PROGRAMME DE KHOLLES de PCSI n°6

BLOC S2 cours 1/2 et 2/2 : bases de l'électrocinétique dans le cadre de l'ARQS + dipôles électriques linéaires fondamentaux

Voir semaines précédentes pour plus de détails

A connaitre par cœur:

- Les lois de Kirchhoff
- expression de R_{eq} pour 2 résistances en série + démo
- expression de R_{eq} pour 2 résistances en dérivation + démo
- expression du pont diviseur de tension pour 2 R en série + démo
- expression du pont diviseur d'intensité pour 2 R en dérivation + démo
- relations tension-intensité pour un conducteur, ohmique, une bobine (parfaite ou réelle), un condensateur (en convention récepteur et en convention générateur)
- relation charge-tension pour un condensateur
- les expressions des énergies stockées dans L, dans C.
- continuité de i dans une branche contenant une bobine
- continuité de uc , de q aux bornes d'une condensateur.
- La démonstration de la loi des nœuds en termes de potentiel (cas basique de 3 résistances se réunissant en 1 nœud)

<u>Objectifs</u>: trouver une tension ou une intensité dans un circuit complexe (c'est-à-dire à plusieurs mailles) en utilisant les lois de Kirchhoff et les ponts diviseurs et/ou en simplifiant le circuit via des associations de résistances et la modélisation du générateur par un modèle de Thévenin.

bloc S3 cours 1/1 : circuits linéaires du 1er ordre

Etude complète de la réponse à un échelon de tension front montant (0→E) d'un circuit RC

- Mise en équation et simplification du problème via un circuit équivalent (regroupement des résistances, etc...).
- Recherche de circuits équivalents pour prévoir SANS CALCUL les valeurs des différentes grandeurs en régime permanent continu/stationnaire (RPC : quand t<0 et quand t→∞).
- Recherche de l'équation différentielle linéaire du premier ordre vérifiée par une des grandeurs électriques, à savoir $u_c(t)$, q(t), $u_R(t)$ ou i(t), mise sous forme canonique et résolution avec utilisation correcte des CI (continuité de u_c le condensateur à connaître et à savoir justifier pour en déduire la valeur initiale de la grandeur d'intéret).
- En déduire l'expression analytique des autres grandeurs.
- Représentation graphique de u(t), $u_c(t)$, q(t), $u_R(t)$, i(t) à partir de quelques points caractéristiques (à t=0, à t= τ , à t= 5τ et $t\to\infty$) de la tangente à l'origine et de l'asymptote horizontale.
- Savoir déterminer la valeur de la constante de temps : soit analytiquement à l'aide de l'expression τ =RC, soit graphiquement (2 méthodes : point d'intersection de l'asymptote horizontale et de la tangente à l'origine ou $u_c(\tau)$ =0,63E)
- Savoir estimer la durée du régime transitoire (environ le temps de réponse à 99% soit 4,6τ arrondi à 5τ).
- Connaître par cœur l'allure du graphe de $u_c(t)$ lors de la réponse d'un circuit RC à un échelon de tension E (charge du condensateur) En déduire l'allure des graphes de q(t), $u_R(t)$ et i(t).
- Etude énergétique (bilan de puissance, bilan énergétique : observer que les échanges énergétiques n'ont lieu que durant le régime transitoire)

Régime libre d'un circuit RC

 Compétences identiques à celles détaillées pour la réponse à un échelon de tension (mise en équation, recherche de l'équation différentielle puis des expressions analytiques des différentes grandeurs, graphes associés, prévision du comportement en RPC, étude énergétique).

Etablissement du courant et régime libre pour un circuit RL

- Connaître et savoir justifier la condition de continuité de i dans la branche contenant une bobine. Prévoir sans calcul les valeurs des grandeurs électriques à t=0⁺.
- Savoir déterminer la valeur de la constante de temps : analytiquement à l'aide de l'expression τ =L/R OU graphiquement
- Prévoir sans calcul les valeurs des grandeurs électriques en RPC à l'aide d'un circuit équivalent : une bobine idéale correspond à un fil idéal en régime permanent continu ;
- Recherche et résolution de l'équation différentielle vérifiée par une des grandeurs électriques parmi i(t), u_R(t), u_L(t), en déduire l'expression analytique des autres grandeurs électriques.
- Savoir tracer le graphe associé (tangente à l'origine, asymptote horizontale, valeurs prises à t=0, $t=\tau$, $t=5\tau$).
- Connaître par cœur l'allure du graphe de i(t) lors de l'établissement du courant ou de la rupture du courant dans un circuit RL simple à un échelon de tension E (charge du condensateur) En déduire l'allure des graphes de q(t), u_R(t) et u_L(t).
- Etude énergétique (bilan de puissance, bilan énergétique : observer que les échanges énergétiques perdurent une fois le régime permanent établi pour l'établissement du courant).

Régime libre d'un circuit RL

• Compétences identiques à celles détaillées pour l'établissement du courant

Les étudiants doivent être capables d'étudier des régimes transitoires de circuits à géométrie complexe (plusieurs mailles). Attention, l'expression de la constante de temps dépend de la géometrie du circuit !