- $\boxed{\mathbf{1}}$ (*) Soit E un \mathbb{R} -espace vectoriel muni d'une base de trois vecteurs B=(i,j,k). Soit f l'endomorphisme de \mathbb{R}^3 défini par f(i)=i+2j, f(j)=i+j-3k et f(k)=j+k.
 - 1. Donner l'expression de f(x) pour tout $x \in E$, en fonction des coordonnées de x dans B
 - 2. Dans cette question on suppose $E = \mathbb{R}_2[X]$ et $B = (1, 2X + 1, X^2 1)$. Montrer que B est bien une base de E et calculer $f(1 + X + X^2)$

RÉPONSE:

1. Notons α, β, γ les coordonnées de x dans $B: x = \alpha i + \beta j + \gamma k$ donc

$$f(x) = f(\alpha i + \beta j + \gamma k) = \alpha f(i) + \beta f(j) + \gamma f(k)$$

= $\alpha (i + 2j) + \beta (i + j - 3k) + \gamma (j + k)$
= $(\alpha + \beta)i + (2\alpha + \beta + \gamma)j + (-3\beta + \gamma)k$

2. La famille B = (i, j, k) est échelonnée en degrés, donc est libre. De plus on a les relations :

$$X = \frac{1}{2}(2X+1) - \frac{1}{2} \cdot 1 = -\frac{1}{2}i + \frac{1}{2}j \text{ et } X^2 = (X^2 - 1) + 1 = i + k$$

donc 1, X et X^2 appartiennent à vect(B), donc

$$\mathbb{R}_2[X] = Vect(1, X, X^2) \subset vect(B)$$

donc B est génératrice.

Nous avons

$$1 + X + X^2 = i + \frac{1}{2}(j - i) + (i + k) = \frac{3}{2}i + \frac{1}{2}j + k$$

donc (Q1)

$$f(1+X+X^2) = (\frac{3}{2} + \frac{1}{2})i + (2\frac{3}{2} + \frac{1}{2} + 1)j + (-3\frac{1}{2} + 1)k = 2i + \frac{9}{2}j - \frac{1}{2}k$$
$$= 2 + \frac{9}{2}(2X+1) - \frac{1}{2}(X^2 - 1)$$
$$= 7 + 9X - \frac{1}{2}X^2$$

- $\boxed{\mathbf{2}}$ (*) Dans chacun des cas suivants, indiquer si l'application $f: E \to F$ est linéaire :
 - 1. $E = \mathbb{R}, F = \mathbb{R}^4, f : x \mapsto (x, 2x, 3x, 4x)$
- 6. $E = F = \mathbb{R}^2$, $f: (x, y) \mapsto (xy, x y)$

2. $E = \mathbb{R}, F = \mathbb{R}^3, f : x \mapsto (x, x^2, x^3)$

- 7. $E = F = \mathbb{R}[X], f : P \mapsto P(X+1) (X^2-1)P'$
- 3. $E = F = \mathbb{R}^2$, $f: (x, y) \mapsto (-1, x + 2y)$
- 8. $E = F = \mathbb{R}[X], f : P \mapsto P^2$
- 4. $E = F = \mathbb{R}^2$, $f: (x, y) \mapsto (y 2x, x + y)$
- 9. $E = \mathbb{R}[X], F = \mathbb{R}, f : P \mapsto P(0) + P(1)$
- 5. $E = F = \mathbb{R}^2$, $f: (x,y) \mapsto (x+3y,2x+6y)$
- **RÉPONSE**:
- 1. $f: x \mapsto (x, 2x, 3x, 4x)$ est linéaire
- 2. $f: x \mapsto (x, x^2, x^3): f(2) \neq 2. f(1)$ donc f n'est pas linéaire
- 3. $f:(x,y)\mapsto (-1,x+2y): f(0,0)\neq (0,0)$ donc f n'est pas linéaire
- 4. $f:(x,y)\mapsto (y-2x,x+y)$ est linéaire
- 5. $f:(x,y)\mapsto (x+3y,2x+6y)$ est linéaire
- 6. $f:(x,y)\mapsto (xy,x-y):f(2.(1,1))\neq 2.f(1,1), f$ n'est pas linéaire.
- 7. $f: P \mapsto P(X+1) (X^2-1)P'$ est linéaire
- 8. $f: P \mapsto P^2: f(2X) \neq 2f(X)$ donc f n'est pas linéaire
- 9. $f: P \mapsto P(0) + P(1)$ est linéaire

 $\boxed{\mathbf{3}}$ (*) Montrer que $f: C^1([0,1], \mathbb{R}) \to C^0([0,1], \mathbb{R})$ définie par $f: u \mapsto v$ avec $v: x \mapsto (x+2)u'(x) - u(x)$ est linéaire. Quel est son noyau? son image?

RÉPONSE : - pour u_1, u_2 de classe C^1 et $\lambda \in \mathbb{R}$, et $x \in [0, 1]$,

$$f(\lambda u_1 + u_2)(x) = (x+2)(\lambda u_1 + u_2)'(x) - (\lambda u_1 + u_2)(x) = \lambda((x+2)u_1'(x) - u_1(x)) + ((x+2)u_2'(x) - u_2(x)) = \lambda f(u_1)(x) + f(u_2)(x) = \lambda f(u_1)(x) + \lambda f(u_2)(x) + \lambda f(u_1)(x) + \lambda f(u_2)(x) = \lambda f(u_1)(x) + \lambda f(u_2)(x)$$

donc $f(\lambda u_1 + u_2) = \lambda f(u_1) + f(u_2) : f$ est linéaire.

- Soit $u \in C^1([0,1])$. u appartient au noyau de f ssi f(u) = 0, ie

$$\forall x \in [0,1] \quad (x+2)u'(x) - u(x) = 0$$

Or les solutions de cette équation différentielle (linéaire, homogène du premier ordre) sont les fonctions $x \mapsto \lambda(x+2)$ ($\lambda \in \mathbb{R}$). Donc

$$\operatorname{Ker}(f) = \{ x \mapsto \lambda(x+2) \mid \lambda \in \mathbb{R} \} = \operatorname{Vect}(x \mapsto x+2)$$

- Pour toute fonction $v \in C^0([0,1])$, l'équation différentielle (x+2)u'-u=v a une solution (théorème de Cauchy-Lipschitz) donc f est surjective : $Im(f) = C^0([0,1])$
- $\boxed{\mathbf{4}}$ (*) Montrer que $f:C^2([0,1],\mathbb{R})\to C^0([0,1],\mathbb{R})$ définie par $f:u\mapsto u''+4u$ est linéaire. Quel est son noyau? son image?

RÉPONSE : -linéarité : voir exo précédent

-noyau : c'est l'ensemble des solutions de l'équation différentielle u'' + 4u = 0, autrement dit

$$Ker(f) = \{ x \mapsto C_1 \cos(2x) + C_2 \sin(2x) \ / \ (C_1, C_2) \in \mathbb{R}^2 \} = vect(x \mapsto \cos(2x), x \mapsto \sin(2x)) \}$$

- -image : d'après le théorème de Cauchy-Lipschitz, f est surjective : $Im(f) = C^0([0,1])$.
- $\lfloor \mathbf{5} \rfloor$ (*) Démontrer que la fonction f est linéaire, donner une base de son noyau, de son image, préciser si f est injective ou surjective. Le cas échéant on donnera l'expression de f^{-1} :
 - 1. $f: \mathbb{R}^3 \to \mathbb{R}, f: (x, y, z) \mapsto x y + z$
 - 2. $f: \mathbb{R}^2 \to \mathbb{R}^3, f: (x,y) \mapsto (x, x + y, 2y)$
 - 3. $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f: (x,y) \mapsto (x-y, x+2y)$
 - 4. $f: \mathbb{R}^3 \to \mathbb{R}^3$, $f: (x, y, z) \mapsto (x + y z, 3x + 4z, 5x + 2y + 2z)$
 - 5. $f: \mathbb{R}^3 \to \mathbb{R}^3$, $f: (x, y, z) \mapsto (2x, x z, x + y + z)$
 - 6. $f: \mathbb{C} \to \mathbb{C}, f: z \mapsto (1+2i)\overline{z}$

RÉPONSE:

1. $f:(x,y,z)\mapsto x-y+z:$ -noyau soit $(x,y,z)\in\mathbb{R}^3$,

$$f(x, y, z) = 0 \Leftrightarrow x - y + z = 0 \Leftrightarrow x = y - z$$

donc

$$ker(f) = \{ (y-z, y, z) / (y, z) \in \mathbb{R}^2 \} = vect((1, 1, 0), (-1, 0, 1))$$

La famille ((1,1,0),(-1,0,1)) est clairement libre et engendre ker(f), donc est une base de ker(f). En passant $ker(f) \neq \{0\}$ donc f n'est pas injective.

-image : Il est clair que $Im(f) \subset \mathbb{R}$. De plus 1 = f(1,0,0) donc $1 \in Im(f)$ donc $\mathbb{R} = vect(1) \subset Im(f)$. Donc $Im(f) = \mathbb{R}$ et f est surjective

2. $f:(x,y)\mapsto (x,x+y,2y):$

-noyau : il s'agit de déterminer $(x, y) \in \mathbb{R}^2$ tel que f(x, y) = (0, 0, 0), ie x = x + y = 2y = 0, ie (x, y) = (0, 0). Donc $Ker(f) = \{(0, 0)\}$ et f est injective.

-image: $\mathbb{R}^2 = vect((1,0),(0,1))$ donc

$$Im(f) = Vect(f(1,0), f(0,1)) = Vect((1,1,0), (0,1,2))$$

La famille ((1,1,0),(0,1,2)) est une base de Im(f). De plus (1,0,0) n'est pas combinaison linéaire de ces deux vecteurs (exercice) donc f n'est pas surjective. (on montrera bientôt qu'une base de \mathbb{R}^n doit contenir n vecteurs)

3. $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f: (x,y) \mapsto (x-y,x+2y)$. Montrons que f est bijective. Soient $(a,b) \in \mathbb{R}^2$, il suffit de montrer que l'équation f(x,y) = (a,b) a une unique solution $(x,y) \in \mathbb{R}^2$. Or

$$f(x,y) = (a,b) \Leftrightarrow \begin{cases} x-y=a \\ x+2y=b \end{cases} \Leftrightarrow \begin{cases} x=rac{2a+b}{3} \\ y=rac{b-a}{3} \end{cases}$$

donc f est bijective, et $f^{-1}:(a,b)\mapsto (\frac{2a+b}{3},\frac{b-a}{3})$. En particulier $Ker(f)=\{0\}$ (base vide) et $Im(f)=\mathbb{R}^3$ (base canonique).

4. $f: \mathbb{R}^3 \to \mathbb{R}^3, \ f: (x, y, z) \mapsto (x + y - z, 3x + 4z, 5x + 2y + 2z) : \text{Soit } (x, y, z) \in \mathbb{R}^3, \text{ on trouve}$

$$f(x, y, z) = 0 \Leftrightarrow \begin{cases} x = -\frac{4}{3}z \\ y = \frac{7}{3}z \end{cases}$$

dont on déduit Ker(f) = Vect((-4,7,3)) : f n'est pas injective.

$$Im(f) = Vect(f(1,0,0), f(0,1,0), f(0,0,1)) = Vect(e_1 = (1,3,5), e_2 = (1,0,2), e_3 = (-1,4,2)))$$

Or $4e_1 - 3e_3 = 7e_2$, donc $Im(f) = Vect(e_1, e_3)$. La famille (e_1, e_3) est libre, c'est une base de Im(f). On vérifie que $(1, 0, 0) \notin Im(f)$ donc f n'est pas surjective.

5. $f: \mathbb{R}^3 \to \mathbb{R}^3$, $f: (x, y, z) \mapsto (2x, x - z, x + y + z)$ est bijective, et

$$f^{-1}:(a,b,c)\mapsto (\frac{a}{2},c-a+b,\frac{a}{2}-b)$$

6. $f: \mathbb{C} \to \mathbb{C}, f: z \mapsto (1+2i)\overline{z}: f$ est linéaire, à condition de considérer \mathbb{C} comme un \mathbb{R} -espace vectoriel. Pour tous $(z,u) \in \mathbb{C}^2$,

$$f(z) = u \Leftrightarrow (1+2i)\overline{z} = u \Leftrightarrow z = \frac{\overline{u}}{1-2i}$$

donc f est bijective et $f^{-1}: u \mapsto \frac{\overline{u}}{1-2i}$. $Ker(f) = \{0\}$ et $Im(f) = \mathbb{C}$.

- $\boxed{\mathbf{6}}$ (*) Soient f, g des endomorphismes de E
 - 1. Montrer que $g \circ f = 0 \Leftrightarrow \operatorname{Im}(f) \subset \operatorname{Ker}(g)$
 - 2. Montrer que $\forall k \in \mathbb{N}$ $\operatorname{Ker}(f^k) \subset \operatorname{Ker}(f^{k+1})$
 - 3. Montrer que $\forall k \in \mathbb{N} \quad \operatorname{Im}(f^{k+1}) \subset \operatorname{Im}(f^k)$
 - 4. $(\star\star)$ Montrer que Ker $f = \text{Ker}(f^2) \Leftrightarrow \text{Ker } f \cap \text{Im } f = \{0_E\}$.

RÉPONSE:

- 1. Supposons $g \circ f = 0$, soit $x \in Im(f)$. Il existe $t \in E$ tel que x = f(t). Donc $g(x) = g \circ f(t) = 0$. Donc $x \in Ker(g)$. Donc $Im(f) \subset Ker(g)$. Réciproquement, supposons $\Im(f) \subset Ker(g)$, et soit $x \in E$. $f(x) \in Im(f)$ et $Im(f) \subset Ker(g)$, donc $f(x) \in Ker(g)$, donc g(f(x)) = 0. Donc $g \circ f = 0$.
- 2. Soit $k \in \mathbb{N}$ et soit $x \in \text{Ker}(f^k)$. Donc $f^k(0) = 0$. Donc $f^{k+1}(x) = f(f^k(x)) = f(0) = 0$. Donc $x \in Ker(f^{k+1})$. Donc $Ker(f^k) \subset Ker(f^{k+1})$
- 3. Soit $k \in \mathbb{N}$ et soit $x \in Im(f^{k+1})$. Donc $x = f^{k+1}(t)$ avec $t \in E$. Donc $x = f^k(f(t)) \in Im(f^k)$. Donc $x \in Im(f^k)$.
- 4. Supposons $\operatorname{Ker} f = \operatorname{Ker} (f^2)$, et soit $x \in \operatorname{Ker}(f) \cap \operatorname{Im}(f)$. $x \in \operatorname{Im}(f)$ donc x = f(t) avec $t \in E$. Or $x \in \operatorname{Ker}(f)$, donc f(x) = 0. Donc f(f(t)) = 0, donc $t \in \operatorname{Ker}(f^2)$. Or $\operatorname{Ker}(f^2) = \operatorname{Ker}(f)$, donc $t \in \operatorname{Ker} f$. Donc x = f(t) = 0. Donc $\operatorname{Ker} f \cap \operatorname{Im} f = \{0_E\}$. Réciproquement supposons $\operatorname{Ker} f \cap \operatorname{Im} f = \{0_E\}$. On a vu que $\operatorname{Ker} f \subset \operatorname{Ker} (f^2)$, il s'agit donc de montrer que

Réciproquement supposons $\operatorname{Ker} f \cap \operatorname{Im} f = \{0_E\}$. On a vu que $\operatorname{Ker} f \subset \operatorname{Ker} (f^2)$, il s'agit donc de montrer que $\operatorname{Ker} (f^2) \subset \operatorname{Ker} (f)$. Soit $x \in \operatorname{Ker} (f^2) : f^2(x) = 0$. Donc $f(x) \in \operatorname{Ker} (f)$. Or $f(x) \in \operatorname{Im} (f)$ et $\operatorname{Ker} f \cap \operatorname{Im} f = \{0_E\}$, donc f(x) = 0. Donc $x \in \operatorname{Ker} (f)$. Donc $\operatorname{Ker} (f^2) \subset \operatorname{Ker} (f)$

 $\boxed{7}$ $(\star\star)$ Pour $f\in\mathcal{C}^{\infty}(\mathbb{R},\mathbb{R})$, on note u(f)=f' et v(f) la primitive de f qui s'annule en 0:

$$\forall x \in \mathbb{R} \quad v(f)(x) = \int_0^x f(t)dt$$

- 1. Montrer que u et v sont deux endomorphismes de $\mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$.
- 2. Expliciter $u \circ v(f)$ et $v \circ u(f)$ pour $f \in C^{\infty}(\mathbb{R}, \mathbb{R})$.
- 3. Préciser le noyau et l'image de u et de v. Ces endomorphismes sont-ils injectifs? Surjectifs? Bijectifs?

RÉPONSE:

- 1. Soient $f, g \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ et $\lambda \in \mathbb{R}$.
 - $u(\lambda f + g) = (\lambda f + g)' = \lambda f' + g' = \lambda u(f) + u(g)$ donc u est linéaire u(f) = f' est de classe C^{∞} sur \mathbb{R} donc u est un endomorphisme de $C^{\infty}(\mathbb{R}, \mathbb{R})$.
 - pour tout $x \in \mathbb{R}$,

$$v(\lambda f + g)(x) = \int_0^x (\lambda f(t) + g(t))dt = \lambda \int_0^x f(t)dt + \int_0^x g(t)dt = \lambda v(f)(x) + v(g)(x)$$

donc $v(\lambda f + g) = \lambda v(f) + v(g)$: v est linéaire. De plus v(f) est une primitive de f, donc est de classe C^{∞} sur \mathbb{R} . Donc v est un endomorphisme.

- v(f) est une primitive de f donc $u \circ v(f) = (v(f)' = f$. Pour tout $x \in \mathbb{R}$, $v \circ u(f)(x) = \int_0^x f'(t)dt = f(x) f(0)$, donc $v \circ u(f) = f f(0)$.
- 2. $f \in Ker(u) \Leftrightarrow f' = 0 \Leftrightarrow f$ est constante. Ker(u) est l'ensemble des fonctions constantes; u n'est pas injective. Toutefois toute fonction C^{∞} possède une primitive, donc u est surjective.

Si v(f) = 0 alors f = v(f)' = 0, donc $Ker(v) = \{0\}$, v est injective.

Posons $F = \{ f \in C^{\infty}(\mathbb{R}) \mid f(0) = 0 \}$, et montrons que Im(v) = F. D'abord pour tout $f \in C^{\infty}(\mathbb{R})$, v(f)(0) = 0, donc $v(f) \in F$. Donc $Im(v) \subset F$. Inversement soit $f \in F$. On calcule :

$$\forall x \in \mathbb{R} \quad v(f')(x) = \int_0^x f'(t)dt = f(x) - f(0) = f(x)$$

donc v(f') = f, donc $f \in Im(v)$. Finalement Im(v) = F.

La fonction $x \mapsto x^2 + 1$ ne s'annule pas en 0, donc n'a pas d'antécédent par v:v n'est pas surjective.

- 8 (**) Soit E un \mathbb{R} -espace vectoriel et soit $\varphi \in L(E,\mathbb{R})$ une forme linéaire non nulle et soit $a \in E \setminus \{0\}$. Soit f l'application de E dans E (appelée transvection) définie par $f: x \mapsto x + \varphi(x)a$
 - 1. Montrer que f est un endomorphisme de E. Préciser f(a)
 - 2. Pour $x \in E$ fixé, établir une relation entre x, f(x) et $f^2(x)$.
 - 3. Donner une condition nécessaire et suffisante sur a pour que f soit bijective. La cas échéant, déterminer f^{-1} .

RÉPONSE:

- 1. $f(a) = (1 + \varphi(a))a$
- 2. D'une part, $f^2(x) = f(f(x)) = f(x + \varphi(x)a) = f(x) + \varphi(x)f(a) = f(x) + (1 + \varphi(a))\varphi(x)a$, d'autre part $\varphi(x)a = f(x) x$, donc

$$f^{2}(x) = f(x) + (1 + \varphi(a))(f(x) - x) = (2 + \varphi(a))f(x) - (1 + \varphi(a))x$$

- 3. Notons $\alpha = 1 + \varphi(a)$ et $\beta = 2 + \varphi(a)$. On a donc $f^2 = \beta f \alpha \operatorname{Id}_E$, donc $f \circ (\beta \operatorname{Id}_E f) = \alpha \operatorname{Id}_E$. D'où les cas suivants :
 - -1er cas $\alpha \neq 0$, ie $\varphi(\alpha) \neq -1$:alors f est bijective, avec

$$f^{-1} = \frac{1}{\alpha} (\beta \operatorname{Id}_E - f) \text{ ie } f^{-1} : x \mapsto x - \frac{\varphi(x)}{1 + \varphi(a)} a$$

- -2eme cas $\alpha = 0$, ie $\varphi(a) = -1$: Dans ce cas $f(a) = (1 + \varphi(a))a = 0$, donc $a \in Ker(f)$. Or $a \neq 0$, donc f n'est pas injective.
- $\boxed{\mathbf{9}}$ (***) Soit $B=(e_1,e_2,e_3)$ une base d'un \mathbb{R} -espace vectoriel E de dimension 3. Soit f l'endomorphisme de E défini par

$$f(e_1) = e_1 - 2e_2 - e_3$$
, $f(e_2) = -e_1 + e_2 + e_3$, $f(e_3) = 2e_1 - 3e_2 - 2e_3$

- 1. Déterminer des bases de Kerf et Imf
- 2. On pose $u = f(e_1)$ et $v = f^2(e_1)$. Montrer que (e_1, u, v) est une base de E

- 3. Exprimer $f(e_1)$, f(u) et f(v) en fonction de e_1 , u et v
- 4. Montrer que $f^3 = 0$
- $\lfloor \mathbf{10} \rfloor$ (***) On rappelle que la trace d'une matrice carrée $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R})$, notée $\operatorname{Tr}(A)$, est la somme de ses coefficients diagonaux : $\operatorname{Tr}(A) = \sum_{i=1}^n a_{i,i}$
 - 1. Montrer que Tr est une forme linéaire sur $\mathcal{M}_n(\mathbb{R})$
 - 2. Montrer que $\forall (A, B) \in \mathcal{M}_n(\mathbb{R})^2$ $\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$
 - 3. Soit $A \in \mathcal{M}_n(\mathbb{R})$ et soit $f : \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$ l'application définie par $f : M \mapsto AM MA$. Montrer que f est linéaire et que $\operatorname{Tr} \circ f = 0$. En déduire que $\operatorname{Im}(f) \subset \operatorname{Ker}(\operatorname{Tr})$. f est-elle surjective? injective?
- 11 (**) Dans \mathbb{R}^3 on appelle (i,j,k) la base canonique et a=(1,2,0). Soient $F=\mathrm{Vect}(a)$ et $G=\{(x,y,z)\in\mathbb{R}^3 \mid x-y+z\}$
 - 1. Trouver une base (b,c) de G. Montrer que $F \oplus G = \mathbb{R}^3$
 - 2. Exprimer i, j et k en fonction de a, b, c
 - 3. Soit p le projecteur sur G parallèlement à F. Préciser p(a), p(b) et p(c) (sans calcul!)
 - 4. En déduire p(x, y, z) pour tout $(x, y, z) \in \mathbb{R}^3$
- 12 $(\star \star \star)$ Soit E un \mathbb{K} -espace vectoriel et $u \in \mathcal{L}(E)$ un endomorphisme de E. On dit que u est nilpotent s'il existe un entier k > 0 tel que $u^k = 0$. Le plus petit entier $k \in \mathbb{N}$ tel que $u^k = 0$ est alors appelé l'indice de nilpotence de u.
 - 1. Quel est l'indice de nilpotence de l'endomorphisme nul?
 - 2. Vérifier que la dérivation sur $\mathbb{K}_n[X]$ est nilpotente, préciser son indice.
 - 3. On suppose que E a une base (e_1, \dots, e_n) . On définit $u \in L(E)$ par $u(e_k) = e_{k+1}$ pour tout k < n et $u(e_n) = 0$. Montrer que u est nilpotente, préciser son indice.
 - 4. Soit $(\lambda, k) \in \mathbb{K} \times \mathbb{N}^*$ et u nilpotent. Montrer que λu et u^k sont nilpotents.
 - 5. Soient u et v nipotents qui commutent, montrer que $u \circ v$ et u + v sont nilpotents
 - 6. Soit u nilpotent d'indice p.
 - (a) u est-elle bijective? Montrer que $\operatorname{Id} + u$ est bijective, préciser son inverse.
 - (b) Soit u nilpotent d'indice p. Justifier l'inclusion : $\operatorname{Im}(u^{p-1}) \subset \operatorname{Ker}(u)$.
 - (c) Expliquer pourquoi $\text{Im}(u^{p-1})$ n'est pas nul. En déduire que u n'est pas injectif.
 - (d) Montrer de même, en exploitant l'inclusion $\operatorname{Im}(u) \subset \operatorname{Ker}(u^{p-1})$, que u n'est pas surjectif.
- 13 $(\star \star \star)$ Soit $f \in \mathcal{L}(E)$ tel que pour tout $x \in E$, la famille (x, f(x)) est liée.
 - 1. Justifier que si $x \neq 0_E$, il existe un unique scalaire λ_x (qui dépend de x a priori) tel que $f(x) = \lambda_x x$.
 - 2. Montrer que λ_x est indépendant de x, autrement dit que f est une homothétie.