
Corrigé du TD Suites particulières 
Suites récurrentes  

Soit 𝑢 une suite réelle telle que : ∀𝑛 ∈ ℕ, 𝑢𝑛 ∈ ]
1

2
, 1[  et 𝑣 la suite réelle définie par : {

𝑢0 = 𝑣0

∀𝑛 ≥ 1, 𝑣𝑛 =
𝑣𝑛−1+𝑢𝑛

1+𝑢𝑛𝑣𝑛−1

.  

1. Justifier que : ∀𝑛 ∈ ℕ, 𝑣𝑛 existe et 0 < 𝑣𝑛 < 1.    
2. Justifier que 𝑣 est convergente .  
3. Déterminer la limite de 𝑣. 

1. On montrer facilement par récurrence que  ∀𝑛 ∈ ℕ, 𝑣𝑛 existe et 0 < 𝑣𝑛 .  

𝑣0 > 0 car 𝑣0 ∈ ]
1

2
, 1[  𝑒𝑡 [ 𝑣𝑛−1 > 0 ⟹ {

1 + 𝑢𝑛𝑣𝑛−1 > 0
𝑣𝑛−1 + 𝑢𝑛 > 0

 ⟹ 𝑣𝑛 =
𝑣𝑛−1+𝑢𝑛

1+𝑢𝑛𝑣𝑛−1
 existe et 𝑣𝑛 > 0]. Donc ∀𝑛 ∈ ℕ, 𝑣𝑛 > 0. 

On montre aussi par  récurrence que  ∀𝑛 ∈ ℕ, 𝑣𝑛  existe et 1 > 𝑣𝑛 .  

𝑣0 < 1 car 𝑣0 ∈ ]
1

2
, 1[  𝑒𝑡 [ 𝑣𝑛−1 < 1 ⟹ 𝑣𝑛 − 1 =

𝑣𝑛−1+𝑢𝑛

1+𝑢𝑛𝑣𝑛−1
− 1 =

𝑣𝑛−1+𝑢𝑛−1−𝑢𝑛𝑣𝑛−1

1+𝑢𝑛𝑣𝑛−1
=
(𝑣𝑛−1−1)(1−𝑢𝑛)

1+𝑢𝑛𝑣𝑛−1
< 0]  . Donc ∀𝑛 ∈ ℕ, 𝑣𝑛 < 1 . Ainsi, ∀𝑛 ∈ ℕ, 0 < 𝑣𝑛 < 1.  

2. 𝑣𝑛 − 𝑣𝑛−1 =
𝑣𝑛−1+𝑢𝑛

1+𝑢𝑛𝑣𝑛−1
− 𝑣𝑛−1 =

𝑣𝑛−1+𝑢𝑛−𝑣𝑛−1−𝑢𝑛𝑣𝑛−1
2

1+𝑢𝑛𝑣𝑛−1
=
𝑢𝑛(1−𝑣𝑛−1

2 )

1+𝑢𝑛𝑣𝑛−1
> 0. Donc 𝑣 est strictement croissante et par suite 𝑣 est convergente. Notons 𝐿 sa 

limite.  
3. ∀𝑛 ∈ ℕ, 𝑣𝑛 =

𝑣𝑛−1+𝑢𝑛

1+𝑢𝑛𝑣𝑛−1
 donc 𝑢𝑛 =

𝑣𝑛−1−𝑣𝑛

𝑣𝑛𝑣𝑛−1−1
.  

𝑆𝑖 𝐿 ≠ 1 alors (𝑢𝑛) est convergente de limite 𝐿−𝐿
𝐿2−1

= 0 ce qui est impossible puisque ∀𝑛 ∈ ℕ, 𝑢𝑛 ∈ ]
1

2
, 1[ . J’en conclus que 𝐿 = 1. 

 

Soit  𝑎0 et 𝑏0 deux réels tels que : 0 < 𝑎0 < 𝑏0 et  ∀𝑛, 𝑎𝑛+1 =
𝑎𝑛
2

𝑎𝑛+𝑏𝑛
 𝑒𝑡 𝑏𝑛+1 =

𝑏𝑛
2

𝑎𝑛+𝑏𝑛
  

1. Montrer que la suite 𝑎 − 𝑏 est constante. 
2. Etudier la convergence des suites 𝑎 et 𝑏. 

 
Déterminer une forme explicite des suites récurrrentes suivantes :  

1. 𝑢0 = 1   𝑒𝑡 ∀𝑛, 𝑢𝑛+1 = 𝑛𝑒
𝑛𝑢𝑛 

2. ∀𝑛, √𝑢𝑛
5

√𝑢𝑛+1
3 = 𝑒.   

3. 𝑢0 = 1 𝑒𝑡 ∀𝑛, 𝑢𝑛+1 = 2𝑢𝑛 − 𝑛 + 1.   

4. 𝑢0 =
1

2
  𝑒𝑡 𝑢1 = 1 𝑒𝑡 ∀𝑛, 𝑢𝑛+2 =

2(𝑢𝑛+1)
2

𝑢𝑛
 . 

 
Suites récurrentes de la forme 𝒖𝒏+𝟏 = 𝒇(𝒖𝒏).  
Soit 𝑢 la suite définie par 𝑢0 ∈ ℝ 𝑒𝑡 ∀𝑛 ∈ ℕ, 𝑢𝑛+1 =

6

2+𝑢𝑛
2 . Montrer que 𝑢 est bornée et divergente.  

 Soit 𝑓: (𝑥 ↦ 6

2+𝑥2
). 𝐷𝑓 = ℝ et 𝑓(ℝ) ⊂ ℝ+∗. ∀𝑛 ∈ ℕ, 𝑢𝑛  existe et 𝑢𝑛 > 0.  

Comme 𝑓 est continue sur ℝ+∗ 𝑒𝑡  lim
𝑥→+∞

𝑓(𝑥) = 0 ≠ +∞ 𝑒𝑡 lim
𝑥→0

𝑓(𝑥) = 3 ≠ 0, les limites possibles de 𝑢 sont les points fixes de 𝑓 sur ℝ+∗. Or, 𝑓(𝑥) =

𝑥 ⟺
6

2+𝑥2
= 𝑥 ⟺ 𝑥3 + 2𝑥 − 6 = 0. Or,ℎ: (𝑥 ↦ 𝑥3 + 2𝑥 − 6) est strictement croissante et continue et lim

𝑥→+∞
ℎ(𝑥) = +∞ > 0 et  ℎ(0) = −6 < 0. Donc, ℎ 

s’annule une et une seule fois en un réel 𝜆 sur  ℝ+. Ainsi, 𝑓 admet un seul point fixe 𝜆 sur ℝ+. Donc, ce point fixe 𝜆 est la seule limite possible de 𝑢. 
Comme ℎ(1) < 0 < ℎ(2), 𝜆 ∈]1,2[. 
𝑓 est dérivable sur ℝ+∗ et ∀𝑥 > 0, 𝑓′(𝑥) = 6 −2𝑥

(2+𝑥2)2
< 0. Donc 𝑓 est strictement croissante sur l’intervalle ℝ+∗. De plus, 𝑓 est continue et lim

𝑥→+∞
𝑓(𝑥) = 0 ≠

+∞ 𝑒𝑡 lim
𝑥→0
𝑓(𝑥) = 3, 𝑓(ℝ+∗) ⊂ [0,3] 𝑒𝑡 𝑓([0,3]) ⊂ [𝑓(3), 𝑓(0)] = [

6

11
, 3] ⊂ [

1

2
, 3].  J' en déduis que ∀𝑛 ≥ 2, 𝑢𝑛 ∈ [

1

2
, 3].   

  Comme 𝑓 est strictement décroissante, les suites (𝑢2𝑛) et (𝑢2𝑛+1) sont monotones et de monotonie contraire. Comme  (𝑢𝑛) est bornée, les suites 
extraites (𝑢2𝑛) et (𝑢2𝑛+1) sont bornées et finalement convergentes. On note 𝐿 et 𝐿’ leurs limites respectives. ∀𝑛 ∈ ℕ, 𝑢2(𝑛+1) = 𝑢2𝑛+2 = 𝑓(𝑢2𝑛+1) =

𝑓(𝑓(𝑢2𝑛)) =
6

2+(
6

2+𝑢2𝑛
2 )

2. Alors 𝐿 = lim
𝑛→+∞

𝑢2𝑛 = lim
𝑛→+∞

𝑢2𝑛+2 =⏞

𝑐𝑎𝑟 𝑓○𝑓
𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒

𝑓(𝑓(𝐿)). Donc, 𝐿 est un point fixe de 𝑓 ○ 𝑓 . 

 
 
 𝑓 ○ 𝑓(𝑥) = 𝑥 ⟺ 6

2+(
6

2+𝑥2
)
2 = 𝑥 

⟺ 3(2 + 𝑥2)2 = 𝑥(2 + 𝑥2)2 + 18𝑥 
⟺ 3(4 + 4𝑥2 + 𝑥4) = 22𝑥 + 4𝑥3 + 𝑥5 
⟺ 𝑥5 − 𝑥4 + 4𝑥3 − 12𝑥2 + 22𝑥 − 12 = 0 
⟺ (𝑥3 + 2𝑥 − 6)(𝑥2 − 3𝑥 + 2) = 0 
⟺ (𝑥3 + 2𝑥 − 6)(𝑥2 − 3𝑥 + 2) = 0 
⟺ 𝑥 = 𝜆 𝑜𝑢 𝑥 = 1 𝑜𝑢 𝑥 = 2. 
Donc 𝜆, 1 𝑒𝑡 2 sont les limites possibles de (𝑢2𝑛) et (𝑢2𝑛+1).  

De plus, 𝑓 ○ 𝑓(𝑥) − 𝑥 = −(𝑥3+2𝑥−6)(𝑥2−3𝑥+2)

2(2+𝑥2)2+36
=
−(𝑥−𝜆)(𝑥2+𝑏𝑥+𝑐)⏞        

∆<0

(𝑥−1)(𝑥−2)

2(2+𝑥2)2+36
 

𝑓 ○ 𝑓est strictement croissante puisque 𝑓 est strictement décroissante.  
Alors d’après ses variations et valeurs, je peux affirmer que :  

𝑓 ○ 𝑓 ([
1

2
, 1]) ⊂ [

1

2
, 1]  𝑒𝑡 𝑓 ○ 𝑓([1, 𝜆]) ⊂ [1, 𝜆]  𝑒𝑡   𝑓 ○ 𝑓([𝜆, 2]) ⊂ [𝜆, 2] 𝑒𝑡   𝑓 ○ 𝑓([2,3]) ⊂ [2,3] .    

Donc, si 𝑢0 ∈ [
1

2
, 1] alors ∀𝑛, 𝑢2𝑛 ∈ [

1

2
, 1] et la suite (𝑢2𝑛) ne peut pas converger vers 𝜆 qui est la seule limite possible de 𝑢. Donc u diverge.  Idem si 𝑢0 ∈

[2,3].  
si 𝑢0 ∈ [1, 𝜆] alors ∀𝑛, 𝑢2𝑛 ∈ [1, 𝜆] et 𝑢2 − 𝑢0 = 𝑓 ○ 𝑓(𝑢0) − 𝑢0 < 0. Comme (𝑢2𝑛) est monotone, (𝑢2𝑛) est décroissante et par suite (𝑢2𝑛) converge vers 
1. Donc u diverge.   
si 𝑢0 ∈ [𝜆, 2] alors ∀𝑛, 𝑢2𝑛 ∈ [𝜆, 2] et 𝑢2 − 𝑢0 = 𝑓 ○ 𝑓(𝑢0) − 𝑢0 > 0. Comme (𝑢2𝑛) est monotone, (𝑢2𝑛) est croissante et par suite (𝑢2𝑛) converge vers 2. 
Donc u diverge.   
Soit 𝑎 > 0  𝑒𝑡 𝑢 la suite définie par ∶  𝑢0 ∈ ℝ+∗ 𝑒𝑡 ∀𝑛 ∈ ℕ, 𝑢𝑛+1 = 𝑢𝑛 + 𝑒−𝑢𝑛. 
1) Etudier la monotonie de 𝑢 et déterminer la limite de la suite 𝑢. 

𝑥 ½                  1               𝜆               2               3 
  

𝑓(𝑥)  
                                                     𝜆 
 

𝑓 ○ 𝑓(𝑥)                                                                     
                                                                       2                                                             
                                                     𝜆 
                                     1 
 

 𝑓 ○ 𝑓(𝑥) − 𝑥                                     0               0              0 

 



2) Soit 𝑣𝑛 = 𝑒−𝑢𝑛. Calculer lim
𝑛→+∞

1

𝑣𝑛+1
−

1

𝑣𝑛
.  

3) En déduire un équivament simple de 𝑢𝑛 quand 𝑛 → +∞,  en appliquant judicieusement le théorème de Césaro.  
1) On pose 𝑓 : (𝑥 ↦ 𝑥 + 𝑒−𝑥). 𝐷𝑓 = ℝ 𝑒𝑡. Donc ∀𝑛 ∈ ℕ, 𝑢𝑛 existe .  Comme 𝑓(ℝ+∗) ⊂ ℝ+∗𝑒𝑡 𝑢0 > 0 , ∀𝑛 ∈ ℕ, 𝑢𝑛 > 0   . 
Enfin, ∀𝑛 ∈ ℕ, 𝑢𝑛+1 − 𝑢𝑛 = 𝑒−𝑢𝑛 > 0. Donc 𝑢 est strictement croissante. J’en déduis que 𝑢 admet une limite 𝐿 telle que 𝐿 ∈ ℝ+∗ ∪ {+∞}. 
Supposons que 𝐿 ∈ ℝ+∗. Alors  𝐿 = lim

𝑛→+∞
𝑢𝑛+1 = lim

𝑛→+∞
𝑢𝑛 + 𝑒

−𝑢𝑛 = 𝐿 + 𝑒−𝐿. Donc, 𝑒−𝐿 = 0 ce qui est impossible ! Donc, 𝐿 = +∞.  

2) 1

𝑣𝑛+1
−

1

𝑣𝑛
= 𝑒𝑢𝑛+1 − 𝑒𝑢𝑛 = 𝑒𝑢𝑛+𝑒

−𝑢𝑛
− 𝑒𝑢𝑛 = 𝑒𝑢𝑛(𝑒𝑒

−𝑢𝑛
− 1) ~+∞⏟

𝑐𝑎𝑟 lim
𝑛→+∞

𝑒−𝑢𝑛=0

𝑒𝑡 𝑒𝑡−1~0𝑡 

𝑒𝑢𝑛𝑒−𝑢𝑛 = 1. Donc, lim
𝑛→+∞

1

𝑣𝑛+1
−

1

𝑣𝑛
= 1.  

3)Posons 𝑆𝑛 =
1

𝑛
∑ (

1

𝑣𝑘+1
−

1

𝑣𝑘
)𝑛−1

𝑘=0 . D’après Césaro, lim
𝑛→+∞

𝑆𝑛 = 1. Donc, 𝑆𝑛 = 1 + 𝑜+∞(1).  

 Or, 𝑆𝑛 =
1

𝑛
∑ (

1

𝑣𝑘+1
−

1

𝑣𝑘
)𝑛−1

𝑘=0 = 𝑆𝑛 =
1

𝑛
[
1

𝑣𝑛
−

1

𝑣0
] =

1

𝑛
[𝑒𝑢𝑛 − 𝑒𝑢0]. 

Par conséquent, 1
𝑛
[𝑒𝑢𝑛 − 𝑒𝑢0] = 1 + 𝑜+∞(1) donc 𝑒𝑢𝑛 = 𝑛 + 𝑜+∞(𝑛) + 𝑛𝑒𝑢0 = 𝑛[(1 + 𝑒𝑎) + 𝑜+∞(1)]. Alors 𝑢𝑛 = ln( 𝑛) + ln (1 + 𝑒𝑎 + 𝑜+∞(1)) et ainsi, 

𝑢𝑛~ ln( 𝑛). 

Soit 𝑎 > 0  𝑒𝑡 𝑢 la suite définie par ∶  𝑢0 ∈ ℝ+∗ 𝑒𝑡 ∀𝑛 ∈ ℕ, 𝑢𝑛+1 =
1

2
(𝑢𝑛 +

𝑎

𝑢𝑛
). Etudier la monotonie de 𝑢 et l’existence et la valeur de la limite de la suite 𝑢. 

∀𝑛 ∈ ℕ, 𝑢𝑛+1 =
1

2
(𝑢𝑛 +

𝑎

𝑢𝑛
) = 𝑓(𝑢𝑛) où 𝑓: (𝑥 ↦ 1

2
(𝑥 +

𝑎

𝑥
)).  

𝑓(ℝ+∗) ⊂ ℝ+∗ et 𝑎 ∈ ℝ+∗. Donc ∀𝑛 ∈ ℕ, 𝑢𝑛existe et 𝑢𝑛 > 0.  
 
Soit la suite 𝑢 définie par ∶  𝑢0 ∈ ℝ 𝑒𝑡 ∀𝑛 ∈ ℕ, 𝑢𝑛+1 = 𝑢𝑛(1 + 𝑢𝑛).  
1. Etudier la monotonie de 𝑢 et l’existence et la valeur de la limite de la suite 𝑢 selon la valeur de 𝑢0. 

2. On suppose que 𝑢0 > 0. On pose 𝑣𝑛 =
1

2𝑛
ln(𝑢𝑛).  

a) Montrer que 𝑣 est croissante 
b) Montrer que ∀𝑛 ∈ ℕ, 𝑣𝑛+1 − 𝑣𝑛 ≤

1

2𝑛+1𝑢𝑛
.  

c) En déduire qu’il existe un entier 𝑁 tel que : ∀𝑛 ≥ 𝑁, 𝑣𝑛+1 − 𝑣𝑛 ≤
1

2𝑛
. 

d) En déduire que 𝑣 est convergente .  
𝑢𝑛+1 − 𝑢𝑛 = 𝑢𝑛(1 + 𝑢𝑛) − 𝑢𝑛 = 𝑢𝑛

2 ≥ 0. Donc, (𝑢𝑛) est croissante. Donc (𝑢𝑛) admet une limite 𝐿 finie ou égale à +∞.  
Alors si 𝐿 ∈ ℝ, alors 𝐿 = lim

𝑛→+∞
𝑢𝑛+1= lim

𝑛→+∞
𝑢𝑛(1 + 𝑢𝑛) =⏟

𝑝𝑎𝑠 𝑑𝑒 𝐹.𝐼.

𝐿(1 + 𝐿). Donc 𝐿2 = 0  𝑖. 𝑒. 𝐿 = 0.  

Si 𝐿 = +∞ alors +∞ = lim
𝑛→+∞

𝑢𝑛+1 lim
𝑛→+∞

𝑢𝑛(1 + 𝑢𝑛) =⏟
𝑝𝑎𝑠 𝑑𝑒 𝐹.𝐼.

+∞ donc il n’y a pas de contradiction. Les deux limites possibles sont 0 et +∞.  

Posons 𝑓(𝑥) = 𝑥(1 + 𝑥). Donc le tabelau de variation de 𝑓 est :  
𝑥 

−∞                − 1        −
1

2
             0                        + ∞ 

𝑓(𝑥)    +∞                                                                               + ∞ 

0       −
1

4
             0         

  
 
Donc, 𝑓(ℝ+∗) ⊂ ℝ+∗donc si 𝑢0 ∈ ℝ+∗ alors ∀𝑛, 𝑢𝑛 ∈ ℝ+∗et comme  (𝑢𝑛) est croissante, 𝐿 = +∞.  
De plus,  𝑓(]−∞,−1[) ⊂ ℝ+∗donc si 𝑢0 ∈ ℝ+∗ alors 𝑢1 ∈ ℝ+∗ et par suite ∀𝑛 ≥ 1, 𝑢𝑛 ∈ ℝ+∗et comme  (𝑢𝑛) est croissante, 𝐿 = +∞.  
Enfin,  𝑓(]−1,0[) ⊂ ]−1,0[. donc si 𝑢0 ∈ ]−1,0[  alors ∀𝑛, 𝑢𝑛 ∈ ]−1,0[ ; donc (𝑢𝑛) est bornée et croissante, et par conséquent,  𝐿 = 0.  

2. On suppose que 𝑢0 > 0. On pose 𝑣𝑛 =
1

2𝑛
ln(𝑢𝑛).  

a) Soit 𝑛 ∈ ℕ. 𝑣𝑛+1 − 𝑣𝑛 =
1

2𝑛+1
ln(𝑢𝑛+1) −

1

2𝑛
ln(𝑢𝑛) =

1

2𝑛+1
ln(𝑢𝑛(1 + 𝑢𝑛)) −

1

2𝑛
ln(𝑢𝑛) =

1

2𝑛+1
ln(𝑢𝑛) +

1

2𝑛+1
ln(1 + 𝑢𝑛) −

1

2𝑛
ln(𝑢𝑛) 

= (
1

2
− 1)

1

2𝑛
ln(𝑢𝑛) +

1

2𝑛+1
ln(1 + 𝑢𝑛) = −

1

2𝑛+1
ln(𝑢𝑛) +

1

2𝑛+1
ln(1 + 𝑢𝑛) =

1

2𝑛+1
[ln(1 + 𝑢𝑛) − ln(𝑢𝑛)] > 0.  

Donc (𝑣𝑛) est croissante.  
b) Soit 𝑛 ∈ ℕ .  

𝑣𝑛+1 − 𝑣𝑛 =
1

2𝑛+1
[ln(1 + 𝑢𝑛) − ln(𝑢𝑛)] =

1

2𝑛+1
[ln (

1+𝑢𝑛

𝑢𝑛
)] =

1

2𝑛+1
[ln (1 +

1

𝑢𝑛
)]. Or , ∀𝑡 ≥ 0, ln(1 + 𝑡) ≤ 𝑡. Donc ln (1 + 1

𝑢𝑛
) ≤

1

𝑢𝑛
 et par suite ,  

 𝑣𝑛+1 − 𝑣𝑛 ≤
1

2𝑛+1𝑢𝑛
 

c) Comme 𝑢0 ∈ ℝ+∗. 𝐿 = +∞.  Donc, existe un entier 𝑁 tel que : ∀𝑛 ≥ 𝑁, 𝑢𝑛 ≥
1

2
. Alors, ∀𝑛 ≥ 𝑁, 1

𝑢𝑛
≤ 2 𝑒𝑡 

1

2𝑛+1𝑢𝑛
≤

1

2𝑛
  Donc, ∀𝑛 ≥ 𝑁, 𝑣𝑛+1 − 𝑣𝑛 ≤

1

2𝑛
. 

d) Alors, ∀𝑛 ≥ 𝑁 + 1,∑ 𝑣𝑘+1 − 𝑣𝑘
𝑛−1
𝑘=𝑁 ≤ ∑

1

2𝑘
𝑛−1
𝑘=𝑁   𝑑𝑜𝑛𝑐  𝑣𝑛 − 𝑣𝑁 ≤

1−(
1

2
)
𝑛−1−𝑁+1

1−(
1

2
)

(
1

2
)
𝑁

≤
1
1

2

= 2. Ainsi, ∀𝑛 ≥ 𝑁 + 1,   𝑣𝑛 ≤ 2 + 𝑣𝑁. Donc la suite (𝑣𝑛) est 

majorée à partir du rang 𝑁 + 1 donc est majorée. Comme  (𝑣𝑛) est croissante, (𝑣𝑛)est convergente.  
 
Suites implicites  
a)  pour tout entier naturel 𝑛 , justifier que l’équation  𝑥𝑒𝑥 = 𝑛 admet une seule solution strictement positive notée 𝑢𝑛. 
b) Etudier la monotonie de 𝑢.  
c) Déterminer la limite de 𝑢 
d) Montrer que : 𝑢𝑛~+∞ ln(𝑛).  
a) Posons 𝑓(𝑥) = 𝑥𝑒𝑥. 𝑓 est strictement croissante sur ℝ+∗ et continue . Donc, le TBCSM assure que 𝑓(ℝ+∗) = ℝ+∗.  
Donc tout entier 𝑛 ∈ ℕ∗admet un unique antécédent par 𝑓 dans ℝ+∗ noté 𝑢𝑛. 
b) Soit 𝑛 ∈ ℕ∗. 𝑓(𝑢𝑛) = 𝑛 < 𝑛 + 1 = 𝑓(𝑢𝑛+1). Comme 𝑓 est strictement croissante sur ℝ+∗, 𝑢𝑛 < 𝑢𝑛+1. Ainsi, 𝑢 est strictement croissante. Par 
conséquent, 𝑢 a une limite 𝐿 strictement positive ou infinie.  
c) e TBCSM assure que 𝑓 est bijective de ℝ+∗ sur ℝ+∗. ∀𝑛, 𝑢𝑛 > 0 𝑒𝑡  𝑓(𝑢𝑛) = 𝑛 donc 𝑢𝑛 = 𝑓−1(𝑛). De plus, lim

𝑥→+∞
𝑓(𝑥) = +∞ donc lim

𝑥→+∞
𝑓−1(𝑥) = +∞ et par 

conséquent, lim
𝑛→+∞

𝑓−1(𝑛) = +∞. Ainsi, lim
𝑛→+∞

𝑢𝑛 =+∞.  

d) ∀𝑛, 𝑓(𝑢𝑛) = 𝑢𝑛𝑒𝑢𝑛 = 𝑛 donc ln (𝑢𝑛𝑒
𝑢𝑛) = ln(𝑛) i.e. ln(𝑢𝑛) + 𝑢𝑛 = ln(𝑛). Comme ln(𝑥) = 𝑜+∞(𝑥) et lim

𝑛→+∞
𝑢𝑛 =+∞, ln(𝑢𝑛) = 𝑜+∞(𝑢𝑛) et par suite ln(𝑢𝑛) +

𝑢𝑛~+∞𝑢𝑛 . J’en conclus que : 𝑢𝑛~+∞  ln(𝑛). 
a) pour tout entier naturel 𝑛 , justifier que l’équation  (𝑒𝑛): 𝑥5 + 𝑛𝑥 = 1 admet une seule solution notée 𝑢𝑛. 



b) Etudier la monotonie et la limite de (𝑢𝑛). 

c) Montrer que : 𝑢𝑛 =
1

𝑛
−

1

𝑛6
+

5

𝑛11
+ 𝑜+∞ (

1

𝑛11
).  

a)Soit 𝑛 ∈ ℕ. Posons 𝑓𝑛: (𝑥 ↦ 𝑥5 + 𝑛𝑥 − 1). 𝑓𝑛 est strictement croissante sur ℝ car (𝑥 ↦ 𝑥5) l'est et (𝑥 ↦ 𝑛𝑥 − 1) est croissante. Donc l’équation (𝑒𝑛) 
admet au plus une solution. De plus,  𝑓𝑛 est continue et 𝑓𝑛(0) = −1 < 0 ≤ 𝑛 = 𝑓𝑛(1). Donc le 𝑇𝑉𝐼 assure que (𝑒𝑛) admet au plus une solution. Ainsi (𝑒𝑛) 
admet exactement une solution notée 𝑢𝑛. Ainsi, ∀𝑛 ∈ ℕ, 𝑢𝑛5 + 𝑛𝑢𝑛 = 1  𝑖. 𝑒. 𝑓𝑛(𝑢𝑛) = 0.  De plus 𝑓𝑛(0) < 𝑓𝑛(𝑢𝑛) ≤ 𝑓𝑛(1), donc 0 ≤ 𝑢𝑛 ≤ 1 puisque 𝑓𝑛 est 
strictement croissante.  
b) Soit 𝑛 ∈ ℕ.  𝑓𝑛 est strictement croissante sur ℝ donc 𝑓𝑛(𝑢𝑛) 𝑒𝑡 𝑓𝑛(𝑢𝑛+1) sont ordonnés dans la même ordre que 𝑢𝑛 𝑒𝑡 𝑢𝑛+1.  

𝑓𝑛(𝑢𝑛) = 0 𝑒𝑡 𝑓𝑛(𝑢𝑛+1) = 𝑢𝑛+1
5 + 𝑛𝑢𝑛+1 − 1 = 𝑢𝑛+1

5 + (𝑛 + 1)𝑢𝑛+1 − 1⏟                
=𝑓𝑛+1(𝑢𝑛+1)=0

− 𝑢𝑛+1 = −𝑢𝑛+1  ≤ 0 puisque 0 ≤ 𝑢𝑛 . Donc, 𝑓𝑛(𝑢𝑛+1) ≤ 𝑓𝑛(𝑢𝑛) et par suite, 

𝑢𝑛+1 ≤ 𝑢𝑛 . La suite (𝑢𝑛) est donc décroissante et minorée par 0 donc convergente. Notons 𝐿 sa limite. Par passage à la limite dans l’inégalité 0 ≤ 𝑢𝑛 ≤

1, nous pouvons affirmer que  0 ≤ 𝐿 ≤ 1. ∀𝑛 ∈ ℕ, 𝑢𝑛5 + 𝑛𝑢𝑛 = 1  donc ∀𝑛 ∈ ℕ, 𝑢𝑛 =
1

𝑛
(1 − 𝑢𝑛

5) et par conséquent,  𝐿 = lim
𝑛→+∞

𝑢𝑛 = lim
𝑛→+∞

1

𝑛
(1 − 𝑢𝑛

5 ) =

0 × (1 − 𝐿5) = 0.  

c) ∀𝑛 ∈ ℕ, 𝑢𝑛 =
1

𝑛
(1 − 𝑢𝑛

5) 𝑒𝑡 lim
𝑛→+∞

1 − 𝑢𝑛
5 = 0 donc 𝑢𝑛~

1

𝑛
 i.e. 𝑢𝑛 =

1

𝑛
+ 𝑜 (

1

𝑛
).  

 𝑢𝑛 =
1

𝑛
(1 − (

1

𝑛
+ 𝑜 (

1

𝑛
))
5

) =
1

𝑛
−
1

𝑛
(
1

𝑛
+ 𝑜 (

1

𝑛
))
5

 =
1

𝑛
−

1

𝑛6
(1 + 𝑜(1))

5
=
1

𝑛
−

1

𝑛6
(1 + 𝑜(1)) =

1

𝑛
−

1

𝑛6
+ 𝑜 (

1

𝑛6
).   

Alors, 𝑢𝑛 =
1

𝑛
(1 − (

1

𝑛
−

1

𝑛6
+ 𝑜 (

1

𝑛6
))
5

) =
1

𝑛
−

1

𝑛6
(1 −

1

𝑛5
+ 𝑜 (

1

𝑛5
))
5

=
1

𝑛
−

1

𝑛6
(1 −

5

𝑛5
+ 𝑜 (

1

𝑛5
)) =

1

𝑛
−

1

𝑛6
+

5

𝑛11
+ 𝑜 (

1

𝑛11
) .  

Suites complexes     
1. Soit 𝒛 ∈ ℂ. ∀𝑛 ∈ ℕ, on pose 𝑃𝑛 = ∏ (1 + 𝑧2

𝑘
)𝑛

𝑘=0 . Calculer (1 − 𝑧)𝑃𝑛. En déduire lim
𝑛→+∞

𝑃𝑛 lorsque |𝑧| < 1.  

2. Soit 𝒛 ∈ ℂ. ∀𝑛 ∈ ℕ, on pose 𝑇𝑛 = (1 +
𝑧

𝑛
)
𝑛

. Montrer que lim
𝑛→+∞

𝑇𝑛 = 𝑒
𝑧. (indication : chercher la forme trigonométrique puis algébrique de  𝑇𝑛) 

1. (1 − 𝑧)𝑃𝑛 = (1 − 𝑧) ∏ (1 + 𝑧2
𝑘
)𝑛

𝑘=0 = (1 − 𝑧) (1 + 𝑧)∏ (1 + 𝑧2
𝑘
)𝑛

𝑘=1 = (1 − 𝑧2)∏ (1 + 𝑧2
𝑘
)𝑛

𝑘=2 = (1 − 𝑧2)(1 + 𝑧2)∏ (1 + 𝑧2
𝑘
)𝑛

𝑘=3  

= (1 − 𝑧4)∏ (1 + 𝑧2
𝑘
)

𝑛

𝑘=3
= (1 − 𝑧4)(1 + 𝑧4)∏ (1 + 𝑧2

𝑘
)

𝑛

𝑘=4
= (1 − 𝑧8)∏ (1 + 𝑧2

𝑘
)

𝑛

𝑘=4
. 

Par itération ( ou récurrence) (1 − 𝑧)𝑃𝑛 = (1 − 𝑧2
𝑛
)(1 + 𝑧2

𝑛
) = 1 − 𝑧2

𝑛+1
.  

Donc si |𝑧| < 1,alors lim
𝑛→+∞

𝑧𝑛 = 0 et la suite extraite (𝑧2
𝑛+1
) tend aussi vers 0. Donc, lim

𝑛→+∞
(1 − 𝑧)𝑃𝑛 = 1 donc lim

𝑛→+∞
𝑃𝑛 =

1

1−𝑧
. 

2. Posons 𝑧 = 𝑥 + 𝑖𝑦.  Alors, 𝑇𝑛 = (1 +
𝑥+𝑖𝑦

𝑛
)
𝑛

= (1 +
𝑥

𝑛
+ 𝑖

𝑦

𝑛
)
𝑛

=⏟
lim
𝑛→+∞

1+
𝑥

𝑛
+𝑖
𝑦

𝑛
=1=1

𝑑𝑜𝑛𝑐,𝑝𝑜𝑢𝑟 𝑛 𝑎𝑠𝑠𝑒𝑧 𝑔𝑟𝑎𝑛𝑑,

arg(1+
𝑥

𝑛
+𝑖
𝑦

𝑛
) 𝑒𝑥𝑖𝑠𝑡𝑒 𝑒𝑡

arg(1+
𝑥

𝑛
+𝑖
𝑦

𝑛
)=𝐴𝑟𝑐𝑡𝑎𝑛(

𝑦

𝑥+𝑛
)

 

(√(1 +
𝑥

𝑛
)
2

+ (
𝑦

𝑛
)
2

𝑒𝑖𝐴𝑟𝑐𝑡𝑎𝑛
(
𝑦

𝑥+𝑛
)
)

𝑛

= [(1 +
𝑥

𝑛
)
2

+ (
𝑦

𝑛
)
2

]

𝑛

2

𝑒𝑖𝑛𝐴𝑟𝑐𝑡𝑎𝑛
(
𝑦

𝑥+𝑛
) 

𝐷𝑜𝑛𝑐, 𝑇𝑛 = [(1 +
𝑥

𝑛
)
2

+ (
𝑦

𝑛
)
2

]

𝑛

2

𝑐𝑜𝑠 (𝑛𝐴𝑟𝑐𝑡𝑎𝑛 (
𝑦

𝑥+𝑛
))

⏟                          
𝑅𝑒(𝑇𝑛)

+ 𝑖 [(1 +
𝑥

𝑛
)
2

+ (
𝑦

𝑛
)
2

]

𝑛

2

𝑠𝑖𝑛 (𝑛𝐴𝑟𝑐𝑡𝑎𝑛 (
𝑦

𝑥+𝑛
))

⏟                          
𝐼𝑚(𝑇𝑛)

 .  

𝑟𝑛 = [(1 +
𝑥

𝑛
)
2

+ (
𝑦

𝑛
)
2

]

𝑛

2

= 𝑒
𝑛

2
ln[(1+

𝑥

𝑛
)
2
+(
𝑦

𝑛
)
2
]
. 𝑂𝑟,

𝑛

2
ln [(1 +

𝑥

𝑛
)
2

+ (
𝑦

𝑛
)
2

]~
𝑛

2
[(1 +

𝑥

𝑛
)
2

+ (
𝑦

𝑛
)
2

− 1].  

Et,  𝑛
2
[(1 +

𝑥

𝑛
)
2

+ (
𝑦

𝑛
)
2

− 1] =
𝑛

2
[
2𝑥

𝑛
+ (

𝑥

𝑛
)
2

+ (
𝑦

𝑛
)
2

] = 𝑥 +
𝑥2+𝑦²

2𝑛
+ 𝑜 (

1

𝑛
)~0 {

𝑥 𝑠𝑖 𝑥 ≠ 0
𝑦2

2𝑛
 𝑠𝑖 𝑥 = 0 𝑒𝑡 𝑦 ≠ 0

0 𝑠𝑖 𝑥 = 𝑦 = 0

.  

Donc, lim
𝑛→+∞

𝑛

2
ln [(1 +

𝑥

𝑛
)
2

+ (
𝑦

𝑛
)
2

] = {
𝑥 𝑠𝑖 𝑥 ≠ 0

0 𝑠𝑖 𝑥 = 0
. Ainsi, lim

𝑛→+∞
𝑟𝑛 = {

𝑒𝑥  𝑠𝑖 𝑥 ≠ 0

1 𝑠𝑖 𝑥 = 0
= 𝑒𝑥 .   

𝑐𝑜𝑠 (𝑛𝐴𝑟𝑐𝑡𝑎𝑛 (
𝑦

𝑥+𝑛
)) =⏟

𝑐𝑎𝑟 
𝑦

𝑥+𝑛
~+∞ 

𝑦

𝑛
 
𝑛→+∞
→     0 

𝑒𝑡 𝐴𝑟𝑐𝑡𝑎𝑛(𝑢)~0𝑢  

cos(𝑛 ((
𝑦

𝑛
) + 𝑜+∞ (

𝑦

𝑛
))) = cos(𝑦 + 𝑜+∞(𝑦))

𝑛→+∞
→    cos (𝑦). De même,  

𝑠𝑖𝑛 (𝑛𝐴𝑟𝑐𝑡𝑎𝑛 (
𝑦

𝑥+𝑛
))

𝑛→+∞
→    sin (𝑦). J’en déduis que lim

𝑛→+∞
𝑇𝑛 = 𝑒

𝑥 cos(𝑦) + 𝑖𝑒𝑥 sin(𝑦) = 𝑒𝑥(cos(𝑦) + 𝑖𝑠𝑖𝑛(𝑦)) = 𝑒𝑥𝑒𝑖𝑦 = 𝑒𝑧 .  

 


