

? À rendre le LUNDI 13 mai 2024 Devoir Maison n°18

Travail à rendre :

- Tous les exercices doivent être traités.
- Les exercices 1 et 2 représentent un très bon entraînement pour le concours blanc du 7 mai.
- Un fichier python est associé à ce DM: https://cahier-de-prepa.fr/pcsi-vernet/docs?rep=228. Le fichiers peut être ouvert avec:
 - o Spyder
 - o python en ligne: https://www.mycompiler.io/fr/new/python
- Indiquer votre prénom/nom à l'emplacement prévu, recopier et exécuter les codes demandés, et recopier les valeurs demandées dans votre copie.
- Le fichier python devra être déposé avant LUNDI 13 mai à 7h45 ici : https://cahier-de-prepa.fr/pcsi-vernet/transferts?phys
 - Constante des gaz parfaits : $R = 8,314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$
 - Masse molaire du CO_2 : $M = 44, 0 \text{ g} \cdot \text{mol}^{-1}$;
 - Coefficient isentropique du CO_2 : $\gamma = 1,30$
 - Masse volumique de la glace : $\rho_g = 917 \; \mathrm{kg} \cdot \mathrm{m}^{-3}$
 - Capacité massique de l'eau liquide : $c_{\ell} = 4,18 \text{ kJ} \cdot \text{K}^{-1} \cdot \text{kg}^{-1}$
 - Capacité massique de l'eau solide : $c_s = 2,09 \; \mathrm{kJ} \; \cdot \; \mathrm{K}^{-1} \; \cdot \; \mathrm{kg}^{-1}$
 - Enthalpie massique de fusion de l'eau à $T_0=0$ °C et sous 1 bar : $\Delta_{\rm fus}h(T_0)=335~{\rm kJ}\cdot{\rm K}^{-1}\cdot{\rm kg}^{-1}$
 - Entropies molaires du gaz parfait :

$$\begin{split} & - S_m(T,P) = C_{P,m} \ln \left(\frac{T}{T_{\text{ref}}}\right) - R \ln \left(\frac{P}{P_{\text{ref}}}\right) + S_{m,\text{ref}} \\ & - S_m(T,V) = C_{V,m} \ln \left(\frac{T}{T_{\text{ref}}}\right) + R \ln \left(\frac{V}{V_{\text{ref}}}\right) + S_{m,\text{ref}} \\ & - S_m(P,V) = C_{V,m} \ln \left(\frac{P}{P_{\text{ref}}}\right) + C_{P,m} \ln \left(\frac{V}{V_{\text{ref}}}\right) + S_{m,\text{ref}} \end{split}$$

• Entropie massique d'une phase condensée : $s(T) = c \ln \left(\frac{T}{T_{ref}} \right) + s_{ref}$

Exercice n°1 Un cycle

On considère le cycle monotherme ABCA décrit par une masse m de CO_2 gazeux, assimilé à un gaz parfait de masse molaire M et de coefficient γ supposé constant.

- Transformation $A \to B$: le gaz, initialement à la température $T_A = T_1$, subit une compression adiabatique réversible qui le porte à la température $T_B = T_2$.
- Transformation $B \to C$: le gaz, évoluant à volume constant, revient à la température initiale au contact d'un thermostat de température T_1 .
- Transformation $C \to A$: le gaz est ramené à l'état initial A par une détente isotherme réversible.
- Q1. Représenter l'allure de ce cycle dans un diagramme de Clapeyron.
- Q2. Exprimer puis calculer les valeurs numériques des paramètres P, T, V dans chacun des états A, B et C à partir des données suivantes : m = 1,00 g ; $V_A = 8,20.10^{-4}$ m³ ; $P_A = 1,00$ bar ; $a = \frac{P_B}{P_A} = 10,0$.
- Q3. Établir les expressions des travaux et des transferts thermiques reçus par le gaz au cours de chacune des transformations $A \to B$, $B \to C$, $C \to A$, en fonction de m, M, R, γ , T_1 , T_2 et a. Faire les applications numériques.
- Q4. Calculer les variations d'entropie du gaz au cours des transformations $B \to C$ et $C \to A$. Comparer ces deux variations d'entropie et expliquer le résultat obtenu.
- Q5. Calculer l'entropie échangée par le gaz au cours de la transformation $B \to C$. En déduire l'entropie créée au cours de cette transformation. Commenter.

Exercice n°2 Détente d'un gaz parfait

Un cylindre non calorifugé, fermé par un piston, contient une mole de gaz parfait dans l'état initial ($T_1 = 273 \text{ K}$, $P_1 = 3,0 \text{ bar}$). Ce système est plongé dans un bain eau-glace constituant un thermostat à 0 °C. On agit sur le piston mobile pour détendre, très lentement le gaz jusqu'à la pression $P_2 = 1,0 \text{ bar}$.

- Q1. Qualifier la transformation subie par le gaz parfait.
- Q2. Exprimer la variation de l'énergie interne du gaz parfait, le travail des forces de pression et le transfert thermique reçus par le gaz parfait.
- Q3. En déduire le transfert thermique reçu par le bain eau-glace.
- Q4. Déterminer la masse m de glace apparaissant dans le thermostat.
- Q5. Calculer la variation d'entropie du gaz, l'entropie échangée par le gaz ainsi que la création d'entropie. Commenter.
- Q6. Effectuer le bilan d'entropie du bain eau-glace.

Exercice n°3 Chute d'un volant de badminton : résolution numérique

On étudie la chute verticale d'un volant de badminton (de masse m = 5, 0 g) après un smash.

On choisir l'axe (Oz) vertical descendant. On note $\overrightarrow{v} = v\overrightarrow{u_z}$ le vecteur vitesse du volant.

La prise en compte des frottements fluides à l'air se fait au travers de la force $\overrightarrow{f} = -\frac{1}{2}\rho C_x Sv \overrightarrow{v}$.

Partie I Mise en équation

Q1. Établir l'équation différentielle vérifiée par v, et montrer qu'elle s'écrit :

$$\frac{\mathrm{d}v}{\mathrm{d}t} = g - \beta v^2$$

Identifier l'expression de β .

Partie II Résolution numérique : la méthode d'Euler

- Méthode : Méthode d'Euler

La méthode d'Euler permet la résolution numérique approchée sur l'intervalle de temps $[t_0, t_f]$ d'une équation différentielle écrite sous la forme

$$\frac{\mathrm{d}X}{\mathrm{d}t} = f(X)$$

connaissant la condition initiale $X(t_0) = X_0$.

L'idée fondamentale est d'approximer la dérivée $\frac{\mathrm{d}X}{\mathrm{d}t}$ par son taux d'accroissement sur l'intervalle [t,t+h]:

$$\frac{\mathrm{d}X}{\mathrm{d}t} \approx \frac{X(t+h) - X(t)}{h}$$

Autrement dit, cela revient à effectuer un développement limité au premier ordre de X(t+h):

$$X(t+h) \approx X(t) + \frac{\mathrm{d}X}{\mathrm{d}t} \times h$$

Soit, d'après l'équation différentielle

$$X(t+h) \approx X(t) + f(X) \times h$$

L'intervalle de résolution $[t_0, t_f]$ est découpé en n intervalles de largeur h.

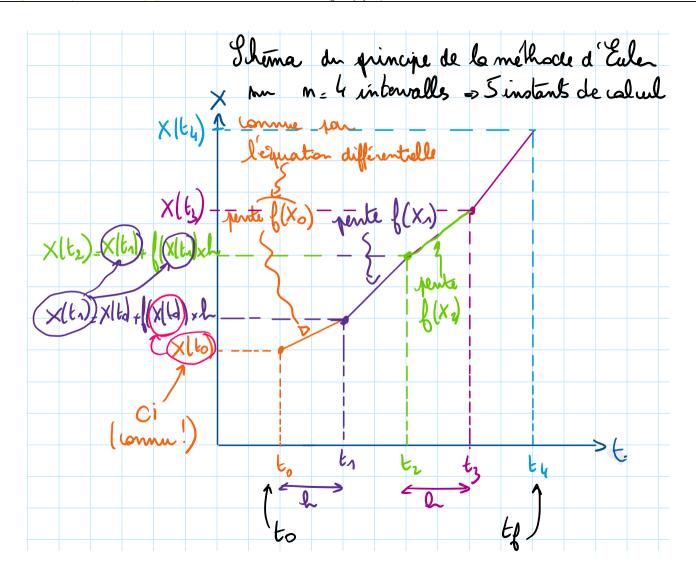
On cherche à déterminer les valeurs de X à chaque instant t_i , pour $i \in [1, n]$, connaissant la valeur à l'instant précédent.

On exprime X à l'instant $t_{i+1} = t_i + h$ à l'aide de sa valeur à l'instant t_i :

$$X(t_{i+1}) = X(t_i) + f(X(t_i)) \times h$$

$$X_{i+1} = X_i + f(X_i) \times h$$

Connaissant la condition initiale $X(t_0)$, on peut alors déterminer $X(t_1) = X(t_0) + f(X(t_0)) \times h$, puis $X(t_2)$, ... Ainsi de proche en proche, on détermine les n+1 valeurs de X.



- Q2. À partir de l'équation différentielle établie à Q1, identifier l'expression de la fonction $f: v \mapsto f(v)$, en fonction de v, g et β .
- Q3. En effectuant le développement de Taylor au premier ordre de v(t+h) (avec h très petit), exprimer, v(t+h) en fonction de v(t), g, β et h.

Le temps est discrétisé : on découpe l'intervalle $[t_0, t_f]$ de résolution en n intervalles de largeur h.

- Q4. Combien y a-t-il d'instants de calculs pour n intervalles? Exprimer l'instant t_i de résolution en fonction de t_0 , i et h, en précisant l'intervalle auquel appartient i.
- Q5. En python, on stocke les instants de calcul dans une liste t. Écrire, sur votre copie, la (les) ligne(s) permettant de créer la liste t de la bonne longueur (cf question Q4), contenant les instants t_i entre t_0 et t_f avec un pas de h.
- Q6. Exprimer $v(t_{i+1})$ en fonction de $v(t_i)$, g, β et h.

En python, on stocke les valeurs successives de v calculées aux différents instants dans une liste V, dans laquelle V[i] représente la valeur de $v(t_i)$.

- Q7. Écrire, sur votre copie, la ligne de code python qui permet de déterminer la valeur de V[i+1] en fonction de V[i], beta, h et g.
- Q8. Compléter le fichier python DM18_chute_frottement_quadratique.
- Q9. Quelle valeur de t_f avez-vous choisie? pourquoi?
- Q10. Reproduire les courbes obtenues pour n = 5, n = 10 et n = 1000. Faire apparaître dessus la vitesse initiale, la vitesse limite, et la durée caractéristique du régime transitoire. Commenter.
- Q11. Déterminer la vitesse limite atteinte. Quelle est l'ordre de grandeur de la durée du régime transitoire?