘, on pose 𝑢𝑘 =
1

(
𝑘+𝑝
𝑘
)
  et  ∀𝑛 ∈ ℕ∗, 𝑆𝑛 = ∑

1

(
𝑘+𝑝
𝑘
)

𝑛
𝑘=1 . 

1. Montrer que :  ∀𝑘 ∈ ℕ, (𝑘 + 𝑝 + 1)𝑢𝑘+1 = (𝑘 + 1)𝑢𝑘.  

2. En déduire que : ∀𝑛 ∈ ℕ∗ , 𝑆𝑛 =
1

1−𝑝
((𝑛 + 1)𝑢𝑛 − 1).  

3. Montrer que ∀𝑛 ∈ ℕ, 0 < 𝑢𝑛 ≤
𝑝!

(𝑛+1)(𝑛+2)
. En déduire la limite de la suite (𝑆𝑛) quand 𝑛 → +∞.  

B. Cas général . Soit (𝑢𝑛) une suite telle qu’il existe 𝑎 et 𝑏 réels tels que 𝑏 − 1 − 𝑎 ≠ 0 𝑒𝑡 pour tout 𝑛 ∈ ℕ,
𝑢𝑛+1

𝑢𝑛
=
𝑛+𝑎 

𝑛+𝑏
 . 

Montrons que : pour tout 𝑛 ∈ ℕ,   ∑ 𝑢𝑘
𝑛
𝑘=0 =

1

𝑎+1−𝑏
 [(𝑛 + 𝑏)𝑢𝑛+1 − (𝑏 − 1)𝑢0].  

A. Cas particulier 
1. Soit 𝑘 ∈ ℕ.  

(𝑘 + 𝑝 + 1)𝑢𝑘+1 − (𝑘 + 1)𝑢𝑘 = (𝑘 + 𝑝 + 1)
1

(
𝑘+1+𝑝
𝑘+1

)
− (𝑘 + 1)

1

(
𝑘+𝑝
𝑘
)
= (𝑘 + 𝑝 + 1)

1

(
𝑘+1+𝑝
𝑘+1

)
− (𝑘 + 1)

1

(
𝑘+𝑝
𝑘
)
  

= (𝑘 + 𝑝 + 1)
1

(𝑘+1+𝑝)!

𝑝!(𝑘+1)!

− (𝑘 + 1)
1

(𝑘+𝑝)!

𝑝!𝑘!

= (𝑘 + 𝑝 + 1)
𝑝!(𝑘+1)!

(𝑘+1+𝑝)!
− (𝑘 + 1)

𝑝!𝑘!

(𝑘+𝑝)!
=
𝑝!(𝑘+1)!

(𝑘+𝑝)!
−
𝑝!(𝑘+1)!

(𝑘+𝑝)!
= 0 .  

Donc, (𝑘 + 𝑝 + 1)𝑢𝑘+1 = (𝑘 + 1)𝑢𝑘. 

2. (𝑘 + 𝑝 + 1)𝑢𝑘+1 − (𝑘 + 𝑝)𝑢𝑘 = (𝑘 + 1)𝑢𝑘 − (𝑘 + 𝑝)𝑢𝑘 = (1 − 𝑝)𝑢𝑘 . 𝐷𝑜𝑛𝑐 ,  

𝑢𝑘 =
1

1 − 𝑝
[(𝑘 + 1 + 𝑝)𝑢𝑘+1 − (𝑘 + 𝑝)𝑢𝑘] =

(𝑘 + 1 + 𝑝)𝑢𝑘+1
1 − 𝑝

−
(𝑘 + 𝑝)𝑢𝑘
1 − 𝑝

=⏟

𝑒𝑛 𝑝𝑜𝑠𝑎𝑛𝑡 𝑣𝑘=
(𝑘+𝑝)𝑢𝑘
1−𝑝

𝑣𝑘+1 − 𝑣𝑘 

3. Soit 𝑛 ∈ ℕ∗ . 
 ∀𝑘 ∈ ⟦0, 𝑛 − 1⟧, 𝑢𝑘 = 𝑣𝑘+1 − 𝑣𝑘 .  

Donc 𝑆𝑛 = ∑ 𝑢𝑘
𝑛
𝑘=1 = ∑ 𝑣𝑘+1 − 𝑣𝑘

𝑛
𝑘=1⏟          

𝑠𝑜𝑚𝑚𝑒
𝑡é𝑙𝑒𝑠𝑐𝑜𝑝𝑖𝑞𝑢𝑒

= 𝑣𝑛+1 − 𝑣1 =
(𝑛+1+𝑝)𝑢𝑛+1

1−𝑝
−
(1+𝑝)𝑢1

1−𝑝
=⏞

𝑒𝑛 𝑢𝑡𝑖𝑙𝑖𝑠𝑎𝑛𝑡 1.
(𝑛+1)𝑢𝑛

1−𝑝
−

𝑢0

1−𝑝
=
(𝑛+1)𝑢𝑛

1−𝑝
−

1

1−𝑝
=

1

1−𝑝
(𝑢𝑛 − 1)  

OU BIEN si on n’a pas réussi à traité la question 2.  
On a :  (𝑘 + 𝑝 + 1)𝑢𝑘+1 = (𝑘 + 1)𝑢𝑘 donc (𝑘 + 2)𝑢𝑘+1 − (𝑘 + 1)𝑢𝑘 = (1 − 𝑝)𝑢𝑘+1.  
Par conséquent, ∑ [(𝑘 + 2)𝑢𝑘+1 − (𝑘 + 1)𝑢𝑘]

𝑛−1
𝑘=0⏟                    

𝑠𝑜𝑚𝑚𝑒 𝑡é𝑙𝑒𝑠𝑐𝑜𝑝𝑖𝑞𝑢𝑒

= ∑ (𝑝 + 1)𝑢𝑘+1
𝑛−1
𝑘=0 = (1 − 𝑝)∑ 𝑢𝑘+1

𝑛−1
𝑘=0 .  

J’en déduis que : (𝑛 + 1)𝑢𝑛 − 𝑢0 = (1 − 𝑝) ∑ 𝑢𝑘
𝑛
𝑘=1⏟    
𝑆𝑛

.  

Ainsi, 𝑆𝑛 =
1

1−𝑝
((𝑛 + 1)𝑢𝑛 − 𝑢0) =

1

1−𝑝
((𝑛 + 1)𝑢𝑛 − 1)  𝑐𝑎𝑟 𝑢0 =

1

(
𝑝
0
)
=
1

1
= 1.  

4.   𝑆𝑜𝑖𝑡 𝑛 ∈ ℕ. 𝑢𝑛 > 0 𝑒𝑡 
𝑢𝑛(𝑛+1)(𝑛+2)

𝑝!
=

1

(
𝑛+𝑝
𝑛
)

(𝑛+1)(𝑛+2)

𝑝!
=

𝑛!𝑝!

(𝑛+𝑝)!

(𝑛+1)(𝑛+2)

𝑝!
=
(𝑛+2)!

(𝑛+𝑝)!
≤ 1 car 𝑝 ≥ 2 donc 0 < (𝑛 + 2)! ≤ (𝑛 + 𝑝)!. Par conséquent, en 

multipliant l’inégalité par 𝑢𝑛 , j’obtiens :   0 < 𝑢𝑛 ≤
𝑝!

(𝑛+1)(𝑛+2)
. Par suite , 0 < (𝑛 + 1)𝑢𝑛 ≤

(𝑛+1)𝑝!

(𝑛+1)(𝑛+2)
=

𝑝!

(𝑛+2)
. Comme lim

𝑛→+∞

𝑝!

𝑛+2
= 0 = lim

𝑛→+∞
0, le théorème 

des gendarmes assure que lim
𝑛→+∞

(𝑛 + 1)𝑢𝑛 = 0. Alors en passant à la limite dans l’égalité obtenue à la question 2., je peux conclure que lim
𝑛→+∞

𝑆𝑛 =
1

𝑝−1
.  

B. Cas général 
Notons pour tout 𝑛 ∈ ℕ, 𝑆𝑛 ∑ 𝑢𝑘

𝑛
𝑘=0 .  

Soit 𝑛 ∈ ℕ. ∀𝑘 ∈ ℕ,
𝑢𝑘+1

𝑢𝑘
=
𝑘+𝑎 

𝑘+𝑏
 donc, (𝑘 + 𝑏)𝑢𝑘+1 − (𝑘 + 𝑎)𝑢𝑘 = 0 et par conséquent ∑ [(𝑘 + 𝑏)𝑢𝑘+1 − (𝑘 + 𝑎)𝑢𝑘]

𝑛
𝑘=1 = 0 . 

D’autre part, ∑ [(𝑘 + 𝑏)𝑢𝑘+1 − (𝑘 + 𝑎)𝑢𝑘]
𝑛
𝑘=0 = ∑ [(𝑘 + 𝑏)𝑢𝑘+1 − (𝑘 + 𝑏 − 1)𝑢𝑘⏟        

𝑣𝑘

𝑛
𝑘=0 + (𝑏 − 1 − 𝑎)𝑢𝑘] 

= [∑ (𝑣𝑘+1 − 𝑣𝑘)
𝑛
𝑘=0 ] + [(𝑏 − 1 − 𝑎)(∑ 𝑢𝑘

𝑛
𝑘=0 )]  

= 𝑣𝑛+1 − 𝑣0 + (𝑏 − 1 − 𝑎)𝑆𝑛  

= (𝑛 + 𝑏)𝑢𝑛+1 + (𝑏 − 1)𝑢0 + (𝑏 − 1 − 𝑎)𝑆𝑛.  

Par conséquent, (𝑛 + 𝑏)𝑢𝑛+1 − (𝑏 − 1)𝑢0 + (𝑏 − 1 − 𝑎)𝑆𝑛 = 0 . 

Ainsi, comme 𝑏 − 1 − 𝑎 ≠ 0, 𝑆𝑛 =
1

𝑎+1−𝑏
 [(𝑛 + 𝑏)𝑢𝑛+1 − (𝑏 − 1)𝑢0]. 

Des suites produits  

1) ∀𝑛 ∈ ℕ∗, on pose 𝑢𝑛 = ∏ (1 +
𝑘

𝑛2
)𝑛

𝑘=1  et 𝑣𝑛 = ln(𝑢𝑛).  

a. Démontrer l’inégalité ∀𝑥 ∈ ℝ+, 𝑥 −
𝑥2

2
≤ ln (1 + 𝑥) ≤ 𝑥. 

b. En déduire la limite de 𝑣 puis celle de 𝑢. 
c. Calculer 𝑢𝑛+1. Peut-on facilement conclure à la monotonie de 𝑢 ?  

a. Soit 𝑔: (𝑥 ↦ ln(1 + 𝑥) − 𝑥) 𝑒𝑡 ℎ: (𝑥 ↦ ln(1 + 𝑥) − 𝑥 +
𝑥2

2
) . 𝑔 et ℎ sont dérivable sur ℝ+ et ∀𝑥 ≥ 0, 𝑔′(𝑥) =

1

1+𝑥
− 1 = −

𝑥

1+𝑥
≤ 0 𝑒𝑡 ℎ′(𝑥) =

1

1+𝑥
− 1 + 𝑥 =

1−(1−𝑥)(1+𝑥)

1+𝑥
=

𝑥2

1+𝑥
≥ 0. Par conséquent 𝑔 est décroissante et ℎ est croissante sur l’intervalle ℝ+. Et par suite, ∀𝑥 ≥ 0, 𝑔(𝑥) ≤ 𝑔(0) = 0 𝑒𝑡 ℎ(𝑥) ≥ ℎ(0) =

0. J’en conclus que ∀𝑥 ∈ ℝ+, 𝑥 −
𝑥2

2
≤ ln (1 + 𝑥) ≤ 𝑥. 

b.   ∀𝑛 ≥ 1, 𝑣𝑛 = ln(𝑢𝑛) = ln (∏ (1 +
𝑘

𝑛2
)𝑛

𝑘=1  ) = ∑ ln (1 +
𝑘

𝑛2
)𝑛

𝑘=1 . Or, ∀𝑘 ∈ ℕ,
𝑘

𝑛2
−
(
𝑘

𝑛2
)
2

2
≤ ln (1 +

𝑘

𝑛2
) ≤

𝑘

𝑛2
.  

Donc, ∀𝑛 ≥ 1, ∑ (
𝑘

𝑛2
−
1

2

𝑘²

𝑛4
)𝑛

𝑘=1 ≤ ∑ ln (1 +
𝑘

𝑛2
)𝑛

𝑘=1 ≤ ∑
𝑘

𝑛2
𝑛
𝑘=1 . Donc, 

1

𝑛2
(∑ 𝑘𝑛

𝑘=1 ) −
1

2𝑛4
(∑ 𝑘𝑛

𝑘=1
2
) ≤ 𝑣𝑛 ≤ 

1

𝑛2
(∑ 𝑘𝑛

𝑘=1 ) et finalement,  

∀𝑛 ≥ 1,
𝑛(𝑛+1)

2𝑛²
−
𝑛(𝑛+1)

2𝑛4
≤ 𝑣𝑛 ≤ 

𝑛(𝑛+1)

2𝑛²
.  Or, 

𝑛(𝑛+1)

2𝑛4
~+∞

1

2𝑛2
 𝑒𝑡  

𝑛(𝑛+1)

2𝑛²
~+∞

1

2
. Comme 

1

2𝑛2
= 𝑜+∞ (

1

2
) Donc, 

𝑛(𝑛+1)

2𝑛4
= 𝑜+∞ (

𝑛(𝑛+1)

2𝑛2
). Alors les suites qui encadrent 

𝑣𝑛sont équivalentes à 
1

2
et tendent donc vers 

1

2
. Ainsi, la suite 𝑣 converge vers

1

2
  et la suite 𝑢 converge vers 𝑒

1

2 = √𝑒.  

∀𝑛 ∈ ℕ∗, on pose 𝑢𝑛+1 = ∏ (1 +
𝑘

(𝑛+1)2
) > 1𝑛+1

𝑘=1  .  

Alors, 
𝑢𝑛+1

𝑢𝑛
=
∏ (1+

𝑘

(𝑛+1)2
)𝑛+1

𝑘=1

∏ (1+
𝑘

𝑛2
)𝑛

𝑘=1

= 2
∏ (1+

𝑘

(𝑛+1)2
)𝑛

𝑘=1

∏ (1+
𝑘

𝑛2
)𝑛

𝑘=1

= 2
∏ (

(𝑛+1)2+𝑘

(𝑛+1)2
)𝑛

𝑘=1

∏ (
𝑛2+𝑘

𝑛2
)𝑛

𝑘=1

= 2
∏ ((𝑛+1)2+𝑘)𝑛
𝑘=1

∏ (𝑛2+𝑘)𝑛
𝑘=1

[∏ (
𝑛

𝑛+1
)𝑛

𝑘=1 ]
2

…difficile de conclure !  

2) Soit 𝑎 un réel positif. ∀𝑛 ∈ ℕ∗, on pose 𝑢𝑛 = ∏ (1 + 𝑎𝑘)𝑛
𝑘=1  et 𝑣𝑛 = ln(𝑢𝑛).  

a.    Etudier la monotonie et le signe de chaque suite 𝑢 𝑒𝑡 𝑣.  
b.    Montrer que si 𝑎 ∈]0,1[ alors 𝑣 converge . Qu’en est-il de 𝑢 ? 

c.    Monter que si 𝑎 ∈]1, +∞[ alors il existe un réel 𝐿 tel que :  𝑣𝑛 = 
𝑛2

2
𝑙𝑛(𝑎) +

𝑛

2
ln(𝑎) + 𝐿 + 𝑜+∞(1). Qu’en est-il de 𝑢 ? 



d.    Que se passe-t-il quand 𝑎 = 1 ? quand 𝑎 = 0?  

a. ∀𝑛 ≥ 1, 𝑢𝑛 > 0 𝑒𝑡 
𝑢𝑛+1

𝑢𝑛
=
∏ (1+𝑎𝑘)𝑛+1
𝑘=1

∏ (1+𝑎𝑘)𝑛
𝑘=1

= 1 + 𝑎𝑛+1 > 1;  𝑝𝑎𝑟 𝑐𝑜𝑛𝑠é𝑞𝑢𝑒𝑛𝑡, ∀𝑛 ≥ 1, 𝑢𝑛+1 > 𝑢𝑛 𝑒𝑡 𝑝𝑎𝑟 𝑠𝑢𝑖𝑡𝑒 𝑣𝑛+1 = ln(𝑢𝑛+1) > ln(𝑢𝑛) = 𝑣𝑛. Ainsi, 𝑢 et 𝑣 sont 

strictement croissantes. 

b. On suppose que 𝑎 ∈]0,1[. Alors, ∀𝑛 > 0, 𝑣𝑛 = ln(∏ (1 + 𝑎𝑘)𝑛
𝑘=1 ) = ∑ ln(1 + 𝑎𝑘)𝑛

𝑘=1 ≤ ∑ 𝑎𝑘𝑛
𝑘=1 =

1−𝑎𝑛

1−𝑎
𝑎 ≤

𝑎

1−𝑎
.  Donc 𝑣 est majorée et ainsi 𝑣 converge.  

∀𝑛 > 0, 𝑢𝑛 = 𝑒
𝑣𝑛 ≤ 𝑒

𝑎

1−𝑎. Donc 𝑢 est aussi majorée puis convergente.  

c. On suppose que 𝑎 ∈]1,+∞[. 

  𝑣𝑛 =∑ln(1 + 𝑎𝑘)

𝑛

𝑘=1

=∑ln(𝑎𝑘(1 + 𝑎−𝑘))

𝑛

𝑘=1

=∑ln(𝑎𝑘) + ln(1 + 𝑎−𝑘)

𝑛

𝑘=1

=∑[𝑘ln(𝑎) + ln(1 + 𝑎−𝑘)]

𝑛

𝑘=1

= ln(𝑎) [∑𝑘

𝑛

𝑘=1

] +∑ln(1 + 𝑎−𝑘)

𝑛

𝑘=1⏟          
𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡𝑒  𝑐𝑎𝑟

 𝑎−1∈]0,1[ 

. 

Posons 𝑤𝑛 = ∑ ln(1 + 𝑎−𝑘) .𝑛
𝑘=1 Comme 𝑎−1 ∈]0,1[, 𝑤 est convergente d^' après 𝑏. Notons 𝐿 la limite de 𝑤.  

 𝐴𝑙𝑜𝑟𝑠,  𝑤𝑛 = 𝐿 + 𝑜+∞(1)  𝑒𝑡  𝑣𝑛 = ln(𝑎)
𝑛(𝑛+1)

2
+ 𝐿 + 𝑜+∞(1) =

𝑛2

2
𝑙𝑛(𝑎) +

𝑛

2
ln(𝑎) + 𝐿 + 𝑜+∞(1).  

d. Si 𝑎 = 1  alors  ∀𝑛 ∈ ℕ∗, 𝑢𝑛 = ∏ (1 + 1)𝑛
𝑘=1 = 2𝑛 et 𝑣𝑛 = nln(2). Donc 𝑢 𝑒𝑡 𝑣 tendent vers +∞.  

Si 𝑎 = 0 alors  ∀𝑛 ∈ ℕ∗, 𝑢𝑛 = ∏ (1)𝑛
𝑘=1 = 1 et 𝑣𝑛 = 0. Donc 𝑢 𝑒𝑡 𝑣 sont constantes et donc convergentes.  

Ex 9 3) ∀𝑛 ∈ ℕ∗, on pose 𝑢𝑛 = ∏ (1 +
1

𝑘2
)𝑛

𝑘=1  . Montrer que 𝑢 est convergente.  

∀𝑛 ∈ ℕ∗, 𝑢𝑛 > 1.  Posons 𝑣𝑛 = ln(𝑢𝑛).  

Alors 𝑣𝑛 = ln (∏ (1 +
1

𝑘2
)𝑛

𝑘=1 ) = ∑ ln (1 +
1

𝑘2
)𝑛

𝑘=1 ≤ ∑
1

𝑘2
𝑛
𝑘=1 ≤ 1+ ∑

1

𝑘(𝑘−1)
𝑛
𝑘=2 = 1 +∑

1

𝑘−1
−
1

𝑘

𝑛
𝑘=2 = 2 −

1

𝑛
≤ 2. Donc 𝑣 est majorée. De plus, 𝑣𝑛+1 − 𝑣𝑛 =

 ln (1 +
1

(𝑛+1)2
) > 0. Donc v est strictement croissante. J’en déduis que 𝑣 est convergente. Notons 𝐿 sa limite finie.  Alors la suite 𝑢 qui vérifie ∀𝑛, 𝑢𝑛 = 𝑒

𝑣𝑛est 

convergente de limite 𝑒𝐿 .  

Ex 9 4) Soit 𝑥 un réel. ∀𝑛 ∈ ℕ, 𝑜n pose 𝑝𝑛(𝑥) = ∏ 𝑐ℎ (
𝑥

2𝑘
)𝑛

𝑘=0 . Simplifier 𝑝𝑛(𝑥)𝑠ℎ (
𝑥

2𝑛
). En déduire lim

𝑛→+∞
𝑝𝑛(𝑥). 

𝑝𝑛(𝑥)𝑠ℎ (
𝑥

2𝑛
)=[∏ 𝑐ℎ (

𝑥

2𝑘
)𝑛

𝑘=0 ]  𝑠ℎ (
𝑥

2𝑛
) = [∏ 𝑐ℎ (

𝑥

2𝑘
)𝑛−1

𝑘=0 ] 𝑐ℎ (
𝑥

2𝑛
)  𝑠ℎ (

𝑥

2𝑛
) = [∏ 𝑐ℎ (

𝑥

2𝑘
)𝑛−1

𝑘=0 ] (
1

2
)  𝑠ℎ (

𝑥

2𝑛−1
)  

=
1

2
[∏ 𝑐ℎ (

𝑥

2𝑘
)𝑛−2

𝑘=0 ] 𝑐ℎ (
𝑥

2𝑛−1
) 𝑠ℎ (

𝑥

2𝑛−1
) =

1

2
[∏ 𝑐ℎ (

𝑥

2𝑘
)𝑛−2

𝑘=0 ] (
1

2
)  𝑠ℎ (

𝑥

2𝑛−2
) =

1

2²
[∏ 𝑐ℎ (

𝑥

2𝑘
)𝑛−2

𝑘=0 ]  𝑠ℎ (
𝑥

2𝑛−2
) = ⋯  

𝑝𝑛(𝑥)𝑠ℎ (
𝑥

2𝑛
)=

1

2𝑛
𝑐ℎ (

𝑥

20
)  𝑠ℎ (

𝑥

20
) =

1

2𝑛+1
𝑠ℎ(2𝑥).  

Donc si 𝑥 ≠ 0 alors 𝑠ℎ (
𝑥

2𝑛
) ≠ 0 𝑒𝑡 𝑝𝑛(𝑥) =

𝑠ℎ(2𝑥)

2𝑛+1𝑠ℎ(
𝑥

2𝑛
)
=
𝑠ℎ(2𝑥)

2𝑥

𝑥

2𝑛

𝑠ℎ(
𝑥

2𝑛
)
. Comme lim

𝑡→0

𝑡

𝑠ℎ(𝑡)
= 1 𝑒𝑡 lim

𝑛→+∞

𝑥

2𝑛
= 0 , lim

𝑛→+∞

𝑥

2𝑛

𝑠ℎ(
𝑥

2𝑛
)
= 1 et ainsi, lim

𝑛→+∞
𝑝𝑛(𝑥) =

𝑠ℎ(2𝑥)

2𝑥
. 

 

Deux suites d’intégrales 

A) ∀𝑛 ∈ ℕ, on pose 𝑢𝑛 = ∫
1

1+𝑡+𝑡𝑛
𝑑𝑡

1

0
. Montrer que la suite 𝑢 est convergente .  

Soit  l = ∫
1

1+𝑡
𝑑𝑡

1

0
. Montrer que ∀𝑛 ∈ ℕ, 0 ≤ l−𝑢𝑛 ≤

1

𝑛+1
. En déduire la limite de la suite 𝑢. 

∀𝑡 ∈ [0,1], 𝑡𝑛 ≥ 𝑡𝑛+1 donc 0 ≤
1

1+𝑡+𝑡𝑛
≤

1

1+𝑡+𝑡𝑛+1
≤ 1 et par suite  0 ≤ 𝑢𝑛 ≤ 𝑢𝑛+1 ≤ 1.  Ainsi la suite 𝑢 est croissante et majorée donc convergente. 

l -𝑢𝑛 = ∫
1

1+𝑡
−

1

1+𝑡+𝑡𝑛
𝑑𝑡

1

0
= ∫

𝑡𝑛

(1+𝑡)(1+𝑡+𝑡𝑛)
𝑑𝑡

1

0
.  

Comme ∀𝑡 ∈ [0,1], (1 + 𝑡)(1 + 𝑡 + 𝑡𝑛) ≥ 1 donc 0 ≤
𝑡𝑛

(1+𝑡)(1+𝑡+𝑡𝑛)
≤ 𝑡𝑛. Par conséquent, 0 ≤ l -𝑢𝑛 ≤ ∫ 𝑡𝑛𝑑𝑡

1

0
=

1

𝑛+1
. Alors, comme les deux suites qui 

encadrent (l -𝑢𝑛) tendent vers 0, (l -𝑢𝑛) converge aussi vers 0 et ainsi, (𝑢𝑛) converge vers l=∫
1

1+𝑡
𝑑𝑡

1

0
= ln (2).ccc 

B) Pour tout 𝑛 ∈ ℕ , on pose 𝑊𝑛 = ∫ (cos (𝑡))
𝑛𝑑𝑡

𝜋

2
0

 . appelée INTEGRALE DE WALLIS  (il en existe plusieurs formes).  

a.    Montrer que la suite (𝑊𝑛) est convergente. On ne demande pas de calculer la limite pour le moment.  
b.    Etablir une relation de récurrence entre 𝑊𝑛𝑒𝑡  𝑊𝑛−2.  
c.    En déduire une expression de 𝑊2𝑝 et de  𝑊2𝑝+1 avec de factorielles puis de coefficients binomiaux. 

d.    Montrer que (𝑛𝑊𝑛𝑊𝑛−1) est constante et préciser sa valeur.  
e.    Déterminer la limite de 𝑊.  

f.    Démontrer par encadrement que : 𝑊𝑛~+∞√
𝜋

2𝑛
.  En déduire que (

2𝑝
𝑝
)~𝑝→+∞

4𝑝

√𝜋𝑝
. 

g. ∀𝑛 ∈ ℕ, (𝑡 ↦ (cos(𝑡))𝑛) est continue sur [0,
𝜋

2
] donc 𝑊𝑛 existe.  

Soit 𝑛 ∈ ℕ. ∀𝑡 ∈ [0,
𝜋

2
] , cos(𝑡) ∈ [0,1] donc, 0 ≤ (𝑐𝑜𝑠(𝑡))

𝑛+1
≤ (𝑐𝑜𝑠(𝑡))

𝑛
 ≤ 1.  

Par conséquent, 0 ≤ ∫ (𝑐𝑜𝑠(𝑡))
𝑛+1
𝑑𝑡

𝜋

2
0

≤ ∫ (𝑐𝑜𝑠(𝑡))
𝑛
𝑑𝑡

𝜋

2
0

≤ ∫ 1𝑑𝑡
𝜋

2
0

 i.e. 0 ≤ 𝑊𝑛+1 ≤ 𝑊𝑛 ≤
𝜋

2
.   

J’en déduis que la suite 𝑊 est décroissante et bornée donc convergente.   

h. Soit 𝜀 ∈]0, 𝜋[ . Je cherche 𝑛0 ∈ ℕ tel que : ∀𝑛 ≥ 𝑛0, |𝑊𝑛| ≤ 𝜀.   

𝑆𝑜𝑖𝑡 𝑛 ∈ ℕ.  |𝑊𝑛| = 𝑊𝑛 = ∫ (𝑐𝑜𝑠(𝑡))
𝑛
𝑑𝑡

𝜀

2
0

+ ∫ (𝑐𝑜𝑠(𝑡))
𝑛
𝑑𝑡

𝜋

2
𝜀

2

.  

D' une part, ∀𝑡 ∈ [0,
𝜀

2
] , 0 ≤ (𝑐𝑜𝑠(𝑡))

𝑛
 ≤ 1 𝑑𝑜𝑛𝑐,  0 ≤ ∫ (𝑐𝑜𝑠(𝑡))

𝑛
𝑑𝑡

𝜀

2
0

≤ ∫ 1𝑑𝑡
𝜀

2
0

=
𝜀

2
.  

D'autre part, ∀𝑡 ∈ [
𝜀

2
,
𝜋

2
] , 0 ≤ 𝑐𝑜𝑠(𝑡) ≤  𝑐𝑜𝑠 (

𝜀

2
) < 1 𝑑𝑜𝑛𝑐, 0 ≤ (𝑐𝑜𝑠(𝑡))

𝑛
 ≤ (𝑐𝑜𝑠 (

𝜀

2
))
𝑛

.Or, 0 ≤  𝑐𝑜𝑠 (
𝜀

2
) < 1 donc lim

𝑛→+∞
(𝑐𝑜𝑠 (

𝜀

2
))
𝑛

= 0+. Par conséquent, il 

existe 𝑛0 ∈ ℕ tel que : ∀𝑛 ≥ 𝑛0, |(𝑐𝑜𝑠 (
𝜀

2
))
𝑛

| = (𝑐𝑜𝑠 (
𝜀

2
))
𝑛

≤
𝜀

𝜋
.   

Alors, ∀𝑛 ≥ 𝑛0, ∀𝑡 ∈ [
𝜀

2
,
𝜋

2
] , 0 ≤ (𝑐𝑜𝑠(𝑡))

𝑛
≤

𝜀

𝜋
 et par croissance de l’intégrale, 0 ≤ ∫ (𝑐𝑜𝑠(𝑡))

𝑛
𝜋

2
𝜀

2

𝑑𝑡 ≤ ∫
𝜀

𝜋

𝜋

2
𝜀

2

𝑑𝑡 ≤ ∫
𝜀

𝜋

𝜋

2
0
𝑑𝑡 =

𝜀

2
.  

J’en déduis que ∀𝑛 ≥ 𝑛0, |𝑊𝑛| ≤
𝜀

2
+
𝜀

2
= 𝜀.  Je peux ainsi conclure que lim

𝑛→+∞
𝑊𝑛 = 0.  



i. 𝑆𝑜𝑖𝑡 𝑛 ∈ ℕ. 

 𝑊𝑛+2 = ∫ (𝑐𝑜𝑠(𝑡))
𝑛+2
𝑑𝑡

𝜋

2
0

= ∫ (𝑐𝑜𝑠(𝑡))
𝑛
(𝑐𝑜𝑠(𝑡))

2
𝑑𝑡

𝜋

2
0

= ∫ cos𝑛(𝑡) (1 − 𝑠𝑖𝑛2(𝑡))𝑑𝑡
𝜋

2
0

 

𝑊𝑛+2 = ∫ cos
𝑛(𝑡) 𝑑𝑡

𝜋

2
0

+ ∫ [−sin(𝑡) cos𝑛(𝑡)⏟          
𝑢′(𝑡)

] sin(𝑡)⏟  
𝑣(𝑡)

𝑑𝑡
𝜋

2
0

= 𝑊𝑛 + [
cos𝑛+1(𝑡)

𝑛+1
sin(𝑡)]

0

𝜋

2
− ∫

cos𝑛+1(𝑡)

𝑛+1
cos(𝑡) 𝑑𝑡

𝜋

2
0

= 𝑊𝑛 −
𝑊𝑛+2

𝑛+1
. 

Donc, (1 +
1

𝑛+1
)𝑊𝑛+2 = 𝑊𝑛 𝑒𝑡 ainsi, 𝑊𝑛+2 =

𝑛+1

𝑛+2
𝑊𝑛. 

j. Soit 𝑛 ∈ ℕ. 
1er cas : 𝑛 pair i.e. 𝑛 = 2𝑝 

𝑊2𝑝 =
2𝑝 − 1

2𝑝
𝑊2𝑝−2 = (

2𝑝 − 1

2𝑝
) (
2𝑝 − 3

2𝑝 − 2
)𝑊2𝑝−4 = (

2𝑝 − 1

2𝑝
) (
2𝑝 − 3

2𝑝 − 2
) (
2𝑝 − 5

2𝑝 − 4
)𝑊2𝑝−6 = ⋯ = (

2𝑝 − 1

2𝑝
) (
2𝑝 − 3

2𝑝 − 2
)…

3

4
.
1

2
𝑊0 

𝑊2𝑝 =
 (2𝑝−1)(2𝑝−3)…3

(2𝑝)(2𝑝−2)…4.2

𝜋

2
  𝑐𝑎𝑟 𝑊0 = ∫ 1𝑑𝑡

𝜋

2
0

=
𝜋

2
 

𝑊2𝑝 =
(2𝑝−1)(2𝑝−3)…3

(2𝑝)(2𝑝−2)…4.2

𝜋

2
=
(2𝑝)(2𝑝−1)(2𝑝−2)(2𝑝−3)…4×3×2

(2𝑝)2(2𝑝−2)2…42×22

𝜋

2
=

(2𝑝)!

4𝑝[𝑝(𝑝−1)…2×1]2

𝜋

2
=

(2𝑝)!

4𝑝(𝑝!)2

𝜋

2
 . Ainsi, 𝑊2𝑝 =

1

4𝑝
(
2𝑝
𝑝
)
𝜋

2
. 

2èmz cas : 𝑛 impair i.e. 𝑛 = 2𝑝 + 1 

𝑊2𝑝+1 =
2𝑝

2𝑝+1
𝑊2𝑝−1 = (

2𝑝

2𝑝+1
) (

2𝑝−2

2𝑝−1
)𝑊2𝑝−3 = (

2𝑝

2𝑝+1
) (

2𝑝−2

2𝑝−1
) (

2𝑝−4

2𝑝−3
)𝑊2𝑝−5 = ⋯ = (

2𝑝

2𝑝+1
) (

2𝑝−2

2𝑝−1
)…

4

5
.
2

3
𝑊1  

𝑊2𝑝+1 = (
2𝑝

2𝑝+1
) (

2𝑝−2

2𝑝−1
)…

4

5
.
2

3
  𝑐𝑎𝑟 𝑊1 = ∫ cos (𝑡)𝑑𝑡

𝜋

2
0

= sin (
𝜋

2
) − sin(0) = 1 

𝑊2𝑝+1 = (
2𝑝

2𝑝+1
) (

2𝑝−2

2𝑝−1
)…

4

5
.
2

3
=

(2𝑝)2(2𝑝−2)²…42×222

(2𝑝+1)(2𝑝)(2𝑝−1)(2𝑝−2)(2𝑝−3)…4×3×2
=
4𝑝[𝑝(𝑝−1)…2×1]2

(2𝑝+1)!
=

4𝑝(𝑝!)2

(2𝑝+1)!
 . Ainsi, 𝑊2𝑝 =

4𝑝

(2𝑝+1)(
2𝑝
𝑝
)
. 

k. Posons ∀𝑛 ∈ ℕ∗, 𝑡𝑛 = 𝑛𝑊𝑛𝑊𝑛−1 et montrons que la suite 𝑡 est constante. 

Soit 𝑛 ∈ ℕ∗. 𝑡𝑛+1 = (𝑛 + 1)𝑊𝑛+1𝑊𝑛 = (𝑛 + 1)
𝑛

𝑛+1
𝑊𝑛−1𝑊𝑛 = 𝑛𝑊𝑛−1𝑊𝑛 = 𝑡𝑛.  

La suite 𝑡 est donc constante égale à 𝑡1 = 𝑊1𝑊0 =
𝜋

2
. Ainsi, ∀𝑛 ∈ ℕ∗, 𝑛𝑊𝑛−1𝑊𝑛 =

𝜋

2
.  

l. D’après 𝑎., on sait que 𝑊 est convergente. Notons 𝐿 sa limite. 

Alors en passant à la limite dans l’égalité 𝑊𝑛−1𝑊𝑛 =
𝜋

2𝑛
 , on obtient 𝐿2 = 0 soit 𝐿 = 0. 

m. W est décroissante donc ∀𝑛 ∈ ℕ∗,𝑊𝑛+1 ≤ 𝑊𝑛 ≤ 𝑊𝑛−1 𝑒𝑡  𝑛𝑊𝑛𝑊𝑛+1 ≤ 𝑛𝑊𝑛
2 ≤ 𝑛𝑊𝑛𝑊𝑛−1 =

𝜋

2
  

Or, 𝑛𝑊𝑛𝑊𝑛−1 = [
𝑛

𝑛+1
] [(𝑛 + 1)𝑊𝑛𝑊𝑛−1] = [

𝑛

𝑛+1
]
𝜋

2
~+∞

𝜋

2
.  Donc, lim

𝑛→+∞
𝑛𝑊𝑛𝑊𝑛+1 =

𝜋

2
. Alors, l’encadrement ci-dessus, permet de conclure que lim

𝑛→+∞
𝑛𝑊𝑛² =

𝜋

2
 . 

Par conséquent , 𝑛𝑊𝑛²~+∞
𝜋

2
 . Alors, 𝑊𝑛²~+∞

𝜋

2𝑛
 et par conséquent, 𝑊𝑛~+∞√

𝜋

2𝑛
. 

n. Alors,  
1

4𝑝
(
2𝑝
𝑝
)
𝜋

2
= 𝑊2𝑛~+∞√

𝜋

4𝑝
=
1

2
√
𝜋

𝑝
 . Donc, (

2𝑝
𝑝
)~+∞

4𝑝

√𝜋𝑝
. 

 

 
Limite, un équivalent ou un développement asymptotique de suite 

Déterminer les limites quand 𝒏 → +∞ suivantes :  

1. lim
𝑛→+∞

ln(𝑛!)

𝑛2
 

2. lim
𝑛→+∞

𝑒−√𝑛 ln(1 − 𝑛 + 𝑒𝑛) 

3. lim
𝑛→+∞

(𝑐𝑜𝑠 (
𝑛𝜋

3𝑛+1
) + 𝑠𝑖𝑛 (

𝑛𝜋

6𝑛+1
))
𝑛

 

4. lim
𝑛→+∞

𝑛√𝑛+1

(𝑛+1)√𝑛
 

5. lim
𝑛→+∞

(𝑐ℎ(𝑛))
1

𝑛  

6. lim
𝑛→+∞

√𝑛 ln (
√𝑛+1

√𝑛−1
)

1. 0 ≤
ln(𝑛!)

𝑛2
≤
ln(𝑛𝑛)

𝑛2
=
𝑛𝑙𝑛(𝑛)

𝑛2
=
ln(𝑛)

𝑛
. Comme lim

𝑛→+∞

ln(𝑛)

𝑛
=⏞
𝑐𝑐

0, nous pouvons conclure que lim
𝑛→+∞

ln(𝑛!)

𝑛2
= 0. 

2. 𝑒−√𝑛 ln(1 − 𝑛 + 𝑒𝑛) = 𝑒−√𝑛 ln(𝑒𝑛(𝑒−𝑛 − 𝑛𝑒−𝑛 + 1)) = 𝑒−√𝑛𝑛 + 𝑒−√𝑛 ln (𝑒−𝑛 −
𝑛

𝑒𝑛
+ 1) = 𝑒−√𝑛+ln (𝑛) + 𝑒−√𝑛 ln (𝑒−𝑛 −

𝑛

𝑒𝑛
+ 1).  

Comme lim
𝑛→+∞

𝑛

𝑒𝑛
=⏞
𝑐𝑐

0, lim
𝑛→+∞

ln (𝑒−𝑛 −
𝑛

𝑒𝑛
+ 1) = 0 puis lim

𝑛→+∞
𝑒−√𝑛 ln (𝑒−𝑛 −

𝑛

𝑒𝑛
+ 1) = 0. De plus, 𝑙𝑛(𝑛) = 𝑜+∞(√𝑛) donc −√𝑛 + ln (𝑛)~+∞ −√𝑛 et par suite  

lim
𝑛→+∞

−√𝑛 + ln (𝑛) = −∞. Ainsi, lim
𝑛→+∞

𝑒−√𝑛+𝑛 = 0. J’en déduis que lim
𝑛→+∞

𝑒−√𝑛 ln(1 − 𝑛 + 𝑒𝑛) = 0.  

3. (𝑐𝑜𝑠 (
𝑛𝜋

3𝑛+1
) + 𝑠𝑖𝑛 (

𝑛𝜋

6𝑛+1
))
𝑛

= 𝑒𝑛𝑙𝑛[𝑐𝑜𝑠
(
𝑛𝜋

3𝑛+1
)+𝑠𝑖𝑛(

𝑛𝜋

6𝑛+1
)]. 𝑃𝑜𝑠𝑜𝑛𝑠 ℎ𝑛 = 𝑛𝑙𝑛 [𝑐𝑜𝑠 (

𝑛𝜋

3𝑛+1
) + 𝑠𝑖𝑛 (

𝑛𝜋

6𝑛+1
)].  

Comme lim
𝑛→+∞

𝑐𝑜𝑠 (
𝑛𝜋

3𝑛+1
) + 𝑠𝑖𝑛 (

𝑛𝜋

6𝑛+1
) = 𝑐𝑜𝑠 (

𝜋

3
) + 𝑠𝑖𝑛 (

𝜋

6
) =

1

2
+
1

2
= 1 𝑒𝑡 ln(𝑡)~1(𝑡 − 1), 𝑙𝑛 [𝑐𝑜𝑠 (

𝑛𝜋

3𝑛+1
) + 𝑠𝑖𝑛 (

𝑛𝜋

6𝑛+1
)]~+∞𝑐𝑜𝑠 (

𝑛𝜋

3𝑛+1
) + 𝑠𝑖𝑛 (

𝑛𝜋

6𝑛+1
) − 1.  

De plus, 𝑐𝑜𝑠 est dérivable en 
𝜋

3
 et 𝑐𝑜𝑠′ (

𝜋

3
) = − sin (

𝜋

3
) = −

√3

2
≠ 0; donc, cos(𝑡) − cos (

𝜋

3
)~𝜋

3
−
√3

2
(𝑡 −

𝜋

3
). Alors, cos(𝑡) −

1

2
= −

√3

2
(𝑡 −

𝜋

3
) + 𝑜𝜋

3
(𝑡 −

𝜋

3
).  

De même, 𝑠𝑖𝑛 est dérivable en 
𝜋

6
 et 𝑠𝑖𝑛′ (

𝜋

6
) = cos (

𝜋

6
) =

√3

2
≠ 0; donc, sin(𝑡) − sin (

𝜋

6
)~𝜋

6

√3

2
(𝑡 −

𝜋

6
). Alors, sin(𝑡) −

1

2
=
√3

2
(𝑡 −

𝜋

6
) + 𝑜𝜋

6
(𝑡 −

𝜋

6
).  

Comme lim
𝑛→+∞

𝑛𝜋

3𝑛+1
=
𝜋

3
, cos(

𝑛𝜋

3𝑛+1
) −

1

2
= −

√3

2
(
𝑛𝜋

3𝑛+1
−
𝜋

3
) + 𝑜+∞ (

𝑛𝜋

3𝑛+1
−
𝜋

3
) donc cos (

𝑛𝜋

3𝑛+1
) =

1

2
−
√3

2
(

−𝜋

3(3𝑛+1)
) + 𝑜+∞ (

−𝜋

3(3𝑛+1)
) =

1

2
+

𝜋√3

6(3𝑛+1)
+ 𝑜+∞ (

1

𝑛
). 

Et Comme lim
𝑛→+∞

𝑛𝜋

6𝑛+1
=
𝜋

6
, sin (

𝑛𝜋

6𝑛+1
) −

1

2
=
√3

2
(
𝑛𝜋

6𝑛+1
−
𝜋

6
) + 𝑜+∞ (

𝑛𝜋

6𝑛+1
−
𝜋

6
) donc, sin (

𝑛𝜋

6𝑛+1
) =

1

2
+
√3

2
(

−𝜋

6(6𝑛+1)
) + 𝑜+∞ (

−𝜋

6(6𝑛+1)
) =

1

2
+

−𝜋√3

12(6𝑛+1)
+ 𝑜+∞ (

1

𝑛
).  



Alors, 𝑐𝑜𝑠 (
𝑛𝜋

3𝑛+1
) + 𝑠𝑖𝑛 (

𝑛𝜋

6𝑛+1
) − 1 =

1

2
+

𝜋√3

6(3𝑛+1)
+ 𝑜+∞ (

1

𝑛
) +

1

2
+

−𝜋√3

12(6𝑛+1)
+ 𝑜+∞ (

1

𝑛
) =

𝜋√3

12
(

2

3𝑛+1
−

1

6𝑛+1
) + 𝑜+∞ (

1

𝑛
) =

𝜋√3

12
(

9𝑛+1

(3𝑛+1)(6𝑛+1)
) + 𝑜+∞ (

1

𝑛
). 

 Or, 
9𝑛+1

(3𝑛+1)(6𝑛+1)
~+∞

9𝑛

18𝑛2
=

1

2𝑛
. Donc, 𝑐𝑜𝑠 (

𝑛𝜋

3𝑛+1
) + 𝑠𝑖𝑛 (

𝑛𝜋

6𝑛+1
) − 1~+∞

𝜋√3

12
×

1

2𝑛
. Ainsi, ℎ𝑛~+∞𝑛 ×

𝜋√3

12
×

1

2𝑛
=
𝜋√3

12
×
1

2
. Donc, lim

𝑛→+∞
ℎ𝑛 =

𝜋√3

24
 .  

Aet ainsi  lim
𝑛→+∞

(𝑐𝑜𝑠 (
𝑛𝜋

3𝑛+1
) + 𝑠𝑖𝑛 (

𝑛𝜋

6𝑛+1
))
𝑛

= 𝑒
𝜋√3

24 .  

4.
𝑛√𝑛+1

(𝑛+1)√𝑛
= 𝑒ln

(𝑛√𝑛+1)−ln((𝑛+1)√𝑛).Posons, ℎ𝑛 = ln(𝑛
√𝑛+1) − ln((𝑛 + 1)√𝑛).  

ℎ𝑛 = ln(𝑛
√𝑛+1) − ln((𝑛 + 1)√𝑛) = √𝑛 + 1 ln(𝑛) − √𝑛 ln(𝑛 + 1) = √𝑛 (1 +

1

𝑛
) ln(𝑛) − √𝑛 ln(𝑛 (1 +

1

𝑛
)) = (1 +

1

𝑛
)

1
2

√𝑛ln(𝑛) − √𝑛ln(𝑛) − √𝑛[ln (1 +
1

𝑛
)].  

Comme  lim
𝑛→+∞

1

𝑛
= 0, (1 +

1

𝑛
)

1

2
= 1+

1

2𝑛
−

1

8𝑛2
+ 𝑜+∞ (

1

𝑛2
) et ln (1 +

1

𝑛
) =

1

𝑛
−

1

2𝑛2
+ 𝑜+∞ (

1

𝑛2
). Alors ,  

ℎ𝑛 = [1 +
1

2𝑛
−

1

8𝑛2
+ 𝑜+∞ (

1

𝑛2
) ]√𝑛ln(𝑛) − √𝑛ln(𝑛) − √𝑛 [

1

𝑛
−

1

2𝑛2
+ 𝑜+∞ (

1

𝑛2
)] =

√𝑛ln(𝑛)

2𝑛
−
√𝑛ln(𝑛)

8𝑛2
+ 𝑜+∞ (

√𝑛ln(𝑛)

𝑛2
) −

√𝑛

𝑛
+

√𝑛

2𝑛2
+ 𝑜+∞ (

√𝑛

𝑛2
)  

=
ln(𝑛)

2√𝑛
−
ln(𝑛)

8𝑛√𝑛
+ 𝑜+∞ (

ln(𝑛)

𝑛√𝑛
) −

1

√𝑛
+

1

2𝑛√𝑛
+ 𝑜+∞ (

1

𝑛√𝑛
) =⏟

𝑐𝑎𝑟 
1

2𝑛√𝑛
≪+∞

ln(𝑛)

𝑛√𝑛
≪+∞

1

√𝑛
≪+∞

ln(𝑛)

2√𝑛

ln(𝑛)

2√𝑛
+ 𝑜+∞ (

ln(𝑛)

2√𝑛
)~+∞

ln(𝑛)

2√𝑛
. Comme lim

𝑛→+∞

ln(𝑛)

√𝑛
=⏞
𝑐𝑐

0, lim
𝑛→+∞

ℎ𝑛 = 0. 

 Ainsi, lim
𝑛→+∞

𝑛√𝑛+1

(𝑛+1)√𝑛
= 𝑒0 = 1. 

5.(𝑐ℎ(𝑛))
1

𝑛 = 𝑒
1

𝑛
ln(𝑐ℎ(𝑛)). Posons ℎ𝑛 =

1

𝑛
ln(𝑐ℎ(𝑛)).Alors, ℎ𝑛 =

1

𝑛
ln(𝑐ℎ(𝑛)) =

1

𝑛
ln (

𝑒𝑛+𝑒−𝑛

2
) =

1

𝑛
ln (𝑒𝑛 (

1+𝑒−2𝑛

2
)) =

1

𝑛
ln(𝑒𝑛) +

1

𝑛
ln (

1+𝑒−2𝑛

2
) = 1 +

1

𝑛
ln (

1+𝑒−2𝑛

2
). 

Donc, lim
𝑛→+∞

ℎ𝑛 = 1. Ainsi, lim
𝑛→+∞

(𝑐ℎ(𝑛))
1

𝑛 = 𝑒.  

6. 
√𝑛+1

√𝑛−1
~+∞

√𝑛

√𝑛
= 1. Donc, lim

𝑛→+∞

√𝑛+1

√𝑛−1
= 1 et ln(𝑡)~1𝑡 − 1. Alors, ln (

√𝑛+1

√𝑛−1
)~+∞

√𝑛+1

√𝑛−1
− 1 =

2

√𝑛−1
~+∞

2

√𝑛
. Donc, √𝑛 ln (

√𝑛+1

√𝑛−1
)~+∞√𝑛

2

√𝑛
= 2. Ainsi, 

lim
𝑛→+∞

√𝑛 ln (
√𝑛+1

√𝑛−1
) = 2. 

 

Trouver un équivalent simple puis la limite quand 𝒏 → +∞  de :  

1. 𝑢𝑛 =
𝑛!−2𝐴𝑟𝑐𝑡𝑎𝑛(𝑛)𝑒

𝑛²
2 −9𝑛𝑛

1

5sin(
1
𝑛)
 −100ln²(𝑛)

  

2. 𝑢𝑛 = sin (𝑛
2 + 1) − (−1)𝑛𝑛   

3. 𝑢𝑛 = ln (
2−tan(

1

𝑛2
)

2 cos(
1

𝑛
)
)   

4. 𝑣𝑛 = √ln(𝑛 + 1) − √ln (𝑛). 

5. 𝑢𝑛 = (ln(𝑛) − 𝑛)
𝑛 ln (𝑠𝑖𝑛 (

1

𝑛2
))   

6. 𝑣𝑛 = ln (
𝑛

𝑛−1
) + 𝑎

𝐴𝑟𝑐𝑡𝑎𝑛(𝑛)

𝑛
 où 𝑎 ∈ ℝ   

7. 𝑤𝑛 = (𝑐ℎ(𝑛))
𝑎 − (𝑠ℎ(𝑛))𝑎 où 𝑎 ∈ ℝ

1. lim
𝑛→+∞

𝐴𝑟𝑐𝑡𝑎𝑛(𝑛) =
𝜋

2
∈ ℝ∗ donc, 𝐴𝑟𝑐𝑡𝑎𝑛(𝑛)~+∞

𝜋

2
 et 2𝐴𝑟𝑐𝑡𝑎𝑛(𝑛)𝑒

𝑛²

2~+∞𝜋𝑒
𝑛²

2  

𝑒
𝑛2

2

𝑛𝑛
=

𝑒
𝑛2

2

𝑒ln (𝑛
𝑛)
= 𝑒

𝑛2

2
−ln (𝑛𝑛) = 𝑒

𝑛2

2
−𝑛ln (𝑛) = 𝑒

𝑛2

2
(1−

2ln(𝑛)

𝑛
)
. Comme lim

𝑛→+∞

ln(𝑛)

𝑛
=⏞
𝑐𝑐

0, lim
𝑛→+∞

𝑒
𝑛2

2

𝑛𝑛
= +∞ 𝑒𝑡 𝑝𝑎𝑟 𝑠𝑢𝑖𝑡𝑒 𝑛𝑛 ≪+∞ 𝑒

𝑛2

2 . De plus, 𝑛! ≪+∞ 𝑛𝑛 .  

Donc, 𝑛! ≪+∞ 𝑛𝑛 ≪+∞ 𝑒
𝑛2

2  et par suite, 𝑛! − 2𝐴𝑟𝑐𝑡𝑎𝑛(𝑛)𝑒
𝑛2

2 − 9𝑛𝑛~+∞ − 𝜋𝑒
𝑛2

2 .    

Comme lim
𝑛→+∞

1

𝑛
= 0 et 𝑠𝑖𝑛(𝑡)~0𝑡, 𝑠𝑖𝑛 (

1

𝑛
)~+∞

1

𝑛
 donc, 

1

5sin(
1

𝑛
)
~+∞

𝑛

5
.  

De plus, ln2(𝑛) ≪+∞ 𝑛. Donc, 100ln²(𝑛) ≪+∞
1

5sin(
1

𝑛
)
 et par suite,  

1

5sin(
1

𝑛
)
 − 100ln²(𝑛)~+∞

1

5sin(
1

𝑛
)
~+∞

𝑛

5
.  

J’en déduis que 𝑢𝑛~+∞ −
𝜋𝑒
𝑛2

2

𝑛

5

= −5𝜋
𝑒
𝑛2

2

𝑛
 .  

2. 
𝑠𝑖𝑛(𝑛2+1)

(−1)𝑛𝑛
=

𝑠𝑖𝑛(𝑛2+1)

(−1)𝑛⏟    
𝑠𝑢𝑖𝑡𝑒 𝑏𝑜𝑟𝑛é𝑒

×
1

𝑛⏟

𝑛→+∞
→     0

𝑛→+∞
→    0. Donc, 𝑠𝑖𝑛(𝑛2 + 1) ≪+∞ (−1)𝑛𝑛. Ainsi, 𝑢𝑛~+∞ − (−1)

𝑛𝑛 = (−1)𝑛+1𝑛.  

3. lim
𝑛→+∞

2−tan(
1

𝑛2
)

2 cos(
1

𝑛
)
=
2

2
= 1. Et, ln(𝑡)~1𝑡 − 1. Donc, ln (

2−tan(
1

𝑛2
)

2 cos(
1

𝑛
)
)~+∞

2−tan(
1

𝑛2
)

2 cos(
1

𝑛
)
− 1 =

2−tan(
1

𝑛2
)−2cos(

1

𝑛
)

2 cos(
1

𝑛
)

~+∞1 −
1

2
tan(

1

𝑛2
) − cos(

1

𝑛
).  

4. De plus, 1 −
1

2
tan (

1

𝑛2
) − cos (

1

𝑛
) = 1 −

1

2𝑛2
+𝑜+∞ (

1

𝑛4
) − (1 −

1

2𝑛2
+

1

24𝑛4
+ 𝑜+∞ (

1

𝑛4
)) = −

1

24𝑛4
+ 𝑜+∞ (

1

𝑛4
). Ainsi, 𝑢𝑛~+∞ −

1

24𝑛4
. 

5. 𝑢𝑛 = (ln(𝑛) − 𝑛)
𝑛 ln (𝑠𝑖𝑛 (

1

𝑛2
)) = (−1)𝑛(𝑛 − ln(𝑛))𝑛 ln (𝑠𝑖𝑛 (

1

𝑛2
)) = (−1)𝑛(𝑛 − ln(𝑛))𝑛 ln (𝑠𝑖𝑛 (

1

𝑛2
)) = (−1)𝑛𝑒𝑛𝑙𝑛(𝑛−ln(𝑛)) ln (

1

𝑛2
−

1

6𝑛6
+ 𝑜+∞ (

1

𝑛6
)) 

= (−1)𝑛𝑒
𝑛𝑙𝑛(𝑛(1−

ln(𝑛)
𝑛 ))

ln (
1

𝑛2
(1 −

1

6𝑛4
+ 𝑜+∞ (

1

𝑛4
))) 

= (−1)𝑛𝑒
𝑛𝑙𝑛(𝑛)+𝑛𝑙𝑛(1−

ln(𝑛)
𝑛 )
 [ln (

1

𝑛2
) + ln (1 −

1

6𝑛4
+ 𝑜+∞ (

1

𝑛4
))] 

= (−1)𝑛𝑒𝑛𝑙𝑛(𝑛) 𝑒
𝑛𝑙𝑛(1−

ln(𝑛)
𝑛 )
 [−2ln(𝑛) + 𝑜+∞(1)] 

= (−1)𝑛𝑒𝑛𝑙𝑛(𝑛) 𝑒
𝑛[−

ln(𝑛)
𝑛 −

ln(𝑛)²
2𝑛²

+𝑜+∞(
ln(𝑛)²
𝑛²

)][
 [−2ln(𝑛) + 𝑜+∞(1)] 

= (−1)𝑛𝑒𝑛𝑙𝑛(𝑛) 𝑒
[− ln(𝑛)−

ln(𝑛)²
2𝑛 𝑜+∞(

ln(𝑛)²
𝑛 )][

 [−2ln(𝑛) + 𝑜+∞(1)] 
 

𝑢𝑛~+∞(−1)
𝑛𝑒𝑛𝑙𝑛(𝑛) 𝑒[− ln(𝑛)]𝑒

−
ln(𝑛)²
2𝑛 𝑜+∞(

ln(𝑛)²
𝑛 )

[−2ln(𝑛)] 

 Comme lim
𝑛→+∞

ln(𝑛)²

𝑛
=⏞
𝑐𝑐

0, lim
𝑛→+∞

𝑒
−
ln(𝑛)²

2𝑛
𝑜+∞(

ln(𝑛)²

𝑛
)
= 1. Donc,  

𝑢𝑛~+∞(−1)
𝑛𝑒𝑛𝑙𝑛(𝑛) 𝑒[− ln(𝑛)][−2ln(𝑛)] = 2(−1)𝑛+1𝑛𝑛−1 ln(𝑛). Ainsi, 𝑢𝑛~+∞2(−𝑛)

𝑛−1 ln(𝑛) 



 
 
 

Des développements asymptotiques de suites 

1. Soit 𝑝 ∈ ℕ. Déterminer un développement asymptotique à la précision 
1

𝑛𝑝
 de 𝐴𝑟𝑐tan (𝑛).  

2.Déterminer un développement asymptotique à la précision 
1

𝑛3
 de 𝑢𝑛 =

1

𝑛!
∑ 𝑘!𝑛
𝑘=0 . 

3.Montrer que (
𝑛+1

𝑛
)
ln (𝑛)

= 1+
ln(𝑛)

𝑛
+
1

2
(
ln(𝑛)

𝑛
)
2

+
ln(𝑛)

𝑛2
+
(ln(𝑛))3

6𝑛3
+
(ln(𝑛))²

𝑛3
+
ln(𝑛)

𝑛3
+ 𝑜+∞ (

ln(𝑛)

𝑛3
).

(
𝑛 + 1

𝑛
)
ln(𝑛)

= (1 +
1

𝑛
)
ln(𝑛)

= 𝑒ln
(𝑛) ln(1+

1
𝑛
)
= 𝑒

ln(𝑛)[
1
𝑛
−
1
2𝑛2

+
1
3𝑛3

+𝑜+∞(
1
𝑛3
)] 
= 𝑒

[
ln(𝑛)
𝑛

−
ln(𝑛)
2𝑛2

+
ln(𝑛)
3𝑛3

+𝑜+∞(
ln(𝑛)
𝑛3

)] 
. 

Comme lim
𝑛→+∞

ln(𝑛)

𝑛
−
ln(𝑛)

2𝑛2
+
ln(𝑛)

3𝑛3
+ 𝑜+∞ (

ln(𝑛)

𝑛3
)⏟                    

=𝑢𝑛

=⏞
𝐶𝐶

0 𝑒𝑡 𝑒𝑡 = 1 + 𝑡 +
𝑡2

2
+
𝑡3

6
+ 𝑡3𝜀(𝑡) 𝑡𝑞 lim

𝑡→0
𝜀(𝑡) = 0, 𝑒𝑢𝑛 = 1+ 𝑢𝑛 +

𝑢𝑛
2

2
+
𝑢𝑛
3

6
+ 𝑢𝑛

3𝜀(𝑢𝑛) et par composition, 

lim
𝑛→+∞

𝜀(𝑢𝑛) = 0.  

𝑒𝑢𝑛 = 1 +
ln(𝑛)

𝑛
+
1

2
(
ln(𝑛)

𝑛
)

2

+
ln(𝑛)

𝑛2
+
(ln(𝑛))3

6𝑛3
+
(ln(𝑛))²

𝑛3
+
ln(𝑛)

𝑛3
+ 𝑜+∞ (

ln(𝑛)

𝑛3
).

 

Equivalent par encadrement   

1) Montrer que : pour tout entier naturel 𝑛 non nul (
2𝑛+1

3
)√𝑛 ≤ ∑ √𝑘𝑛

𝑘=1 ≤ (
2𝑛

3
+
1

2
)√𝑛. En déduire un équivalent simple de 𝑢𝑛 = ∑ √𝑘𝑛

𝑘=1 . 

 

2) Soit 𝑢 une suite positive, décroissante et telle que :  𝑢𝑛 + 𝑢𝑛+1~
1

𝑛
. On pose 𝑎𝑛 = 𝑛(𝑢𝑛 + 𝑢𝑛+1).  

Montrer que :  𝑎𝑛 ≤ 2𝑛𝑢𝑛 ≤
𝑛

𝑛−1
𝑎𝑛−1 . En déduire que 𝑢𝑛~

1

2𝑛
. 

𝑎𝑛 = 𝑛(𝑢𝑛 + 𝑢𝑛+1) ≤ 𝑛(𝑢𝑛 + 𝑢𝑛) ≤ 𝑛(𝑢𝑛 + 𝑢𝑛−1) =
𝑛

𝑛−1
(𝑛 − 1)(𝑢𝑛 + 𝑢𝑛−1) =

𝑛

𝑛−1
𝑎𝑛. Or, 𝑢𝑛 + 𝑢𝑛+1~

1

𝑛
 𝑑𝑜𝑛𝑐 lim

𝑛→+∞

𝑛

𝑛−1
𝑎𝑛 =  lim

𝑛→+∞
𝑎𝑛 = 1.  Par 

encadrement, lim
𝑛→+∞

2𝑛𝑢𝑛 = 1. Ainsi, 𝑢𝑛~
1

2𝑛
. 

3) ∀𝑛 ∈ ℕ, 𝑢𝑛 =
√𝑛 + √𝑛 − 1 +√𝑛 − 2 +⋯+√2 + √1. 

1. Montrer que lim
𝑛→+∞

𝑢𝑛 = +∞. 

2. Exprimer 𝑢𝑛+1 en fonction du 𝑢𝑛. 
3. Montrer que ∀𝑛 ∈ ℕ,  𝑢𝑛 ≤ 𝑛. 
4. Montrer que 𝑢𝑛 = 𝑜(𝑛). 

5. Montrer que 𝑢𝑛~√𝑛. 

6. Déterminer un réel l tel que : 𝑢𝑛 = √𝑛 + l +𝑜+∞(1).
1.∀𝑛 ∈ ℕ,  𝑢𝑛 ≥ √𝑛. Donc, lim

𝑛→+∞
𝑢𝑛 = +∞. 

2.∀𝑛 ∈ ℕ,  𝑢𝑛+1
2 = 𝑛 + 𝑢𝑛 𝑒𝑡 𝑢𝑛+1 = √𝑛 + 𝑢𝑛  

3.𝑢0 = 0 ≤ 0.  Et 𝑢𝑛 ≤ 𝑛.⟹ 𝑢𝑛+1
2 = 𝑛 + 𝑢𝑛 ≤ 2𝑛 ⟹ 𝑢𝑛+1 = √𝑢𝑛+1

2 ≤ √2𝑛 ⟹⏟
𝑐𝑎𝑟 𝑛+1≥√2𝑛
𝑝𝑢𝑖𝑠𝑢𝑞𝑒

𝑛2+2𝑛+1−2𝑛>0

 𝑢𝑛+1 ≤ 𝑛 + 1.  CCL : ∀𝑛 ∈ ℕ,  𝑢𝑛 ≤ 𝑛. 

4. et 5. ∀𝑛 ∈ ℕ,  0 ≤ 𝑛 − 1 + 𝑢𝑛−1 ≤ 2𝑛 − 2 donc  0 ≤
𝑢𝑛

𝑛
=
√𝑛−1+𝑢𝑛−1

𝑛
≤
√2𝑛−1

𝑛
. Or, 

√2𝑛−1

𝑛
~√

2

𝑛
 donc 

√2𝑛−1

𝑛 𝑛→+∞
→    0   Donc 

𝑢𝑛

𝑛 𝑛→+∞
→    0 ce qui signifie que 𝑢𝑛 =

𝑜(𝑛). Alors,  𝑛 + 𝑢𝑛~𝑛 𝑒𝑡 √𝑛 + 𝑢𝑛~√𝑛  . Donc 𝑢𝑛+1~√𝑛  𝑒𝑡 par conséquent  𝑢𝑛~√𝑛 − 1  ~√𝑛  . Donc, 𝑢𝑛 = 𝑜(𝑛). 

6. , 𝑢𝑛 − √𝑛 = √𝑛 + 𝑢𝑛−1 − √𝑛 =
𝑢𝑛61

√𝑛+𝑢𝑛−1+√𝑛
~⏟

𝑢𝑛−1=𝑜(𝑛−1)=𝑜(𝑛) 𝑑𝑜𝑛𝑐

√𝑛+𝑢𝑛−1=√𝑛+𝑜(√𝑛)

𝑒𝑡

√𝑛+𝑢𝑛−1+√𝑛=2√𝑛+𝑜(√𝑛)~2√𝑛

√𝑛−1

2√𝑛
~
1

2
. Donc, lim

𝑛→+∞
𝑢𝑛 −√𝑛 =

1

2
. Ainsi, 𝑢𝑛 − √𝑛 =

1

2
 + 𝑜+∞(1) 𝑒𝑡 finalement, 𝑢𝑛 =

√𝑛 +
1

2
 + 𝑜+∞(1). 

 

Suites extraites:  

Montrer que toute suite réelle non majorée a une suite extraite de limite +∞. 

On allons construire par récurrence une suite 𝑣 extraite de 𝑢 telle que : 𝑣 strictement croissante et  ∀𝑛, 𝑣𝑛 ≥ 𝑛.  

Initialisation : 0 ne majore pas 𝑢 donc il existe 𝑝0 𝑡𝑒𝑙 𝑞𝑢𝑒 𝑢𝑝0 ≥ 0. On pose 𝑣0 = 𝑢𝑝0 .  

Propagation : Soit 𝑛 un entier naturel. Je suppose construits les premiers termes 𝑣0, … , 𝑣𝑛.  

Alors, ∀𝑘 ∈ ⟦0, 𝑛⟧, 𝑣𝑘 ≥ 𝑘 𝑒𝑡 𝑣𝑘 = 𝑢𝑝𝑘 𝑎𝑣𝑒𝑐 𝑝𝑘 ∈ ℕ  𝑒𝑡  𝑝𝑛 > 𝑝𝑛−1 > ⋯ > 𝑝0 et 𝑣𝑛 > 𝑣𝑛−1 > ⋯ > 𝑣0 . 

Posons 𝑀 = max(𝑛 + 1, 𝑢0, 𝑢1, 𝑢2, 𝑢3, … . . 𝑢𝑝𝑛−2, 𝑢𝑝𝑛−1, 𝑢𝑝𝑛). 

𝑀 ne majore pas 𝑢 (puisque u n’est pas majorée) donc il existe un entier 𝑝𝑛+1 tel que 𝑢𝑝𝑛+1 > 𝑀. On pose 𝑣𝑛+1 = 𝑢𝑝𝑛+1 .  Comme 𝑢𝑝𝑛+1 ≠ 𝑀, 𝑢𝑝𝑛+1 ∉

{𝑢0, 𝑢1, … . . , 𝑢𝑝𝑛} et 𝑝𝑛+1 ∉ {0,1,2,… , 𝑝𝑛} et par suite, 𝑝𝑛+1 > 𝑝𝑛 . Comme 𝑢𝑝𝑛+1 >  max(𝑛 + 1, 𝑢0, 𝑢1, … . . , 𝑢𝑝𝑛) , 𝑢𝑝𝑛+1 > 𝑢𝑝𝑛 et 𝑢𝑝𝑛+1 > 𝑛 + 1.   OK !  

CCL : ∀𝑛, 𝑣𝑛 = 𝑢𝑝𝑛 𝑒𝑡 𝑝𝑛 > 𝑝𝑛−1 𝑒𝑡  𝑣𝑛+1 > 𝑣𝑛 ≥ 𝑛. Alors 𝜑: (
ℕ → ℕ
𝑛 ↦ 𝑝𝑛

) est strictement croissante donc 𝑣 est bien une suite extraite de 𝑢. De plus, ∀𝑛, 𝑣𝑛+1 >

𝑣𝑛  donc v est strictement croissante . ∀𝑛, 𝑣𝑛  ≥ 𝑛. Donc par le théorème de limite par encadrement, lim
𝑛→+∞

𝑣𝑛 = +∞.  

Soit  𝑢 une suite telle que : ∀(𝑛, 𝑝) ∈ (ℕ∗)² , 0 ≤ 𝑢𝑛+𝑝 ≤
𝑛+𝑝

𝑛𝑝
. Montrer que 𝑢 est convergente et déterminer sa limite. 

∀𝑛 > 0, 0 ≤ 𝑢𝑛+𝑛 ≤
𝑛+𝑛

𝑛2
=
2

𝑛
. Donc, lim

𝑛→+∞
𝑢2𝑛 = 0. Et ∀𝑛 > 0, 0 ≤ 𝑢𝑛+𝑛+1 ≤

𝑛+𝑛+1

𝑛(𝑛+1)
=
2𝑛+1

𝑛2+𝑛
.Comme 

2𝑛+1

𝑛2+𝑛
~
2

𝑛
,  lim
𝑛→+∞

2𝑛+1

𝑛2+𝑛
= 0 et par suite, Donc, lim

𝑛→+∞
𝑢2𝑛+1 = 0. 

Comme les suites (𝑢2𝑛) et (𝑢2𝑛+1) convergent vers 0, le cours assure que 𝑢 est convergente de limite nulle.  



Démontrer que les suites (cos (𝑛))𝑛∈ℕ 𝑒𝑡 (sin (𝑛))𝑛∈ℕ divergent sans limites.  

(cos (𝑛))𝑛∈ℕ 𝑒𝑡 (sin (𝑛))𝑛∈ℕ sont bornées donc si elles ont une limite, ces limites sont finies.  

Imaginons un instant que (cos (𝑛))𝑛∈ℕ converge. Notons L sa limite. Alors 𝐿 ∈ [−1,1] puisque ∀𝑛,−1 ≤ cos(𝑛) ≤ 1.  

De plus, ∀𝑛, cos(𝑛 + 1) = cos(𝑛) cos(1) − sin(𝑛) sin (1) donc, sin(𝑛)=
1

sin(1)
[ cos(𝑛) cos(1) − cos (𝑛 + 1)] . Comme (cos(𝑛))𝑛∈ℕ converge vers 𝐿 , 

(cos(𝑛 + 1))𝑛∈ℕ converge aussi ver 𝐿  et par conséquent, (sin(𝑛))𝑛∈ℕ converge vers 𝐿′ =
1

sin(1)
[ 𝐿𝑐𝑜𝑠(1) − L] = 𝐿

1−cos(1)

sin(1)
.   

 Enfin , ∀𝑛, 𝑐𝑜𝑠2(𝑛) + 𝑠𝑖𝑛2(𝑛) = 1.  Donc, 𝐿2 + 𝐿′2 = lim
𝑛→+∞

𝑐𝑜𝑠2(𝑛) + 𝑠𝑖𝑛2(𝑛) = 1. Donc il existe un réel 𝜃 tel que 𝐿 = cos(𝜃) 𝑒𝑡 𝐿′ = sin(𝜃). Alors par passage 

à la limite dans les égalités:  ∀𝑛, {
cos(𝑛 + 1) = cos(𝑛) cos(1) − sin(𝑛) sin(1)

sin (𝑛 + 1) = sin(𝑛) cos(1) + cos(𝑛) sin(1) 
 , j’obtiens :  

{
cos(𝜃) = cos(𝜃) cos(1) − sin(𝜃) sin(1) = cos (𝜃 + 1)

cos(𝜃) = sin(𝜃) cos(1) + cos(𝜃) sin(1) = sin (𝜃 + 1)
. Par conséquent, il existe un entier 𝑘 tel que 𝜃 = 𝜃 + 1 + 2𝑘𝜋 𝑖. 𝑒. 2𝑘𝜋 = −1⏟      

𝐼𝑀𝑃𝑂𝑆𝑆𝐼𝐵𝐿𝐸

 .  

Ainsi, le réel 𝐿  n’existe pas et puisque (L’ existe ⟹L existe), le réel 𝐿′  n’existe pas non plus.   Ainsi, les suites (cos (𝑛))𝑛∈ℕ 𝑒𝑡 (sin (𝑛))𝑛∈ℕ divergent sans 

limites. 

Borne sup . inf.  

Déterminer les bornes supérieure et inférieure de 𝐴 = {
2𝑝

2𝑝𝑞+3
/(𝑝, 𝑞) ∈ ℕ∗²}    

• 𝐴 est une partie de ℝ non vide (car en prenant 𝑝 = 𝑞 = 1, on prouve que 
2

2+3
=
2

5
∈ 𝐴).  

De plus, soit (𝑝, 𝑞) ∈ ℕ∗. 1 ≤ 𝑞 𝑑𝑜𝑛𝑐 0 < 2𝑝 ≤ 2𝑝𝑞 ( 𝑐𝑎𝑟 𝑝 > 0)𝑒𝑡 𝑝𝑎𝑟 𝑠𝑢𝑖𝑡𝑒 , 0 <  2𝑝 ≤ 2𝑝𝑞 < 2𝑝𝑞 + 3 𝑑𝑜𝑛𝑐 0 <
2𝑝

2𝑝𝑞+3
< 1.  

J’en déduis que 𝐴 est minorée par 0 et majorée par 1. J’en conclus que 𝐴 admet des bornes supérieure et inférieure finies.  

• 0 minore 𝐴. Posons ∀𝑞 ∈ ℕ∗, 𝑢𝑞 =
2

2𝑞+3
. 𝐴𝑙𝑜𝑟𝑠, ∀𝑞 ∈ ℕ∗, 𝑢𝑞 =

2

2𝑞+3
∈ 𝐴 ( il suffit de prendre 𝑝 = 1). De plus, la suite (𝑢𝑞) tend vers 0.  

J’en conclus par la caractérisation séquentielle de la borne inf. que inf(𝐴) = 0.  

• 1 miajore 𝐴. Posons ∀𝑝 ∈ ℕ∗, 𝑣𝑝 =
2𝑝

2𝑝+3
. 𝐴𝑙𝑜𝑟𝑠, ∀𝑝 ∈ ℕ∗, 𝑣𝑝 =

2𝑝

2𝑝+3
∈ 𝐴 ( prendre 𝑞 = 1). De plus, 𝑣𝑝~1 donc la suite (𝑣𝑝) tend vers 1.  

J’en conclus par la caractérisation séquentielle de la borne sup. que sup(𝐴) = 1.  

Soient 𝐴 𝑒𝑡 𝐵 deux parties bornées de ℝ non vides. 

1. Montrer que 𝐴 ⊂ 𝐵 ⟹ 𝑖𝑛𝑓𝐵 ≤ 𝑖𝑛𝑓𝐴 ≤  𝑠𝑢𝑝𝐴 ≤ 𝑠𝑢𝑝𝐵.  
2. On note 𝐴 + 𝐵 ={𝑥 + 𝑦 / 𝑥𝐴 𝑒𝑡 𝑦𝐵}.  Montrer que 𝐴 + 𝐵 𝑒𝑠t bornée et 𝑠𝑢𝑝 (𝐴 + 𝐵)  = 𝑠𝑢𝑝𝐴 + 𝑠𝑢𝑝𝐵  et inf(𝐴 + 𝐵) = inf (𝐴) + inf(𝐵). 

3. Soit 𝐶 = {
|𝑎−𝑎′|

𝑎
∈ 𝐴 𝑒𝑡 𝑎′ ∈ 𝐴}.  

Montrer que 𝐶 admet des bornes sup et inf finies et les exprimer en fonction des bornes sup et inf de 𝐴 . 
1. 𝐴 et 𝐵 sont non vides et bornées . Donc, 𝑖𝑛𝑓𝐵, 𝑖𝑛𝑓𝐴, 𝑠𝑢𝑝𝐴 𝑒𝑡 𝑠𝑢𝑝𝐵 existent et sont finies. De plus, ∀𝑎 ∈ 𝐴, 𝑎 ∈ 𝐵 𝑒𝑡 par conséquent, 𝑖𝑛𝑓𝐵 ≤ 𝑎 ≤

𝑠𝑢𝑝𝐵. Donc, 𝑖𝑛𝑓𝐵 minore 𝐴 et 𝑠𝑢𝑝𝐵 majore 𝐴. Comme 𝑖𝑛𝑓𝐴 est le plus grand majorant de 𝐴, nécessairement, 𝑖𝑛𝑓𝐵 ≤ 𝑖𝑛𝑓𝐴 et comme 𝑠𝑢𝑝𝐴 est le plus 
petit minorant de 𝐴, nécessairement, 𝑠𝑢𝑝𝐴 ≤ 𝑠𝑢𝑝𝐵.  

2. 𝐴 + 𝐵 ={𝑥 + 𝑦 / 𝑥𝐴 𝑒𝑡 𝑦𝐵}.   
∀𝑥𝐴 𝑒𝑡 ∀𝑦𝐵, 𝑥 ∈ ℝ 𝑒𝑡 𝑦 ∈ ℝ 𝑑𝑜𝑛𝑐 𝑥 + 𝑦 ∈ ℝ. Ainsi, 𝐴 + 𝐵 ⊂ ℝ.  
𝐴 et 𝐵 étant non vides, 𝐴 contient au moins un élément 𝑎 et 𝐵 contient au moins un élément 𝑏 et par conséquent 𝐴 + 𝐵 contient l’élément 𝑎 + 𝑏 et est 
donc non vide.  
De plus, ∀𝑥𝐴 , ∀𝑦𝐵, 𝑖𝑛𝑓𝐴 ≤ 𝑥 ≤ 𝑠𝑢𝑝𝐴  𝑒𝑡  𝑖𝑛𝑓𝐵 ≤ 𝑦 ≤ 𝑠𝑢𝑝𝐵  𝑑𝑜𝑛𝑐  𝑖𝑛𝑓𝐴 + 𝑖𝑛𝑓𝐵 ≤ 𝑥 + 𝑦 ≤ 𝑠𝑢𝑝𝐴 + 𝑠𝑢𝑝𝐵 . Donc, 𝑖𝑛𝑓𝐴 + 𝑖𝑛𝑓𝐵 minore 𝐴 + 𝐵 et 
𝑖𝑛𝑓𝐴 + 𝑖𝑛𝑓𝐵 majore 𝐴 + 𝐵.  
De plus, d’après la caractérisation séquentielle de la borne inf,  il existe une suite (𝑎𝑛) d’éléments de 𝐴 qui converge vers 𝑖𝑛𝑓𝐴 et une suite 
(𝑏𝑛) d’éléments de 𝐵 qui converge vers 𝑖𝑛𝑓𝐵.  Alorq la suite (𝑎𝑛 + 𝑏𝑛) 𝑒𝑠𝑡 une suite d’éléments de 𝐴 + 𝐵 qui converge vers 𝑖𝑛𝑓𝐴 + 𝑖𝑛𝑓𝐵. Comme, de 
plus, 𝑖𝑛𝑓𝐴 + 𝑖𝑛𝑓𝐵 minore 𝐴 + 𝐵, la même caractérisation de la borne inf, permet de conclure que 𝑖𝑛𝑓𝐴 + 𝑖𝑛𝑓𝐵 est la borne inférieure de 𝐴 + 𝐵 i.e. 
𝑖𝑛𝑓𝐴 + 𝑖𝑛𝑓𝐵 = 𝑖𝑛𝑓(𝐴 + 𝐵).  De même, on prouve que 𝑠𝑢𝑝𝐴 + 𝑠𝑢𝑝𝐵 = sup (𝐴 + 𝐵).   

3. 𝐶 = {|𝑎 − 𝑎′|/𝑎 ∈ 𝐴 𝑒𝑡 𝑎′ ∈ 𝐴}.   
Soient 𝑓: [0,1] → [0,1] croissante et 𝐸 = {𝑎 ∈ [0,1]/𝑓(𝑎) ≥ 𝑎}.  

1. Justifier que 𝐸 admet une borne supérieure notée 𝑠.  
2. Montrer par l’absurde que 𝑓(𝑠) ≤ 𝑠. 
3. Montrer par l’absurde que 𝑓(𝑠) ≥ 𝑠. 
4.  Qui est 𝑠 pour la fonction 𝑓 ?  
1.𝐸 ⊂ [0,1]. De plus, 𝑓(0) ≥ 0 𝑑𝑜𝑛𝑐 0 ∈ 𝐸 𝑒𝑡 𝑝𝑎𝑟 𝑐𝑜𝑛𝑠é𝑞𝑢𝑒𝑛𝑡, 𝐸 𝑒𝑠𝑡 𝑛𝑜𝑛 𝑣𝑖𝑑𝑒.  Donc E amdet une borne sup finie notée 𝑠.  

2. Imaginons un instant que 𝑓(𝑠) > 𝑠. Considérons 𝑐 ∈]𝑠, 𝑓(𝑠)[. Alors 𝑐 > 𝑠 donc par coirssance de 𝑓 , 𝑓(𝑐) ≥ 𝑓(𝑠). De plus , comme 𝑐 > 𝑠 = 𝑠𝑢𝑝(𝐸), 𝑐 ∉ 𝐸 

donc 𝑓(𝑐) < 𝑐. Alors 𝑐 > 𝑓(𝑠) ce qui contredit …. . J’en déduis que 𝑓(𝑠) ≤ 𝑠.  

3. Imaginons un instant que 𝑓(𝑠) < 𝑠. Alors 𝑓(𝑠) n’est pas un majorant de 𝐸 ( car s est le plus petit majorant de E) donc il existe 𝑏 ∈ 𝐸 𝑒𝑡 𝑓(𝑠) < 𝑏 ≤ 𝑠.  

Donc d’une part , 𝑏 ∈ 𝐸, 𝑓(𝑏) ≥ 𝑏 etpar suite, 𝑓(𝑠) > 𝑓(𝑏). 𝐸𝑡, d’autre part, puisque 𝑏 ≥ 𝑠 et 𝑓 𝑐𝑟𝑜𝑖𝑠𝑠𝑎𝑛𝑡𝑒, 𝑓(𝑏) ≥ 𝑓(𝑠) ce qui contredit…… . J’en conclus que 

𝑓(𝑠) = 𝑠.  

4 . s est donc un point fixe de 𝑓. Nous venons de prouver que toute fonction de [0,1] dans [0,1] croissante admet un point fixe.  

Soit  𝒖 = (𝒖𝒏)𝒏∈ℕ une suite bornée de nombres réels. On note ∀𝒏 ∈ ℕ, 𝒙𝒏 = 𝐬𝐮𝐩 {𝒖𝒌/𝒌 ≥ 𝒏} 𝒆𝒕 𝒚𝒏 = 𝐢𝐧𝐟 {𝒖𝒌/𝒌 ≥ 𝒏} . On définit ainsi deux nouvelles suites 𝒙 

et 𝒚 . On note  𝐀 =  {𝒖𝒌/𝒌 ∈ ℕ}  𝒆𝒕  ∀𝒏 ∈ ℕ, 𝑨𝒏 = {𝒖𝒌/𝒌 ≥ 𝒏}. 
1. Justifier que les suites 𝑥 et 𝑦 sont bien définies. 
2. Montrer que 𝑥 est décroissante et 𝑦 est croissante. 
3. En déduire que 𝑥 et 𝑦 sont convergentes et lim

𝑛→+∞
𝑥𝑛 ≥ lim

𝑛→+∞
𝑦𝑛.  

4. Montrer que : lim
𝑛→+∞

𝑥𝑛 = lim
𝑛→+∞

𝑦𝑛 = 𝐿 ⇒ lim
𝑛→+∞

𝑢𝑛 = 𝐿. 

5. Prouver en utilisant la définition de la convergence que : lim
𝑛→+∞

𝑢𝑛 = 𝐿 ⟹ lim
𝑛→+∞

𝑥𝑛 = lim
𝑛→+∞

𝑦𝑛 = 𝐿.  

 

1. 𝑢 est bornée donc  il existe  deux réels 𝑚 et 𝑀 tels que ∀𝑛 ∈ ℕ,𝑚 ≤ 𝑢𝑛 ≤ 𝑀. Donc, ∀𝑛 ∈ ℕ, ∀𝑘 ≥ 𝑛,𝑚 ≤ 𝑢𝑘 ≤ 𝑀.  Autrement dit,  ∀𝒏 ∈ ℕ, 𝑨𝒏 =

{𝒖𝒌/𝒌 ≥ 𝒏} est bornée donc 𝒙𝒏 = sup(𝐴𝑛) 𝒆𝒕 𝒚𝒏 = inf(𝐴𝑛) existent et sont finies.  

2. ∀𝒏 ∈ ℕ, 𝑨𝒏+𝟏 ⊂ 𝐴𝑛 . Donc, ∀𝒏 ∈ ℕ, sup(𝐴𝑛) ≥ sup(𝐴𝑛+1) ≥ inf(𝐴𝑛+1) ≥ inf(𝐴𝑛)  i.e. 𝒙𝒏 ≥ 𝒙𝒏+𝟏 ≥ 𝑦𝑛+1 ≥ 𝑦𝑛 . Donc, 𝑥 est décroissante et 𝑦 est croissante.  

3. ∀𝒏 ∈ ℕ,𝑚 minore 𝐴𝑛 et 𝑀 majore 𝐴𝑛 donc 𝑀 ≥ 𝒙𝒏 ≥ 𝑦𝑛 ≥ 𝑚. Donc 𝑥 est minorée par 𝑚 et décroissante donc convergente. Et 𝑦 est majorée par 𝑀 et 

croissante donc convergente. Alors en passage à la limite dans l’inégalité précédente, on obtient :  lim
𝑛→+∞

𝑥𝑛 ≥ lim
𝑛→+∞

𝑦𝑛. 

4. ∀𝑛 ∈ ℕ, 𝑢𝑛 ∈ 𝐴𝑛 𝑑𝑜𝑛𝑐 𝑥𝑛 ≥ 𝑢𝑛 ≥ 𝑦𝑛. Donc si lim
𝑛→+∞

𝑥𝑛 = lim
𝑛→+∞

𝑦𝑛 alors (𝑢𝑛) converge aussi vers cette limite commune.  



5. Supposons que lim
𝑛→+∞

𝑢𝑛 = 𝐿 ∈ ℝ. Soit 𝜀 ∈ ℝ+∗. ∃𝑛0 ∈ ℕ/∀𝑛 ≥ 𝑛0, |𝑢𝑛 − 𝐿| ≤ 𝜀  i.e. 𝑢𝑛 ∈ [𝐿 − 𝜀, 𝐿 + 𝜀]. Donc, ∀𝑛 ≥ 𝑛0, 𝐿 − 𝜀 minore 𝐴𝑛 et 𝐿 + 𝜀 majore 𝐴𝑛. 

Par conséquent, 𝐿 + 𝜀 ≥ 𝒙𝒏 ≥ 𝑦𝑛 ≥ 𝐿 − 𝜀 .Autrement dit,∀𝑛 ≥ 𝑛0, |𝑥𝑛 − 𝐿| ≤ 𝜀 𝑒𝑡 |𝑦𝑛 − 𝐿| ≤ 𝜀.   Il en résulte que 𝑥 et 𝑦 convergente et lim
𝑛→+∞

𝑥𝑛 = lim
𝑛→+∞

𝑦𝑛 =

𝐿.  

 

Suites adjacentes  

Soit (𝑎, 𝑏) ∈ (ℝ+∗)2 tel que 𝑎 ≤ 𝑏 . On définit quatre suites récurrentes de la manière suivante : 

  𝑢0 =  𝑤0 = 𝑎 , 𝑣0 = 𝑡0 = 𝑏 et ∀𝑛 ∈ ℕ, 𝑢𝑛+1 = √𝑢𝑛𝑣𝑛  , 𝑣𝑛+1 =
𝑢𝑛+𝑣𝑛

2
 , 𝑡𝑛+1 =

𝑤𝑛+𝑡𝑛

2
  et  

1

𝑤𝑛+1
=
1

2
(
1

𝑡𝑛
+

1

𝑤𝑛
).  

1) Justifier que ∀(𝑥, 𝑦) ∈ ℝ+∗²,   
2
1

𝑥
+
1

𝑦

≤ √𝑥𝑦 ≤
𝑥+𝑦

2
.  

A.  Suites 𝒖 et 𝒗 

2) Montrer que 𝑢 𝑒𝑡 𝑣 sont adjacentes. On note 𝑀(𝑎, 𝑏) leur limite commune appelée la moyenne arithmético-géométrique de 𝑎 et 𝑏. 

3) Montrer que 𝑀(𝑎, 𝑏) = 𝑀(√𝑎𝑏,
𝑎+𝑏

2
) . En déduire que 𝑀(𝑎, 𝑏) = 𝑀(𝑏, 𝑎).  

4) Montrer que ∀𝑡 ∈ ℝ+∗, 𝑀(𝑡𝑎, 𝑡𝑏) = 𝑡𝑀(𝑎, 𝑏).   

1.Soit (𝑥, 𝑦) ∈ ℝ+∗
2
,
𝑥+𝑦

2
−√𝑥𝑦 =

√𝑥
2
+√𝑦

2
−2√𝑥√𝑦

2
=
(√𝑥−√𝑦)

2

2
≥ 0.𝐷𝑜𝑛𝑐, √𝑥𝑦 ≤

𝑥+𝑦

2
.  

Alors √
1

𝑥

1

𝑦
 ≤

1

𝑥
+
1

𝑦

2
 i.e.0< 

1

√𝑥𝑦
 ≤

1

𝑥
+
1

𝑦

2
 et par suite 

2
1

𝑥
+
1

𝑦

≤ √𝑥𝑦. Ainsi, ∀(𝑥, 𝑦) ∈ ℝ+∗
2
,  
2
1

𝑥
+
1

𝑦

≤ √𝑥𝑦 ≤
𝑥+𝑦

2
.  

2.  𝑢0 = 𝑎 , 𝑣0 = 𝑏 et ∀𝑛 ∈ ℕ, 𝑢𝑛+1 = √𝑢𝑛𝑣𝑛  , 𝑣𝑛+1 =
𝑢𝑛+𝑣𝑛

2
 . 

∀𝑛 ∈ ℕ, 𝑣𝑛+1 − 𝑢𝑛+1 =  
𝑢𝑛+𝑣𝑛

2
−√𝑢𝑛𝑣𝑛 ≥ 0 . Donc ∀𝑛 ≥ 1, 𝑣𝑛 ≥ 𝑢𝑛.  

𝑢𝑛+1 − 𝑢𝑛 = √𝑢𝑛𝑣𝑛 −𝑢𝑛 = √𝑢𝑛(√𝑣𝑛 −√𝑢𝑛) ≥⏟
𝑐𝑎𝑟 
𝑣𝑛≥ 𝑢𝑛

0 et 𝑣𝑛+1 − 𝑣𝑛 =
𝑢𝑛+𝑣𝑛

2
− 𝑣𝑛 =

𝑢𝑛−𝑣𝑛

2
≤⏟
𝑐𝑎𝑟 
𝑣𝑛≥ 𝑢𝑛

0 . Donc 𝑢 est croissante et 𝑣 est décroissante. De plus , ∀𝑛 ∈

ℕ∗, 𝑣1 ≥ 𝑣𝑛 ≥ 𝑢𝑛 ≥ 𝑢0. Par conséquent 𝑢 et 𝑣 ont chacun une limite finie : notons 𝐿 celle de 𝑢 et 𝐿’ celle de 𝑣.  

Alors 𝐿′= lim
𝑛→+∞

𝑣𝑛 = lim
𝑛→+∞

𝑣𝑛+1 = lim
𝑛→+∞

𝑢𝑛+𝑣𝑛

2
=
𝐿+𝐿′

2
 . Donc 𝐿 = 𝐿′.  Ainsi, lim

𝑛→+∞
𝑣𝑛 − 𝑢𝑛 = 0  et finalement 𝑢 et 𝑣 sont adjacentes. On note 𝑀(𝑎, 𝑏) la limite 

commune .  

3.Posons 𝛼𝑛 = 𝑢𝑛+1 𝑒𝑡  𝛽𝑛 = 𝑣𝑛+1Alors, 𝑀(𝑎, 𝑏)= lim
𝑛→+∞

𝑢𝑛 = lim
𝑛→+∞

𝛼𝑛  𝑒𝑡 𝑀(𝑎, 𝑏) = lim
𝑛→+∞

𝑣𝑛 = lim
𝑛→+∞

𝛽𝑛. Par conséquent, 𝑀(𝑎, 𝑏) = 𝑀(𝑢0, 𝑣0) =

𝑀(𝛼0, 𝛽0) = 𝑀(𝑢1, 𝑣1) = 𝑀(√𝑎𝑏,
𝑎+𝑏

2
).  

Les suites 𝛼 𝑒𝑡 𝛽 restent inchangées si on échange les valeurs de 𝑢0 𝑒𝑡 𝑣0. Donc,  𝑀(𝑎, 𝑏) = 𝑀 (√𝑎𝑏,
𝑎+𝑏

2
) = 𝑀(√𝑏𝑎,

𝑏+𝑎

2
) = 𝑀(𝑏, 𝑎). 

4.Soit 𝑡 un réel strictement positif. Posons 𝐴𝑛 = 𝑡𝑢𝑛 𝑒𝑡  𝐵𝑛 = 𝑡𝑣𝑛 .  

Alors, ∀𝑛 ∈ ℕ, 𝐴𝑛+1 = 𝑡𝑢𝑛+1 = 𝑡√𝑢𝑛𝑣𝑛 = √𝑡²𝑢𝑛𝑣𝑛 = √𝑡𝑢𝑛𝑡𝑣𝑛 = √𝐴𝑛𝐵𝑛 𝑒𝑡 𝐵𝑛+1 = 𝑡𝑣𝑛+1 = 𝑡
𝑢𝑛+𝑣𝑛

2
=
𝑡𝑢𝑛+𝑡𝑣𝑛

2
=
𝐴𝑛+𝐵𝑛

2
.  

Ainsi, 𝐴 et 𝐵 sont adjacentes de limite commune 𝑀(𝐴0, 𝐵0) = 𝑀(𝑡𝑎, 𝑡𝑏).  

De plus, lim
𝑛→+∞

𝐴𝑛 = lim
𝑛→+∞

𝑡𝑢𝑛 = 𝑡 lim
𝑛→+∞

𝑢𝑛 = 𝑡𝑀(𝑎, 𝑏). Alors par unicité de la limite, 𝑀(𝑡𝑎, 𝑡𝑏) = 𝑡𝑀(𝑎, 𝑏). 

B. Suites 𝒘 et 𝒕 
5) Montrer que 𝑡 𝑒𝑡 𝑤 sont monotones.  

6) Prouver que ∀𝑛 ∈ ℕ, |𝑡𝑛+1 −𝑤𝑛+1| ≤
1

2
|𝑡𝑛 −𝑤𝑛|.  

7) En déduire que 𝑡 et 𝑤 sont adjacentes. On note 𝐿(𝑎, 𝑏) leur limite commune 
8) En calculant 𝑡𝑛𝑤𝑛, déterminer 𝐿(𝑎, 𝑏).  
9)  Comparer 𝐿(𝑎, 𝑏) et 𝑀(𝑎, 𝑏).  
10) Comparer alors 𝑢𝑛 et 𝑡𝑛 pour 𝑛 assez grand. Pour quelles valeurs de 𝑎 et 𝑏 , a-t-on 𝐿(𝑎, 𝑏) = 𝑀(𝑎, 𝑏)? 

5. 𝑤0 = 𝑎 , 𝑣0 = 𝑏 et ∀𝑛 ∈ ℕ,  𝑡𝑛+1 =
𝑤𝑛+𝑡𝑛

2
  et  

1

𝑤𝑛+1
=
1

2
(
1

𝑡𝑛
+

1

𝑤𝑛
). On montre facilement par récurrence que ∀𝑛,𝑤𝑛 > 0 𝑒𝑡 𝑡𝑛 > 0.  

Soit 𝑛 ∈ ℕ.
𝑡𝑛+1

𝑤𝑛+1
= (

𝑤𝑛+𝑡𝑛

2
)
1

2
(
1

𝑡𝑛
+

1

𝑤𝑛
) =

1

4
(2 +

𝑤𝑛

𝑡𝑛
+

𝑡𝑛

𝑤𝑛
). Or, ∀𝑡 > 0, 𝑡 +

1

𝑡
− 2 =

𝑡2−2𝑡+1

𝑡
=
(𝑡−1)2

𝑡
≥ 0.  Donc ∀𝑡 > 0, 𝑡 +

1

𝑡
≥ 2 et par conséquent, 

𝑤𝑛

𝑡𝑛
+

𝑡𝑛

𝑤𝑛
≥

2 et finalement, 
𝑡𝑛+1

𝑤𝑛+1
≥ 1. Donc, 𝑡𝑛+1 ≥ 𝑤𝑛+1. J’en déduis que et ∀𝑛 ∈ ℕ∗, 𝑡𝑛 ≥ 𝑤𝑛 . Alors ,  

𝑡𝑛+1 − 𝑡𝑛 =
𝑤𝑛−𝑡𝑛

2
≤ 0 𝑒𝑡   

1

𝑤𝑛+1
−

1

𝑤𝑛
=
1

2
(
1

𝑡𝑛
−

1

𝑤𝑛
) ≤ 0 𝑑𝑜𝑛𝑐 𝑤𝑛 ≤ 𝑤𝑛+1. Ainsi, 𝑡 est décroissante et 𝑤 est croissante.  

6) Soit 𝑛 ∈ ℕ. |𝑡𝑛+1 −𝑤𝑛+1| = |
𝑤𝑛+𝑡𝑛

2
− (

2𝑤𝑛𝑡𝑛

𝑡𝑛+𝑤𝑛
)| = |

1

2(𝑡𝑛+𝑤𝑛)
(𝑤𝑛

2 + 𝑡𝑛
2 − 2𝑤𝑛𝑡𝑛)| = |

1

2(𝑡𝑛+𝑤𝑛)
(𝑤𝑛 − 𝑡𝑛)

2| =
1

2(𝑡𝑛+𝑤𝑛)
|𝑤𝑛 − 𝑡𝑛||𝑤𝑛 − 𝑡𝑛|.  

𝑂𝑟, |𝑤𝑛 − 𝑡𝑛| ≤ |𝑤𝑛 + 𝑡𝑛| = 𝑤𝑛 + 𝑡𝑛 . 𝐷𝑜𝑛𝑐,
|𝑤𝑛−𝑡𝑛|

𝑤𝑛+𝑡𝑛
≤ 1  et finalement, |𝑡𝑛+1 − 𝑤𝑛+1| ≤

1

2
|𝑤𝑛 − 𝑡𝑛|.   

Alors on montre par récurrence que  ∀𝑛, |𝑡𝑛 − 𝑤𝑛| ≤
1

2𝑛
|𝑤0 − 𝑡0|.  Comme lim

𝑛→+∞

1

2𝑛
|𝑤0 − 𝑡0| = 0 (𝑝𝑢𝑖𝑠𝑞𝑢𝑒 |

1

2
| < 1) , lim

𝑛→+∞
|𝑡𝑛 − 𝑤𝑛| = 0 et par conséquent 

lim
𝑛→+∞

𝑡𝑛 − 𝑤𝑛 = 0 . Les suites 𝑡 et 𝑤 sont adjacentes et sont donc convergentes de même limite commune finie 𝐿(𝑎, 𝑏).   

 ∀𝑛, 𝑡𝑛+1𝑤𝑛+1 = (
𝑤𝑛+𝑡𝑛

2
)  (

2𝑤𝑛𝑡𝑛

𝑡𝑛+𝑤𝑛
) = 𝑤𝑛𝑡𝑛. Donc, la suite 𝑡𝑤 est constante égale à 𝑤0𝑡0 = 𝑎𝑏. Donc 𝐿(𝑎, 𝑏)²= 𝑎𝑏 et  𝐿(𝑎, 𝑏) = √𝑎𝑏. 

7)Montrons par récurrence sur 𝑛 que  ∀𝑛 ≥ 1, 𝑣𝑛 ≥  𝑡𝑛 𝑒𝑡 𝑦𝑛 ≥ 𝑤𝑛 . Alors par passage à la limite dans l’un de ces inégalités, j’obtiens : 𝑀(𝑎, 𝑏) ≥ 𝐿(𝑎, 𝑏). Alors 

lim
𝑛→+∞

𝑢𝑛 − 𝑡𝑛 = 𝑀(𝑎, 𝑏) − 𝐿(𝑎, 𝑏) ≥ 0.  

Si 𝑀(𝑎, 𝑏) > 𝐿(𝑎, 𝑏) alors à partir d’un certain rang,  𝑢𝑛 − 𝑡𝑛 > 0 . 

Si 𝑀(𝑎, 𝑏) = 𝐿(𝑎, 𝑏) alors on ne peut rien dire sur le signe de 𝑢𝑛 − 𝑡𝑛.  

Enfin , si 𝑎 = 𝑏 alors 𝑀(𝑎, 𝑎) = 𝐿(𝑎, 𝑎) = 𝑎 et toutes les suites sont constantes égales à 𝑎. 

Soit  𝑎0 et 𝑏0 deux réels tels que : 0 < 𝑎0 < 𝑏0 et  ∀𝑛, 𝑎𝑛+1 =
1

2
(𝑎𝑛 +√𝑎𝑛𝑏𝑛 )𝑒𝑡 𝑏𝑛+1 =

1

2
(𝑏𝑛 +√𝑎𝑛𝑏𝑛 ) .  

Montrer que les deux suites 𝑎 𝑒𝑡 𝑏 sont bien définies et qu’elles convergent vers une même limite.  

On montre facilement par récurrence que ∀𝑛, 𝑎𝑛 𝑒𝑡 𝑏𝑛 existent et sont strictement positifs. Ainsi, les deux suites 𝑎 𝑒𝑡 𝑏 sont bien définies. 

𝑎𝑛+1 − 𝑏𝑛+1 =
1

2
(𝑎𝑛 +√𝑎𝑛𝑏𝑛 − 𝑏𝑛 −√𝑎𝑛𝑏𝑛 ) =

1

2
(𝑎𝑛 − 𝑏𝑛 ). La suite 𝑎 − 𝑏 est donc géométrique de raison 

1

2
.  

Ainsi, ∀𝑛, 𝑎𝑛 − 𝑏𝑛 =
1

2𝑛
(𝑎0 − 𝑏0) 𝑑𝑜𝑛𝑐 0 ≤ 𝑎𝑛 ≤ 𝑏𝑛 et lim

𝑛→+∞
𝑎𝑛 − 𝑏𝑛 = 0

−.  



∀𝑛, 𝑎𝑛+1 − 𝑎𝑛 =
1

2
(𝑎𝑛 +√𝑎𝑛𝑏𝑛 ) − 𝑎𝑛 =

1

2
(√𝑎𝑛𝑏𝑛 − 𝑎𝑛 ) =

1

2
√𝑎𝑛(√𝑏𝑛 −√𝑎𝑛) ≥⏟

𝑐𝑎𝑟 
𝑏𝑛≥𝑎𝑛

0  . Donc 𝑎 est croissante. 

𝑏𝑛+1 − 𝑏𝑛 =
1

2
(𝑏𝑛 +√𝑎𝑛𝑏𝑛 ) − 𝑏𝑛 =

1

2
(√𝑎𝑛𝑏𝑛 − 𝑏𝑛 ) =

1

2
√𝑏𝑛(√𝑎𝑛 −√𝑏𝑛) ≤⏟

𝑐𝑎𝑟 
𝑏𝑛≥𝑎𝑛

0  . Donc 𝑏 est croissante. 

Ainsi, 𝑎 et 𝑏 sont adjacentes et par conséquent, 𝑎 et 𝑏 convergent vers la même limite.  

Soit  𝑢 = (𝑢𝑛)𝑛∈ℕ une suite réelle et bornée. On note ∀𝑛 ∈ ℕ, 𝑥𝑛 = sup {𝑢𝑘/𝑘 ≥ 𝑛} 𝑒𝑡 𝑦𝑛 = inf {𝑢𝑘/𝑘 ≥ 𝑛} . On définit ainsi deux nouvelles suites 𝑥 et 𝑦 . On 

note  𝐴 =  {𝑢𝑘/𝑘 ∈ ℕ}  𝑒𝑡  ∀𝑛 ∈ ℕ, 𝐴𝑛 = {𝑢𝑘/𝑘 ≥ 𝑛}. 
6. Justifier que les suites 𝑥 et 𝑦 sont bien définies. 
7. Montrer que 𝑥 est décroissante et 𝑦 est croissante. 
8. En déduire que 𝑥 et 𝑦 sont convergentes et lim

𝑛→+∞
𝑥𝑛 ≥ lim

𝑛→+∞
𝑦𝑛.  

9. Montrer que : lim
𝑛→+∞

𝑥𝑛 = lim
𝑛→+∞

𝑦𝑛 = 𝐿 ⇒ lim
𝑛→+∞

𝑢𝑛 = 𝐿. 

5. Prouver en utilisant la définition de la convergence que : lim
𝑛→+∞

𝑢𝑛 = 𝐿 ⟹ lim
𝑛→+∞

𝑥𝑛 = lim
𝑛→+∞

𝑦𝑛 = 𝐿.  

2.∀𝑛, {𝒖𝒌/𝒌 ≥ 𝒏 + 1} ⊂ {𝑢𝑘/𝑘 ≥ 𝑛}. i. e. ∀𝑛 ∈ ℕ,𝐴𝑛+1 ⊂  𝐴𝑛 . Par conséquent, ∀𝑛, inf(𝐴𝑛) ≤ inf(𝐴𝑛+1) 𝑒𝑡  sup(𝐴𝑛+1) ≤ sup(𝐴𝑛).  Ainsi, 𝑥 est décroissante et 

𝑦 est croissante. 

3.∀𝑛, 𝑥𝑛 ≥ 𝑢0  ≥ 𝑦𝑛. Donc, 𝑥 est minorée et 𝑦 est majorée. Alors, comme x décroissante et y croissante, x et y sont convergentes. Alors , en passant à la limite 

dans l’inégalité, lim
𝑛→+∞

𝑥𝑛 ≥ 𝑢0 ≥ lim
𝑛→+∞

𝑦𝑛. 

4. On suppose ici que lim
𝑛→+∞

𝑥𝑛 = lim
𝑛→+∞

𝑦𝑛 = 𝐿. . ∀𝑛, 𝑢𝑛 ∈ 𝐴𝑛 𝑑𝑜𝑛𝑐, 𝑥𝑛 ≥ 𝑢𝑛  ≥ 𝑦𝑛. Alors le théorème de limite par encadrement assure que la suite 𝑢 converge 

vers 𝐿 . 

5. On suppose ici que lim
𝑛→+∞

𝑢𝑛 = 𝐿. Soit 𝜀 ∈ ℝ+∗. Il existe 𝑛0 ∈ ℕ tel que : ∀𝑛 ≥ 𝑛0,   𝐿 − 𝜀 ≤ 𝑢𝑛 ≤ 𝐿 + 𝜀. Donc 𝐿 − 𝜀 minore 𝐴𝑛0 et 𝐿 + 𝜀 majore 𝐴𝑛0. Et 

comme ∀𝑛 ≥ 𝑛0,   , 𝐴𝑛 ⊂ 𝐴𝑛0 , ∀𝑛 ≥ 𝑛0, 𝐿 − 𝜀 minore 𝐴𝑛 et 𝐿 + 𝜀 majore 𝐴𝑛 . Par conséquent ∀𝑛 ≥ 𝑛0, 𝐿 − 𝜀 ≤ 𝑦𝑛 et 𝑥𝑛 ≤ 𝐿 + 𝜀.  Et ainsi, ∀𝑛 ≥ 𝑛0, 𝐿 − 𝜀 ≤

𝑦𝑛 ≤ 𝑥𝑛 ≤ 𝐿 + 𝜀.  J’e, déduis que ∀𝑛 ≥ 𝑛0, −𝜀 ≤ 𝑦𝑛 − 𝐿 ≤ 𝑥𝑛 − 𝐿 ≤ 𝜀 et par suite,  

∀𝑛 ≥ 𝑛0, |𝑦𝑛 − 𝐿| ≤ 𝜀 𝑒𝑡  |𝑥𝑛 − 𝐿| ≤ 𝜀. J’en conclus que 𝑥 et 𝑦 convergent aussi vers 𝐿. 

 

Suites récurrentes  

Soit 𝑢 une suite réelle telle que : ∀𝑛 ∈ ℕ, 𝑢𝑛 ∈ ]
1

2
, 1[  et 𝑣 la suite réelle définie par : {

𝑢0 = 𝑣0

∀𝑛 ≥ 1, 𝑣𝑛 =
𝑣𝑛−1+𝑢𝑛

1+𝑢𝑛𝑣𝑛−1

.  

1. Justifier que : ∀𝑛 ∈ ℕ, 𝑣𝑛 existe et 0 < 𝑣𝑛 < 1.    
2. Justifier que 𝑣 est convergente .  
3. Déterminer la limite de 𝑣. 

1. On montrer facilement par récurrence que  ∀𝑛 ∈ ℕ, 𝑣𝑛 existe et 0 < 𝑣𝑛 .  

𝑣0 > 0 car 𝑣0 ∈ ]
1

2
, 1[  𝑒𝑡 [ 𝑣𝑛−1 > 0⟹ {

1 + 𝑢𝑛𝑣𝑛−1 > 0
𝑣𝑛−1 + 𝑢𝑛 > 0

 ⟹ 𝑣𝑛 =
𝑣𝑛−1+𝑢𝑛

1+𝑢𝑛𝑣𝑛−1
 existe et 𝑣𝑛 > 0]. Donc ∀𝑛 ∈ ℕ, 𝑣𝑛 > 0. 

On montre aussi par  récurrence que  ∀𝑛 ∈ ℕ, 𝑣𝑛 existe et 1 > 𝑣𝑛 .  

𝑣0 < 1 car 𝑣0 ∈ ]
1

2
, 1[  𝑒𝑡 [ 𝑣𝑛−1 < 1⟹ 𝑣𝑛 − 1 =

𝑣𝑛−1+𝑢𝑛

1+𝑢𝑛𝑣𝑛−1
− 1 =

𝑣𝑛−1+𝑢𝑛−1−𝑢𝑛𝑣𝑛−1

1+𝑢𝑛𝑣𝑛−1
=
(𝑣𝑛−1−1)(1−𝑢𝑛)

1+𝑢𝑛𝑣𝑛−1
< 0]  . Donc ∀𝑛 ∈ ℕ, 𝑣𝑛 < 1 . Ainsi, ∀𝑛 ∈ ℕ, 0 < 𝑣𝑛 < 1.  

2. 𝑣𝑛 − 𝑣𝑛−1 =
𝑣𝑛−1+𝑢𝑛

1+𝑢𝑛𝑣𝑛−1
− 𝑣𝑛−1 =

𝑣𝑛−1+𝑢𝑛−𝑣𝑛−1−𝑢𝑛𝑣𝑛−1
2

1+𝑢𝑛𝑣𝑛−1
=
𝑢𝑛(1−𝑣𝑛−1

2 )

1+𝑢𝑛𝑣𝑛−1
> 0. Donc 𝑣 est strictement croissante et par suite 𝑣 est convergente. Notons 𝐿 sa limite.  

3. ∀𝑛 ∈ ℕ, 𝑣𝑛 =
𝑣𝑛−1+𝑢𝑛

1+𝑢𝑛𝑣𝑛−1
 donc 𝑢𝑛 =

𝑣𝑛−1−𝑣𝑛

𝑣𝑛𝑣𝑛−1−1
.  

𝑆𝑖 𝐿 ≠ 1 alors (𝑢𝑛) est convergente de limite 
𝐿−𝐿

𝐿2−1
= 0 ce qui est impossible puisque ∀𝑛 ∈ ℕ, 𝑢𝑛 ∈ ]

1

2
, 1[ . J’en conclus que 𝐿 = 1. 

 

Soit  𝑎0 et 𝑏0 deux réels tels que : 0 < 𝑎0 < 𝑏0 et  ∀𝑛, 𝑎𝑛+1 =
𝑎𝑛
2

𝑎𝑛+𝑏𝑛
 𝑒𝑡 𝑏𝑛+1 =

𝑏𝑛
2

𝑎𝑛+𝑏𝑛
  

1. Montrer que la suite 𝑎 − 𝑏 est constante. 
2. Etudier la convergence des suites 𝑎 et 𝑏. 

 
Déterminer une forme explicite des suites récurrrentes suivantes :  

1. 𝑢0 = 1   𝑒𝑡 ∀𝑛, 𝑢𝑛+1 = 𝑛𝑒
𝑛𝑢𝑛 

2. ∀𝑛, √𝑢𝑛
5

√𝑢𝑛+1
3 = 𝑒.   

3. 𝑢0 = 1 𝑒𝑡 ∀𝑛, 𝑢𝑛+1 = 2𝑢𝑛 − 𝑛 + 1.   

4. 𝑢0 =
1

2
  𝑒𝑡 𝑢1 = 1 𝑒𝑡 ∀𝑛, 𝑢𝑛+2 =

2(𝑢𝑛+1)
2

𝑢𝑛
 . 

 
Suites récurrentes de la forme 𝒖𝒏+𝟏 = 𝒇(𝒖𝒏).  

Soit 𝑢 la suite définie par 𝑢0 ∈ ℝ 𝑒𝑡 ∀𝑛 ∈ ℕ, 𝑢𝑛+1 =
6

2+𝑢𝑛
2 . Montrer que 𝑢 est bornée et divergente.  

 Soit 𝑓: (𝑥 ↦
6

2+𝑥2
). 𝐷𝑓 = ℝ et 𝑓(ℝ) ⊂ ℝ+∗. ∀𝑛 ∈ ℕ, 𝑢𝑛 existe et 𝑢𝑛 > 0.  

Comme 𝑓 est continue sur ℝ+∗ 𝑒𝑡  lim
𝑥→+∞

𝑓(𝑥) = 0 ≠ +∞ 𝑒𝑡 lim
𝑥→0
𝑓(𝑥) = 3 ≠ 0, les limites possibles de 𝑢 sont les points fixes de 𝑓 sur ℝ+∗. Or, 𝑓(𝑥) = 𝑥 ⟺

6

2+𝑥2
= 𝑥 ⟺ 𝑥3 + 2𝑥 − 6 = 0. Or,ℎ: (𝑥 ↦ 𝑥3 + 2𝑥 − 6) est strictement croissante et continue et lim

𝑥→+∞
ℎ(𝑥) = +∞ > 0 et  ℎ(0) = −6 < 0. Donc, ℎ s’annule 

une et une seule fois en un réel 𝜆 sur  ℝ+. Ainsi, 𝑓 admet un seul point fixe 𝜆 sur ℝ+. Donc, ce point fixe 𝜆 est la seule limite possible de 𝑢. Comme ℎ(1) < 0 <

ℎ(2), 𝜆 ∈]1,2[. 

𝑓 est dérivable sur ℝ+∗ et ∀𝑥 > 0, 𝑓′(𝑥) = 6
−2𝑥

(2+𝑥2)2
< 0. Donc 𝑓 est strictement croissante sur l’intervalle ℝ+∗. De plus, 𝑓 est continue et lim

𝑥→+∞
𝑓(𝑥) = 0 ≠

+∞ 𝑒𝑡 lim
𝑥→0
𝑓(𝑥) = 3, 𝑓(ℝ+∗) ⊂ [0,3] 𝑒𝑡 𝑓([0,3]) ⊂ [𝑓(3), 𝑓(0)] = [

6

11
, 3] ⊂ [

1

2
, 3].  J' en déduis que ∀𝑛 ≥ 2, 𝑢𝑛 ∈ [

1

2
, 3].   

  Comme 𝑓 est strictement décroissante, les suites (𝑢2𝑛) et (𝑢2𝑛+1) sont monotones et de monotonie contraire. Comme  (𝑢𝑛) est bornée, les suites extraites 

(𝑢2𝑛) et (𝑢2𝑛+1) sont bornées et finalement convergentes. On note 𝐿 et 𝐿’ leurs limites respectives. ∀𝑛 ∈ ℕ, 𝑢2(𝑛+1) = 𝑢2𝑛+2 = 𝑓(𝑢2𝑛+1) = 𝑓(𝑓(𝑢2𝑛)) =

6

2+(
6

2+𝑢2𝑛
2 )

2. Alors 𝐿 = lim
𝑛→+∞

𝑢2𝑛 = lim
𝑛→+∞

𝑢2𝑛+2 =⏞

𝑐𝑎𝑟 𝑓○𝑓
𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒

𝑓(𝑓(𝐿)). Donc, 𝐿 est un point fixe de 𝑓 ○ 𝑓 . 

 

 

𝑥 ½                  1               𝜆               2               3 
  

𝑓(𝑥)  
                                                     𝜆 
 

𝑓 ○ 𝑓(𝑥)                                                                     
                                                                       2                                                             



 𝑓 ○ 𝑓(𝑥) = 𝑥 ⟺
6

2+(
6

2+𝑥2
)
2 = 𝑥 

⟺ 3(2 + 𝑥2)2 = 𝑥(2 + 𝑥2)2 + 18𝑥 

⟺ 3(4 + 4𝑥2 + 𝑥4) = 22𝑥 + 4𝑥3 + 𝑥5 

⟺ 𝑥5 − 𝑥4 + 4𝑥3 − 12𝑥2 + 22𝑥 − 12 = 0 

⟺ (𝑥3 + 2𝑥 − 6)(𝑥2 − 3𝑥 + 2) = 0 

⟺ (𝑥3 + 2𝑥 − 6)(𝑥2 − 3𝑥 + 2) = 0 

⟺ 𝑥 = 𝜆 𝑜𝑢 𝑥 = 1 𝑜𝑢 𝑥 = 2. 

Donc 𝜆, 1 𝑒𝑡 2 sont les limites possibles de (𝑢2𝑛) et (𝑢2𝑛+1).  

De plus, 𝑓 ○ 𝑓(𝑥) − 𝑥 =
−(𝑥3+2𝑥−6)(𝑥2−3𝑥+2)

2(2+𝑥2)2+36
=
−(𝑥−𝜆)(𝑥2+𝑏𝑥+𝑐)⏞        

∆<0

(𝑥−1)(𝑥−2)

2(2+𝑥2)2+36
 

𝑓 ○ 𝑓est strictement croissante puisque 𝑓 est strictement décroissante.  

Alors d’après ses variations et valeurs, je peux affirmer que :  

𝑓 ○ 𝑓 ([
1

2
, 1]) ⊂ [

1

2
, 1]  𝑒𝑡 𝑓 ○ 𝑓([1, 𝜆]) ⊂ [1, 𝜆]  𝑒𝑡   𝑓 ○ 𝑓([𝜆, 2]) ⊂ [𝜆, 2] 𝑒𝑡   𝑓 ○ 𝑓([2,3]) ⊂ [2,3] .    

Donc, si 𝑢0 ∈ [
1

2
, 1] alors ∀𝑛, 𝑢2𝑛 ∈ [

1

2
, 1] et la suite (𝑢2𝑛) ne peut pas converger vers 𝜆 qui est la seule limite possible de 𝑢. Donc u diverge.  Idem si 𝑢0 ∈ [2,3].  

si 𝑢0 ∈ [1, 𝜆] alors ∀𝑛, 𝑢2𝑛 ∈ [1, 𝜆] et 𝑢2 − 𝑢0 = 𝑓 ○ 𝑓(𝑢0) − 𝑢0 < 0. Comme (𝑢2𝑛) est monotone, (𝑢2𝑛) est décroissante et par suite (𝑢2𝑛) converge vers 1. 

Donc u diverge.   

si 𝑢0 ∈ [𝜆, 2] alors ∀𝑛, 𝑢2𝑛 ∈ [𝜆, 2] et 𝑢2 − 𝑢0 = 𝑓 ○ 𝑓(𝑢0) − 𝑢0 > 0. Comme (𝑢2𝑛) est monotone, (𝑢2𝑛) est croissante et par suite (𝑢2𝑛) converge vers 2. 

Donc u diverge.   

Soit 𝑎 > 0  𝑒𝑡 𝑢 la suite définie par ∶  𝑢0 ∈ ℝ
+∗ 𝑒𝑡 ∀𝑛 ∈ ℕ, 𝑢𝑛+1 = 𝑢𝑛 + 𝑒

−𝑢𝑛. 

1) Etudier la monotonie de 𝑢 et déterminer la limite de la suite 𝑢. 

2) Soit 𝑣𝑛 = 𝑒
−𝑢𝑛. Calculer lim

𝑛→+∞

1

𝑣𝑛+1
−

1

𝑣𝑛
.  

3) En déduire un équivament simple de 𝑢𝑛 quand 𝑛 → +∞,  en appliquant judicieusement le théorème de Césaro.  

1) On pose 𝑓 : (𝑥 ↦ 𝑥 + 𝑒−𝑥). 𝐷𝑓 = ℝ 𝑒𝑡. Donc ∀𝑛 ∈ ℕ, 𝑢𝑛 existe .  Comme 𝑓(ℝ+∗) ⊂ ℝ+∗𝑒𝑡 𝑢0 > 0 , ∀𝑛 ∈ ℕ, 𝑢𝑛 > 0   . 

Enfin, ∀𝑛 ∈ ℕ, 𝑢𝑛+1 − 𝑢𝑛 = 𝑒
−𝑢𝑛 > 0. Donc 𝑢 est strictement croissante. J’en déduis que 𝑢 admet une limite 𝐿 telle que 𝐿 ∈ ℝ+∗ ∪ {+∞}. 

Supposons que 𝐿 ∈ ℝ+∗. Alors  𝐿 = lim
𝑛→+∞

𝑢𝑛+1 = lim
𝑛→+∞

𝑢𝑛 + 𝑒
−𝑢𝑛 = 𝐿 + 𝑒−𝐿. Donc, 𝑒−𝐿 = 0 ce qui est impossible ! Donc, 𝐿 = +∞.  

2)
1

𝑣𝑛+1
−

1

𝑣𝑛
= 𝑒𝑢𝑛+1 − 𝑒𝑢𝑛 = 𝑒𝑢𝑛+𝑒

−𝑢𝑛
− 𝑒𝑢𝑛 = 𝑒𝑢𝑛(𝑒𝑒

−𝑢𝑛
− 1) ~+∞⏟

𝑐𝑎𝑟 lim
𝑛→+∞

𝑒−𝑢𝑛=0

𝑒𝑡 𝑒𝑡−1~0𝑡 

𝑒𝑢𝑛𝑒−𝑢𝑛 = 1. Donc, lim
𝑛→+∞

1

𝑣𝑛+1
−

1

𝑣𝑛
= 1.  

3)Posons 𝑆𝑛 =
1

𝑛
∑ (

1

𝑣𝑘+1
−

1

𝑣𝑘
)𝑛−1

𝑘=0 . D’après Césaro, lim
𝑛→+∞

𝑆𝑛 = 1. Donc, 𝑆𝑛 = 1 + 𝑜+∞(1).  

 Or, 𝑆𝑛 =
1

𝑛
∑ (

1

𝑣𝑘+1
−

1

𝑣𝑘
)𝑛−1

𝑘=0 = 𝑆𝑛 =
1

𝑛
[
1

𝑣𝑛
−

1

𝑣0
] =

1

𝑛
[𝑒𝑢𝑛 − 𝑒𝑢0]. 

Par conséquent, 
1

𝑛
[𝑒𝑢𝑛 − 𝑒𝑢0] = 1 + 𝑜+∞(1) donc 𝑒𝑢𝑛 = 𝑛 + 𝑜+∞(𝑛) + 𝑛𝑒

𝑢0 = 𝑛[(1 + 𝑒𝑎) + 𝑜+∞(1)]. Alors 𝑢𝑛 = ln( 𝑛) + ln (1 + 𝑒
𝑎 + 𝑜+∞(1)) et ainsi, 

𝑢𝑛~ ln( 𝑛). 

Soit 𝑎 > 0  𝑒𝑡 𝑢 la suite définie par ∶  𝑢0 ∈ ℝ
+∗ 𝑒𝑡 ∀𝑛 ∈ ℕ, 𝑢𝑛+1 =

1

2
(𝑢𝑛 +

𝑎

𝑢𝑛
). Etudier la monotonie de 𝑢 et l’existence et la valeur de la limite de la suite 𝑢. 

∀𝑛 ∈ ℕ, 𝑢𝑛+1 =
1

2
(𝑢𝑛 +

𝑎

𝑢𝑛
) = 𝑓(𝑢𝑛) où 𝑓: (𝑥 ↦

1

2
(𝑥 +

𝑎

𝑥
)).  

𝑓(ℝ+∗) ⊂ ℝ+∗ et 𝑎 ∈ ℝ+∗. Donc ∀𝑛 ∈ ℕ, 𝑢𝑛existe et 𝑢𝑛 > 0.  
 
Soit la suite 𝑢 définie par ∶  𝑢0 ∈ ℝ 𝑒𝑡 ∀𝑛 ∈ ℕ, 𝑢𝑛+1 = 𝑢𝑛(1 + 𝑢𝑛).  

1. Etudier la monotonie de 𝑢 et l’existence et la valeur de la limite de la suite 𝑢 selon la valeur de 𝑢0. 

2. On suppose que 𝑢0 > 0. On pose 𝑣𝑛 =
1

2𝑛
ln(𝑢𝑛).  

a) Montrer que 𝑣 est croissante 

b) Montrer que ∀𝑛 ∈ ℕ, 𝑣𝑛+1 − 𝑣𝑛 ≤
1

2𝑛+1𝑢𝑛
.  

c) En déduire qu’il existe un entier 𝑁 tel que : ∀𝑛 ≥ 𝑁, 𝑣𝑛+1 − 𝑣𝑛 ≤
1

2𝑛
. 

d) En déduire que 𝑣 est convergente .  

𝑢𝑛+1 − 𝑢𝑛 = 𝑢𝑛(1 + 𝑢𝑛) − 𝑢𝑛 = 𝑢𝑛
2 ≥ 0. Donc, (𝑢𝑛) est croissante. Donc (𝑢𝑛) admet une limite 𝐿 finie ou égale à +∞.  

Alors si 𝐿 ∈ ℝ, alors 𝐿 = lim
𝑛→+∞

𝑢𝑛+1= lim
𝑛→+∞

𝑢𝑛(1 + 𝑢𝑛) =⏟
𝑝𝑎𝑠 𝑑𝑒 𝐹.𝐼.

𝐿(1 + 𝐿). Donc 𝐿2 = 0  𝑖. 𝑒. 𝐿 = 0.  

Si 𝐿 = +∞ alors +∞ = lim
𝑛→+∞

𝑢𝑛+1 lim
𝑛→+∞

𝑢𝑛(1 + 𝑢𝑛) =⏟
𝑝𝑎𝑠 𝑑𝑒 𝐹.𝐼.

+∞ donc il n’y a pas de contradiction. Les deux limites possibles sont 0 et +∞.  

Posons 𝑓(𝑥) = 𝑥(1 + 𝑥). Donc le tabelau de variation de 𝑓 est :  

𝑥 
−∞                − 1        −

1

2
             0                        + ∞ 

𝑓(𝑥)    +∞                                                                               + ∞ 

0       −
1

4
             0         

  

 

Donc, 𝑓(ℝ+∗) ⊂ ℝ+∗donc si 𝑢0 ∈ ℝ
+∗ alors ∀𝑛, 𝑢𝑛 ∈ ℝ

+∗et comme  (𝑢𝑛) est croissante, 𝐿 = +∞.  

De plus,  𝑓(]−∞,−1[) ⊂ ℝ+∗donc si 𝑢0 ∈ ℝ
+∗ alors 𝑢1 ∈ ℝ

+∗ et par suite ∀𝑛 ≥ 1, 𝑢𝑛 ∈ ℝ
+∗et comme  (𝑢𝑛) est croissante, 𝐿 = +∞.  

Enfin,  𝑓(]−1,0[) ⊂ ]−1,0[. donc si 𝑢0 ∈ ]−1,0[  alors ∀𝑛, 𝑢𝑛 ∈ ]−1,0[ ; donc (𝑢𝑛) est bornée et croissante, et par conséquent,  𝐿 = 0.  

2. On suppose que 𝑢0 > 0. On pose 𝑣𝑛 =
1

2𝑛
ln(𝑢𝑛).  

a) Soit 𝑛 ∈ ℕ. 𝑣𝑛+1 − 𝑣𝑛 =
1

2𝑛+1
ln(𝑢𝑛+1) −

1

2𝑛
ln(𝑢𝑛) =

1

2𝑛+1
ln(𝑢𝑛(1 + 𝑢𝑛)) −

1

2𝑛
ln(𝑢𝑛) =

1

2𝑛+1
ln(𝑢𝑛) +

1

2𝑛+1
ln(1 + 𝑢𝑛) −

1

2𝑛
ln(𝑢𝑛) 

= (
1

2
− 1)

1

2𝑛
ln(𝑢𝑛) +

1

2𝑛+1
ln(1 + 𝑢𝑛) = −

1

2𝑛+1
ln(𝑢𝑛) +

1

2𝑛+1
ln(1 + 𝑢𝑛) =

1

2𝑛+1
[ln(1 + 𝑢𝑛) − ln(𝑢𝑛)] > 0.  

Donc (𝑣𝑛) est croissante.  

b) Soit 𝑛 ∈ ℕ .  

𝑣𝑛+1 − 𝑣𝑛 =
1

2𝑛+1
[ln(1 + 𝑢𝑛) − ln(𝑢𝑛)] =

1

2𝑛+1
[ln (

1+𝑢𝑛

𝑢𝑛
)] =

1

2𝑛+1
[ln (1 +

1

𝑢𝑛
)]. Or , ∀𝑡 ≥ 0, ln(1 + 𝑡) ≤ 𝑡. Donc ln (1 +

1

𝑢𝑛
) ≤

1

𝑢𝑛
 et par suite ,  

 𝑣𝑛+1 − 𝑣𝑛 ≤
1

2𝑛+1𝑢𝑛
 



c) Comme 𝑢0 ∈ ℝ
+∗. 𝐿 = +∞.  Donc, existe un entier 𝑁 tel que : ∀𝑛 ≥ 𝑁, 𝑢𝑛 ≥

1

2
. Alors, ∀𝑛 ≥ 𝑁,

1

𝑢𝑛
≤ 2 𝑒𝑡 

1

2𝑛+1𝑢𝑛
≤

1

2𝑛
  Donc, ∀𝑛 ≥ 𝑁, 𝑣𝑛+1 − 𝑣𝑛 ≤

1

2𝑛
. 

d) Alors, ∀𝑛 ≥ 𝑁 + 1,∑ 𝑣𝑘+1 − 𝑣𝑘
𝑛−1
𝑘=𝑁 ≤ ∑

1

2𝑘
𝑛−1
𝑘=𝑁   𝑑𝑜𝑛𝑐  𝑣𝑛 − 𝑣𝑁 ≤

1−(
1

2
)
𝑛−1−𝑁+1

1−(
1

2
)

(
1

2
)
𝑁

≤
1
1

2

= 2. Ainsi, ∀𝑛 ≥ 𝑁 + 1,   𝑣𝑛 ≤ 2 + 𝑣𝑁. Donc la suite (𝑣𝑛) est majorée 

à partir du rang 𝑁 + 1 donc est majorée. Comme  (𝑣𝑛) est croissante, (𝑣𝑛)est convergente.  

 

Suites implicites  

a)  pour tout entier naturel 𝑛 , justifier que l’équation  𝑥𝑒𝑥 = 𝑛 admet une seule solution strictement positive notée 𝑢𝑛. 

b) Etudier la monotonie de 𝑢.  

c) Déterminer la limite de 𝑢 

d) Montrer que : 𝑢𝑛~+∞ ln(𝑛).  

a) Posons 𝑓(𝑥) = 𝑥𝑒𝑥. 𝑓 est strictement croissante sur ℝ+∗ et continue . Donc, le TBCSM assure que 𝑓(ℝ+∗) = ℝ+∗.  

Donc tout entier 𝑛 ∈ ℕ∗admet un unique antécédent par 𝑓 dans ℝ+∗ noté 𝑢𝑛. 

b) Soit 𝑛 ∈ ℕ∗. 𝑓(𝑢𝑛) = 𝑛 < 𝑛 + 1 = 𝑓(𝑢𝑛+1). Comme 𝑓 est strictement croissante sur ℝ+∗, 𝑢𝑛 < 𝑢𝑛+1. Ainsi, 𝑢 est strictement croissante. Par conséquent, 𝑢 a 

une limite 𝐿 strictement positive ou infinie.  

c) e TBCSM assure que 𝑓 est bijective de ℝ+∗ sur ℝ+∗. ∀𝑛, 𝑢𝑛 > 0 𝑒𝑡  𝑓(𝑢𝑛) = 𝑛 donc 𝑢𝑛 = 𝑓
−1(𝑛). De plus, lim

𝑥→+∞
𝑓(𝑥) = +∞ donc lim

𝑥→+∞
𝑓−1(𝑥) = +∞ et par 

conséquent, lim
𝑛→+∞

𝑓−1(𝑛) = +∞. Ainsi, lim
𝑛→+∞

𝑢𝑛 =+∞.  

d) ∀𝑛, 𝑓(𝑢𝑛) = 𝑢𝑛𝑒
𝑢𝑛 = 𝑛 donc ln (𝑢𝑛𝑒

𝑢𝑛) = ln(𝑛) i.e. ln(𝑢𝑛) + 𝑢𝑛 = ln(𝑛). Comme ln(𝑥) = 𝑜+∞(𝑥) et lim
𝑛→+∞

𝑢𝑛 =+∞, ln(𝑢𝑛) = 𝑜+∞(𝑢𝑛) et par suite ln(𝑢𝑛) +

𝑢𝑛~+∞𝑢𝑛 . J’en conclus que : 𝑢𝑛~+∞  ln(𝑛). 

a) pour tout entier naturel 𝑛 , justifier que l’équation  (𝑒𝑛): 𝑥
5 + 𝑛𝑥 = 1 admet une seule solution notée 𝑢𝑛. 

b) Etudier la monotonie et la limite de (𝑢𝑛). 

c) Montrer que : 𝑢𝑛 =
1

𝑛
−

1

𝑛6
+

5

𝑛11
+ 𝑜+∞ (

1

𝑛11
).  

a)Soit 𝑛 ∈ ℕ. Posons 𝑓𝑛: (𝑥 ↦ 𝑥
5 + 𝑛𝑥 − 1). 𝑓𝑛 est strictement croissante sur ℝ car (𝑥 ↦ 𝑥5) l'est et (𝑥 ↦ 𝑛𝑥 − 1) est croissante. Donc l’équation (𝑒𝑛) admet 

au plus une solution. De plus,  𝑓𝑛 est continue et 𝑓𝑛(0) = −1 < 0 ≤ 𝑛 = 𝑓𝑛(1). Donc le 𝑇𝑉𝐼 assure que (𝑒𝑛) admet au plus une solution. Ainsi (𝑒𝑛) admet 
exactement une solution notée 𝑢𝑛. Ainsi, ∀𝑛 ∈ ℕ, 𝑢𝑛

5 + 𝑛𝑢𝑛 = 1  𝑖. 𝑒. 𝑓𝑛(𝑢𝑛) = 0.  De plus 𝑓𝑛(0) < 𝑓𝑛(𝑢𝑛) ≤ 𝑓𝑛(1), donc 0 ≤ 𝑢𝑛 ≤ 1 puisque 𝑓𝑛 est 
strictement croissante.  
b) Soit 𝑛 ∈ ℕ.  𝑓𝑛 est strictement croissante sur ℝ donc 𝑓𝑛(𝑢𝑛) 𝑒𝑡 𝑓𝑛(𝑢𝑛+1) sont ordonnés dans la même ordre que 𝑢𝑛 𝑒𝑡 𝑢𝑛+1.  
𝑓𝑛(𝑢𝑛) = 0 𝑒𝑡 𝑓𝑛(𝑢𝑛+1) = 𝑢𝑛+1

5 + 𝑛𝑢𝑛+1 − 1 = 𝑢𝑛+1
5 + (𝑛 + 1)𝑢𝑛+1 − 1⏟                
=𝑓𝑛+1(𝑢𝑛+1)=0

− 𝑢𝑛+1 = −𝑢𝑛+1  ≤ 0 puisque 0 ≤ 𝑢𝑛 . Donc, 𝑓𝑛(𝑢𝑛+1) ≤ 𝑓𝑛(𝑢𝑛) et par suite, 

𝑢𝑛+1 ≤ 𝑢𝑛 . La suite (𝑢𝑛) est donc décroissante et minorée par 0 donc convergente. Notons 𝐿 sa limite. Par passage à la limite dans l’inégalité 0 ≤ 𝑢𝑛 ≤ 1, nous 

pouvons affirmer que  0 ≤ 𝐿 ≤ 1. ∀𝑛 ∈ ℕ, 𝑢𝑛
5 + 𝑛𝑢𝑛 = 1  donc ∀𝑛 ∈ ℕ, 𝑢𝑛 =

1

𝑛
(1 − 𝑢𝑛

5) et par conséquent,  𝐿 = lim
𝑛→+∞

𝑢𝑛 = lim
𝑛→+∞

1

𝑛
(1 − 𝑢𝑛

5 ) =

0 × (1 − 𝐿5) = 0.  

c) ∀𝑛 ∈ ℕ, 𝑢𝑛 =
1

𝑛
(1 − 𝑢𝑛

5) 𝑒𝑡 lim
𝑛→+∞

1 − 𝑢𝑛
5 = 0 donc 𝑢𝑛~

1

𝑛
 i.e. 𝑢𝑛 =

1

𝑛
+ 𝑜 (

1

𝑛
).  

 𝑢𝑛 =
1

𝑛
(1 − (

1

𝑛
+ 𝑜 (

1

𝑛
))
5

) =
1

𝑛
−
1

𝑛
(
1

𝑛
+ 𝑜 (

1

𝑛
))
5

 =
1

𝑛
−

1

𝑛6
(1 + 𝑜(1))

5
=
1

𝑛
−

1

𝑛6
(1 + 𝑜(1)) =

1

𝑛
−

1

𝑛6
+ 𝑜 (

1

𝑛6
).   

Alors, 𝑢𝑛 =
1

𝑛
(1 − (

1

𝑛
−

1

𝑛6
+ 𝑜 (

1

𝑛6
))
5

) =
1

𝑛
−

1

𝑛6
(1 −

1

𝑛5
+ 𝑜 (

1

𝑛5
))
5

=
1

𝑛
−

1

𝑛6
(1 −

5

𝑛5
+ 𝑜 (

1

𝑛5
)) =

1

𝑛
−

1

𝑛6
+

5

𝑛11
+ 𝑜 (

1

𝑛11
) .  

Suites complexes     

1. Soit 𝒛 ∈ ℂ. ∀𝑛 ∈ ℕ, on pose 𝑃𝑛 = ∏ (1 + 𝑧2
𝑘
)𝑛

𝑘=0 . Calculer (1 − 𝑧)𝑃𝑛. En déduire lim
𝑛→+∞

𝑃𝑛 lorsque |𝑧| < 1.  

2. Soit 𝒛 ∈ ℂ. ∀𝑛 ∈ ℕ, on pose 𝑇𝑛 = (1 +
𝑧

𝑛
)
𝑛

. Montrer que lim
𝑛→+∞

𝑇𝑛 = 𝑒
𝑧. (indication : chercher la forme trigonométrique puis algébrique de  𝑇𝑛) 

1. (1 − 𝑧)𝑃𝑛 = (1 − 𝑧) ∏ (1 + 𝑧2
𝑘
)𝑛

𝑘=0 = (1 − 𝑧) (1 + 𝑧)∏ (1 + 𝑧2
𝑘
)𝑛

𝑘=1 = (1 − 𝑧2)∏ (1 + 𝑧2
𝑘
)𝑛

𝑘=2 = (1 − 𝑧2)(1 + 𝑧2)∏ (1 + 𝑧2
𝑘
)𝑛

𝑘=3  

= (1 − 𝑧4)∏ (1 + 𝑧2
𝑘
)

𝑛

𝑘=3
= (1 − 𝑧4)(1 + 𝑧4)∏ (1 + 𝑧2

𝑘
)

𝑛

𝑘=4
= (1 − 𝑧8)∏ (1 + 𝑧2

𝑘
)

𝑛

𝑘=4
. 

Par itération ( ou récurrence) (1 − 𝑧)𝑃𝑛 = (1 − 𝑧
2𝑛)(1 + 𝑧2

𝑛
) = 1 − 𝑧2

𝑛+1
.  

Donc si |𝑧| < 1,alors lim
𝑛→+∞

𝑧𝑛 = 0 et la suite extraite (𝑧2
𝑛+1
) tend aussi vers 0. Donc, lim

𝑛→+∞
(1 − 𝑧)𝑃𝑛 = 1 donc lim

𝑛→+∞
𝑃𝑛 =

1

1−𝑧
. 

2. Posons 𝑧 = 𝑥 + 𝑖𝑦.  Alors, 𝑇𝑛 = (1 +
𝑥+𝑖𝑦

𝑛
)
𝑛

= (1 +
𝑥

𝑛
+ 𝑖

𝑦

𝑛
)
𝑛

=⏟
lim
𝑛→+∞

1+
𝑥

𝑛
+𝑖
𝑦

𝑛
=1=1

𝑑𝑜𝑛𝑐,𝑝𝑜𝑢𝑟 𝑛 𝑎𝑠𝑠𝑒𝑧 𝑔𝑟𝑎𝑛𝑑,

arg(1+
𝑥

𝑛
+𝑖
𝑦

𝑛
) 𝑒𝑥𝑖𝑠𝑡𝑒 𝑒𝑡

arg(1+
𝑥

𝑛
+𝑖
𝑦

𝑛
)=𝐴𝑟𝑐𝑡𝑎𝑛(

𝑦

𝑥+𝑛
)

 

(√(1 +
𝑥

𝑛
)
2

+ (
𝑦

𝑛
)
2

𝑒𝑖𝐴𝑟𝑐𝑡𝑎𝑛
(
𝑦

𝑥+𝑛
)
)

𝑛

= [(1 +
𝑥

𝑛
)
2

+ (
𝑦

𝑛
)
2

]

𝑛

2

𝑒𝑖𝑛𝐴𝑟𝑐𝑡𝑎𝑛
(
𝑦

𝑥+𝑛
)
 

𝐷𝑜𝑛𝑐, 𝑇𝑛 = [(1 +
𝑥

𝑛
)
2

+ (
𝑦

𝑛
)
2

]

𝑛

2

𝑐𝑜𝑠 (𝑛𝐴𝑟𝑐𝑡𝑎𝑛 (
𝑦

𝑥+𝑛
))

⏟                          
𝑅𝑒(𝑇𝑛)

+ 𝑖 [(1 +
𝑥

𝑛
)
2

+ (
𝑦

𝑛
)
2

]

𝑛

2

𝑠𝑖𝑛 (𝑛𝐴𝑟𝑐𝑡𝑎𝑛 (
𝑦

𝑥+𝑛
))

⏟                          
𝐼𝑚(𝑇𝑛)

 .  

𝑟𝑛 = [(1 +
𝑥

𝑛
)
2

+ (
𝑦

𝑛
)
2

]

𝑛

2

= 𝑒
𝑛

2
ln[(1+

𝑥

𝑛
)
2
+(
𝑦

𝑛
)
2
]
. 𝑂𝑟,

𝑛

2
ln [(1 +

𝑥

𝑛
)
2

+ (
𝑦

𝑛
)
2

]~
𝑛

2
[(1 +

𝑥

𝑛
)
2

+ (
𝑦

𝑛
)
2

− 1].  

Et,  
𝑛

2
[(1 +

𝑥

𝑛
)
2

+ (
𝑦

𝑛
)
2

− 1] =
𝑛

2
[
2𝑥

𝑛
+ (

𝑥

𝑛
)
2

+ (
𝑦

𝑛
)
2

] = 𝑥 +
𝑥2+𝑦²

2𝑛
+ 𝑜 (

1

𝑛
)~0 {

𝑥 𝑠𝑖 𝑥 ≠ 0
𝑦2

2𝑛
 𝑠𝑖 𝑥 = 0 𝑒𝑡 𝑦 ≠ 0

0 𝑠𝑖 𝑥 = 𝑦 = 0

.  

Donc, lim
𝑛→+∞

𝑛

2
ln [(1 +

𝑥

𝑛
)
2

+ (
𝑦

𝑛
)
2

] = {
𝑥 𝑠𝑖 𝑥 ≠ 0

0 𝑠𝑖 𝑥 = 0
. Ainsi, lim

𝑛→+∞
𝑟𝑛 = {

𝑒𝑥  𝑠𝑖 𝑥 ≠ 0

1 𝑠𝑖 𝑥 = 0
= 𝑒𝑥 .   

𝑐𝑜𝑠 (𝑛𝐴𝑟𝑐𝑡𝑎𝑛 (
𝑦

𝑥+𝑛
)) =⏟

𝑐𝑎𝑟 
𝑦

𝑥+𝑛
~+∞ 

𝑦

𝑛
 
𝑛→+∞
→     0 

𝑒𝑡 𝐴𝑟𝑐𝑡𝑎𝑛(𝑢)~0𝑢  

cos(𝑛 ((
𝑦

𝑛
) + 𝑜+∞ (

𝑦

𝑛
))) = cos(𝑦 + 𝑜+∞(𝑦))

𝑛→+∞
→    cos (𝑦). De même,  



𝑠𝑖𝑛 (𝑛𝐴𝑟𝑐𝑡𝑎𝑛 (
𝑦

𝑥+𝑛
))

𝑛→+∞
→    sin (𝑦). J’en déduis que lim

𝑛→+∞
𝑇𝑛 = 𝑒

𝑥 cos(𝑦) + 𝑖𝑒𝑥 sin(𝑦) = 𝑒𝑥(cos(𝑦) + 𝑖𝑠𝑖𝑛(𝑦)) = 𝑒𝑥𝑒𝑖𝑦 = 𝑒𝑧 .  


