Des exercices sur le début du chapitre « Matrices » : opérations sur les matrices, opérations élémentaires, systèmes linéaires et rang.

Ex 1 Soit
$$A = \begin{pmatrix} 1 & -2 & -1 \\ 2 & 5 & -2 \\ 3 & 0 & -3 \end{pmatrix}$$
. On note C_1, C_2, C_3 les colonnes de A .

En remarquant que $C_1 = -C_3$, vous déterminerez :

- 1. une matrice colonne X telle que AX = 0.
- 2. le rang de A.

1. Si
$$X = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 alors $AX = aC_1 + bC_2 + cC_3$ donc $X = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ vérifie $AX = 1C_1 + 0C_2 + 1C_3 = 0$.

2.
$$C_1 = -C_3 \operatorname{donc} rg(A) \le 2 \operatorname{et} A \sim_C \begin{pmatrix} 1 & -2 & 0 \\ 2 & 5 & 0 \\ 3 & 0 & 0 \end{pmatrix} \sim_C \begin{pmatrix} 1 & 0 & 0 \\ 2 & 9 & 0 \\ 3 & 6 & 0 \end{pmatrix} = B. \operatorname{Donc}, rg(A) = rg(B) = 2.$$

Ex 2 Soit $A = \begin{pmatrix} 1 & 2 & -3 \\ 2 & 4 & -6 \\ 3 & 6 & -9 \end{pmatrix}$. Trouver rapidement:

- 2. deux matrices colonnes X telles que AX = O.
- 3. deux matrices lignes L telles que LA = 0.
- 4. les solutions du système linéaire $AX = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
- 5. les solutions du système linéaire $AX = \begin{pmatrix} -6 \\ -12 \end{pmatrix}$
- Une condition nécessaire et suffisante sur a, b et c pour que le système linéaire $AX = \binom{a}{b}$ soit compatible.

1. Je remarque que
$$L_2=2L_1$$
 et $L_3=3L_1$. Donc, $A\sim_L \begin{pmatrix} 1 & 2 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ et $rg(A)=1$.

2. Je remarque que
$$2C_1 - C_2 = 0$$
 et $C_1 + C_2 + C_3 = 0$. Donc $A \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} = 0$ et $A \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 0$.

On a aussi
$$C_3 + 3C_1 = 0$$
 donc $A \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix} = O$.

3. Comme
$$2L_1 - L_2 = 0$$
 et $3L_1 - L_3 = 0$, $(2 -1 0)A = 0$ et $(3 0 -1)A = 0$

4.
$$A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \Leftrightarrow \begin{cases} x + 2y - 3z = 1 \\ 2(x + 2y - 3z) = 1 \\ 3(x + 2y - 3z) = 1 \end{cases} \Leftrightarrow \begin{cases} x + 2y - 3z = 1 \\ 2 = 1 \\ 3 = 1 \end{cases}$$
 IMPOSSIBLE!!

5.
$$AX = \begin{pmatrix} -6 \\ -12 \\ -18 \end{pmatrix} \Leftrightarrow \begin{cases} x + 2y - 3z = -6 \\ 2(x + 2y - 3z) = -12 \Leftrightarrow \begin{cases} x + 2y - 3z = -6 \\ -12 = -12 \\ -18 = -18 \end{cases} \Leftrightarrow x = -6 - 2y + 3z.$$

Donc,
$$Sol = \left\{ \begin{pmatrix} -6 - 2y + 3z \\ y \\ z \end{pmatrix} \middle/ y, z \text{ réels} \right\}$$

3. Comme
$$2L_1 - L_2 = 0$$
 et $3L_1 - L_3 = 0$, $(2 - 1 0)A = 0$ et $(3 0 - 1)A = 0$.
4. $A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \Leftrightarrow \begin{cases} x + 2y - 3z = 1 \\ 2(x + 2y - 3z) = 1 \end{cases} \Leftrightarrow \begin{cases} x + 2y - 3z = 1 \\ 3 = 1 \end{cases}$

$$5. AX = \begin{pmatrix} -6 \\ -12 \\ -18 \end{pmatrix} \Leftrightarrow \begin{cases} x + 2y - 3z = -6 \\ 2(x + 2y - 3z) = -12 \Leftrightarrow \begin{cases} x + 2y - 3z = -6 \\ -12 = -12 \\ 3(x + 2y - 3z) = -18 \end{cases} \Leftrightarrow \begin{cases} x + 2y - 3z = -6 \\ -18 = -18 \end{cases}$$

$$6. AX = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \Leftrightarrow \begin{cases} x + 2y - 3z = a \\ 2(x + 2y - 3z) = b \Leftrightarrow \begin{cases} x + 2y - 3z = -6 \\ 2(x + 2y - 3z) = b \end{cases} \Leftrightarrow \begin{cases} x + 2y - 3z = -6 \\ 2a = b \\ 3a = c \end{cases}$$

$$2a = b \\ 3a = c \end{cases}$$
Donc le système est compatible siets i $\begin{cases} 2a = b \\ 3a = c \end{cases}$

Ex0 Soit (S) un système n équations et n inconnues dont la matrice des coefficients est A. Justifier l'équivalence :

- (S) est de Cramer sietssi rg(A) = n.
- (S) est de Cramer sietssi (S) admet une unique solution

sietssi il existe un système (S') échelonnée équivalent à (S) et de la forme (S'):
$$\begin{cases} x_1 + a'_{12}x_2 + a'_{13}x_3 + .. + a'_{1p}x_p = b'_1 \\ x_2 + a'_{23}x_3 + .. + a'_{2p}x_p = b'_2 \\ \vdots \\ x_{n-1} + a'_{2p}x_p = b'_{p-1} \\ x_p = b'_p \end{cases}$$

sietssi il existe un système (S') échelonnée équivalent à (S) et de rang n.

sietssi rq(S) = n.