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Théme |. Ondes et signaux (Oscillateurs)

Chapitre n°7  Oscillateurs amortis en régime
sinusoidal forcé

Résonance d’une balancoire : 'amplitude des oscillations est maximale
lorsque les parents poussent « a la bonne fréquence » la balangoire.

Résonance d’un verre : lorsqu’il est soumis a une onde sonore de fréquence
égale a sa fréquence propre, 'amplitude des oscillations du verre augmente,
il peut alors éclater.

Vidéo : « Rupture par résonance d’un verre »
https://www.youtube.com/watch?v=47cPhhywv0o

Les vibrations et le phénomene de résonance sont également étudiés
dans les structures comme les immeubles, les ponts afin d’éviter leur
effondrement.

Le 10 juin 2000, le Millenium Bridge a Londres était inauguré. Lorsque
la foule a traversé ce pont, le pont s’est mis a osciller, avec une am-
plitude de plusieurs centimetres, et les passants ont du se tenir aux
balustrades. Apres étude du phénomene, il s’avere que la fréquence des
pas des passants coincidait avec celle de résonance du pont. Des tra-
vaux ont eu lieu afin de déplacer la fréquence de résonance du pont par
Iinstallation d’amortisseurs hydrauliques et de masse pour controler
les oscillations horizontales et latérales.
https://commons.wikimedia.org/w/index.php?curid=59615772"

Pré-requis

e Terminale : Theme Mouvement et interactions
o Vecteurs position, vitesse et accélération d’un point : définition et expression en coordonnées cartésiennes.
o Deuxieme loi de Newton.

e PCSI : Theme Ondes et signaux.
o Chapitre n°3. Signaux électriques dans '’ARQS.

o Chapitre n°6. Oscillateurs libres amortis


https://www.youtube.com/watch?v=47cPhhywvOo
https://commons.wikimedia.org/w/index.php?curid=59615772"
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Objectifs du chapitre

— Introduire la représentation complexe des signaux sinusoidaux.

— Introduire les notions nécessaires a 1’étude des circuits linéaires alimentés en régime sinusoidal.

— Résoudre, en régime forcé, et en utilisant la représentation complexe les équations différentielles du type :

— + =2 + Wiy = A, cos(wt)

— Etudier le phénomeéne de résonance des deux systémes étudiés dans le chapitre précédent.
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Définir la représentation complexe d’un signal sinusoidal.

Donner l'expression de la dérivée et de la primitive de la représentation complexe d’un signal
sinusoidal.

Etablir I’équation du mouvement d’une masse suspendue a un ressort, dont le point d’attache est
animé d’un mouvement sinusoidal.

Déterminer, a partir de I’équation différentielle, ’expression de 'amplitude complexe de la réponse
a 'excitation sinusoidale.

Déterminer la pulsation de résonance de la réponse en élongation.
Etablir les expressions des impédances complexes des dipoles R, L et C.
Donner les expressions des impédances complexes des dipoles R, L et C.

Donner les comportements asymptotiques (& basse et haute fréquences) du condensateur et de la
bobine.

Donner 'expression de I'impédance complexe équivalente d'une association série ou parallele de
deux impédances.

Donner les relations du pont diviseur de tension pour deux impédances en série et de courant
pour deux impédances en parallele.

Etablir les expressions des amplitudes complexes de la tension aux bornes du condensateur et de
I'intensité du courant dans le RLC série.

Déterminer les pulsations de résonance en tension et en intensité dans le RLC série.



https://ladigitale.dev/digiflashcards/#/f/68eabac63d1b5
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| Oscillateur mécanique en RSF
|.1 Observations expérimentales
¢ Expérience
@ Animation : Résonance d'un oscillateur mécanique

On étudie le dispositif ci-contre, constitué d’une masse m accrochée a un ressort vertical

//////
/////

de longueur a vide ¢y et de constante de raideur k et dont I'autre extrémité est mise en 2a(t)
oscillation par un dispositif extérieur. 4 A
Le point A d’attache du ressort oscille sinusoidalement a la pulsation w : )
z
— ((t)
OA = z,()u, avec 2z4(t) = Zam cos(wt)
4

Les frottements exercés par 'air sur le systeme sont modélisés par la force de frottement .

fluide ? = —047, avec o une constante positive qui dépend du fluide.
Qu’observez-vous ? Noter vos observations selon la fréquence (la pulsation) de I'excitation (c¢’est-a-dire du

mouvement de A).

Déﬁnition : phénomene de résonance
On dit qu’un systéme excité périodiquement présente une résonance pour une grandeur physique lorsque
I'amplitude de celle-ci admet un maximum pour une fréquence particuliere de ’excitation appelée
fréquence de résonance.

1.2 Equation du mouvement

# Exercice a maftriser n°1 — Equation du mouvement
Q1. On étudie I’équilibre de M (m), en I'absence d’excitation sinusoidale tel que V ¢, z4(t) = 0.
Déterminer la longueur du ressort a ’équilibre f¢.

Q2. Exprimer la force de rappel élastique en fonction de k, z4, z, £y et me

Q3. Etablir 'équation différentielle du mouvement vérifiée par z(t).

On repere la position de la masse M a partir de sa position d’équilibre en utilisant la variable Z telle que
Z(t) = 2(t) — zsq.
Q4. Ecrire 'équation différentielle vérifiée par Z(t).

La mettre sous forme canonique

d?Z  wydZ
e i 605 + W2 Z(t) = W2 Z g cos(wt)

identifier les expressions de wy et Q.

|.3 Régime transitoire et régime sinusoidal forcé

La solution générale de I’équation différentielle précédente s’écrit :

Z(t) = Zg(t) + Zp(t)

avec :

e /(1) la solution générale de ’équation homogene : elle caractérise le régime transitoire qui disparait
au bout de quelques fois la constante de temps caractéristique d’évolution : tiirn Zy(t) =0.
qq 7

e Zp(t) un solution particuliére, que I'on recherche sous la méme forme que le second membre, donc

sous la forme d’une fonction sinusoidale de méme pulsation w que le 2°4 membre : | Zp(t) = Z,, cos(wt + ¢)

Elle caractérise le régime établi.


http://www.sciences.univ-nantes.fr/sites/genevieve_tulloue/Meca/Oscillateurs/ressort_rsf.php
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Au bout de quelques 7 : | Z(t) = Zp(t) = Z,, cos(wt + ¢)

Dans ce chapitre, nous n’étudierons pas le régime transitoire, mais uniquement le régime
permanent sinusoidal, appelé « régime sinusoidal forcé », une fois le régime transitoire terminé.
Dans le cas de l'oscillateur mécanique, la réponse en régime établi s’écrit | Z(t) = Z,(t) = Z,, cos(wt + ¢)

comporte deux inconnues : ‘l’amplitude Zm et la phase a l'origine ¢ ‘

WA retenir : Systéme linéaire en régime sinusoidal forcé
La réponse d'un systeme linéaire soumis & une excitation sinusoidale e(t) = E,, cos(wt) régi par une
équation différentielle

d?s  wyds

@ o

est, apres le régime transitoire, de la forme s(t) = S, cos(wt + ¢)

2, _ 2
+ wps = wye

But de la résolution : déterminer ’amplitude Z,,(w) et la phase a 'origine p(w) qui dépendent de la
pulsation de I’excitation.

Pour cela, on pourrait procéder comme dans les chapitres précédents quand le 2°¢ membre était constant,
a savoir injecter Zp(t) dans I’équation différentielle et déterminer les inconnues (Z,, et ). Mais les calculs
s’averent ici tres longs et fastidieux. On opte pour I'utilisation de la représentation complexe.

|.4 Représentation complexe
l.4.a) Définition

'A retenir : Représentation complexe d’un signal sinusoidal
A tout signal sinusoidal
s(t) = Sp cos(wt + ¢)

on associe la représentation complexe :

Le signal complexe s n’a pas de réalité physique, ¢’est uniquement un outil, c’est s qui en a : s(t) = 8%(§)

Introduction de 'amplitude complexe

'A retenir : Amplitude et phase a ’origine des temps
B On introduit 'amplitude complexe, notée S,, telle que

B L’amplitude 5,, de s(¢) est le module de 5, :

B La phase a l'origine ¢ € [—7, 7| de s(t) est 'argument de S,, :

Ainsi la connaissance de 'amplitude complexe S,, donne acces aux deux grandeurs inconnues du signal
s(t) : Pamplitude S, et la phase a l'origine des temps ¢.
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# Activité n°2 — Représentation complexe de signaux sinusoidaux
E, w, 7, wy, Q sont des réels positifs.

Q1. Donner le signal complexe associé aux signaux suivants et identifier 'amplitude complexe.

(a) e(t) = Ecos(wt + /3) (b) i(t) = I,,/2 cos(wt)
Q2. Donner le module des complexes ci-dessous.

E Ej . —Ew?
(6) u= e © Un= —— 0

(a) Un = -
- —w? + jwwy/Q + Wi

14 jwr 1+ jwr

Q3. Comment exprime-t-on 'argument d’un nombre complexe z = a + b, sia > 07 sia < 0et b > 07 si
a<0etb<07?

Q4. Déterminer I'expression de 'argument de U,,.

Ej E z
(@) Un = 1+=77°‘ZT (b) Un = o W (€) Un= Ewy —
J 1+jQ(—> w%—w2+] 0
wo w Q
l.4.b) Opérations
Soit s(t) = S, cos(wt + ), de représentation complexe s = S,/
ds  d(Sne™) [t = [suea
E - 7dt . — éejwt
= S, X jwe jw
= JwXs — i
Jw

WA retenir : Opérations a ’aide de la représentation complexe
B Dériver un signal complexe revient a le multiplier par jw.

B Primitiver un signal complexe revient a le diviser par jw.

/§dt:

B La somme de $1(t) = Sy, cos(wt + ¢1) et sa(t) = Sop cos(wt + pq) est d’amplitude complexe

Sm = Sim + Som = S1m€ ' + Some’??

L’amplitude de s1(t) + s2(t) s’obtient avec S, = [Si| = [S1m + Som|

AAttention
Il est formellement interdit d’utiliser la représentation complexe pour les équations non-linéaires.
Notamment, il est interdit d’'utiliser la représentation complexe pour les grandeurs énergétiques qui sont
toutes non-linéaires. Pour toute étude énergétique il faut donc revenir a la notation réelle.
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|.5 Résonance en élongation

Capacité exigible : Utiliser la représentation complexe pour étudier le régime forcé.
I.5.a) Résolution : Amplitude complexe

# Exercice a maftriser n°3 — Amplitude complexe
On étudie la réponse de l'oscillateur mécanique régit par I'équation différentielle

Z + CSZ Wi Z=wiza & Z+ 02202- + wWeZ = Wi Z am cos(wt)
Q1. Proposer une expression de la solution Z(t) en régime sinusoidal forcé.
Q2. Donner les représentations complexes de z4 et de Z et introduire 'amplitude complexe Z,, de Z.

Q3. Passer I'équation différentielle vérifiée par Z(t) en représentation complexe et en déduire ’expression de
Zp en fonction de wy, @, w et Zy,, sous la forme :

ZAm W
Zm:—x ou Ir=—

1—5L’2+]é Wo

Q4. Exprimer 'amplitude Z,, de Z(t).

Q5. Pour mener I'étude de la phase ¢ = arg(Z,,), il est nécessaire de connaitre 'intervalle de [—, 7|, auquel
© appartient.
Quel est le signe de la partie imaginaire de Z,, ? Que peut-on en déduire sur I'intervalle de ¢ ?

Quel est le signe de la partie réelle de Z,,, pour z < 1 (w < wp) ? pour z > 1 (w > wy) ? Que peut-on en
déduire sur ¢ 7

1.5.b) Etude de I'amplitude : Existence d'une résonance ?

‘g Méthode maths : les équivalents
Définition : f est équivalente a g si (f — g) est négligeable devant g.
Notation : L’équivalent entre deux fonctions en a se note : f ~ g.

a

e Un équivalent en oo d’une fonction polynomiale est son mondme de plus haut degré : a-+bx+cx? ~ ca?
o

e On retiendra les équivalents suivants :

SHE=

a+bx+czx2?a ar +

~
0

# Exercice a maitriser n°4 — Etude de I'amplitude et de la phase

Etude des situations limites

Q1. Exprimer I'équivalent de Z,, a basse fréquence (c’est-a-dire pour z < 1, soit w < wy).
En déduire les limites de Z,, et ¢ a basse fréquence (w < wp). Commenter physiquement.
Q2. Exprimer I'équivalent de Z,, a haute fréquence, (c’est-a-dire pour = >> 1 soit w > wy).
En déduire les limites de Z,,,(w) et de p(w) a haute fréquence (w > wy). Commenter physiquement.

Q3. Exprimer Z,,(wp). En déduire Z,,(wp) et ¢(wp). Commenter.

Résonance en élongation

ZAm
N

1
Q4. Montrer que g admet un minimum si () > —. Exprimer x, ou g est minimale.

V2

L’amplitude s’écrit : Z,, = v

. Pour mener son étude on définit la fonction g : x — (1—2?)*+

O
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Q5. En déduire qu’il se produit une résonance pour une pulsation w, que 'on exprimera en fonction de wy et
@, a condition que @ vérifie une certaine inégalité.

Q6. Tracer l'allure de Z,,(w) pour différentes valeurs de Q.

Q7. Quelle est I'influence du facteur de qualité sur la résonance d’élongation ?

Allure de la phase

Q8. Tracer l'allure de p(w).

0._-‘\ 1T T T T T 1T T T T T N —
‘-__-‘P\\ T T T (O S A B B — Q=6
S S I N R e e N N A
AN [ T N R T N R T -= Q=15
e ‘{ L O A R R E E B B _
O O N T e e e Q=07
—7r/4——\'—;.¢~‘r(\ e i i T e e e S e I Q=03
[ Y T T O (O (O (O S S B
T o U T T O A S R R N R R
L o T L 1 O O e A
L T ¥ 1T O (O S A B B
| L O O S B A B R
— [ R N 12 1 T T O E S N A B R BN B O
g /2 N A e e e e N
L [ N R".\" T T e e B
[ N S T (O A I
© [ T R T L T (S R R S R B
[ \ L A A B B
T T | O N B O T B R I o PO B B
*371'/4*ﬂ*t*rﬂ*ﬂ*r\rﬂ*fﬂj it Bl el Bl Sl et B PO iy
T T T N T P O T T A E I A
T T N T R (I L PO H N R B B
[ R [ N T B b T PO
N N O e T S A B A
[ R R N [ A D e Bl R
N o
o Lo |
[ [ |
| | | | | |

1.6 Exploitation graphique de Z,, et ©

Capacité exigible : Déterminer la pulsation propre et le facteur de qualité a partir de graphes
expérimentaux d’amplitude et de phase.

‘pMéthode : Comment déterminer graphiquement wy et ) ?

En présence d’une résonance du type de celle en élongation pour un facteur de qualité modéré :

B Lire wy sur la courbe de phase ¢(w) : wy est la pulsation pour laquelle ¢(wg) = —g

B Deux méthodes sont possibles pour déterminer () :

e 1° méthode (possible si Q n’est pas trop élevé, et que w, et wy sont « éloignés ») :

o Lire la pulsation w, de résonance sur la courbe de Z,,(w) : w, est la pulsation a laquelle Z,, est
maximale.

/ 1
o En déduire le facteur de qualité @) grace a la relation w, = wgy/1 — TQZ
e 2¢m méthode (nécessaire si Q > 1, et donc w, ~ wy) :

o Lire 'amplitude Z,,(wo) en wy et amplitude Z,,(0) en w = 0.
o Utiliser la relation Z,,(wy) = @ x Z,,(0) pour en déduire Q).
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# Activité n°5 — Déterminer les valeurs de la pulsation propre et le facteur de qualité.

7 0
\\
/ 20
6 \
) 4 \
/ —40 \
5 o \ \\
—60 .
\ \
g 4 = —80
= z
£ o \ =100 )
\ N\
\. —120
2 \ J
& —140 N
L L —160 T
0 —180
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
w (rad/s) w (rad/s)

Il Etude de circuits linéaires en RSF

Dans le chapitre précédent nous avons établi I'analogie entre le systéme masse-ressort et le circuit RLC série.
Nous pouvons toujours utiliser cette analogie, et avoir I'intuition que nous observerons également des résonances
selon les parametres du circuit. L’étude des circuits électriques en régime sinusoidal ne nécessite pas d’établir
une équation différentielle, puis de la passer en représentation complexe, comme nous venons de le faire pour
Ioscillateur mécanique, ce qui peut s’avérer un peu long pour des circuits contenant plusieurs mailles. L’objectif
de cette partie est d’introduire de nouvelles grandeurs qui pourront rendre I’étude des circuits
en régime sinusoidal tres facile.

1.1 Impédances

[ Définitions : Impédance complexe

On considere un dipdle Z linéaire passif, dont la tension a ses bornes s’écrit u(t) = U, cos(wt + ¢,,) et
traversé par un courant d’intensité i(t) = I,,, cos(wt + ;).

En régime sinusoidal forcé et en utilisant la représentation complexe, on définit 'impédance
complexe Z du dipdle Z telle que :

B En convention récepteur, la relation entre u et ¢ s’écrit |u = 2 @ —ANNN——
U

9

B En convention générateur, la relation entre u et i s’écrit : |u —AANNN——
U

I

|
IN
|

[ Définition : Admittance complexe

L’admittance complexe est I'inverse de I'impédance complexe |Y = en Siemens (S) ou en Q7
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'A retenir :

Um
Z:‘Z’:E

et s’exprime

en Ohm ().

par rapport a Pintensité du courant qui le traverse :

Caractéristiques de I'impédance complexe
B Le module de I’'impédance complexe relie les amplitudes de 'intensité et de la tension :

B [’'argument de 'impédance complexe est le déphasage de la tension aux bornes du dipoles

arg(Z) = ¢u — i

Capacité exigible :

bobine en régime harmonique.

# Démonstration a maitriser n°6 — Impédances des dipdles linéaires

Pour la résistance, la bobine et le condensateur,

Etablir et connaitre I’'impédance d’une résistance, d’un condensateur, d’une

— établir les expressions de I'impédance complexe, de 'admittance complexe, ainsi que de I'impédance et

de I'admittance ;

— déterminer les comportements des dipdles a basse et haute fréquence.

'A retenir

Dipole Résistance Bobine Condensateur
i 7 L 7 : 7
- — T+ — -
Schéma L u u
4 . 1
Impédance Zn = R Z, = Ljw o= —
complexe — Cjw
Z;, — 0 Zc — 00
w—0 Zr —> R L . c
Z .
S el R | E I
- 1 =
u u=>0 U
71 — 00 Zc — 0
— W & 4 }—L e §
1 =
u u u=20
AAttention interrupteur ouvert fil
Tension aux bornes d'un ... | QUELCONQUE NULLE
Intensité a travers d’'un . .. NULLE QUELCONQUE
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# Activité n°7 — Comportement basse et haute fréquences de circuits
Déterminer la tension u dans les circuits ci-dessous a basse et haute fréquences. Tous les circuits sont alimentés
par un générateur idéal de tension de fem e(t) = E,, cos(wt).

R R L R
eT —_—Clu eT L |u eT m— R |u
QL. Q2. o,
| |
Soit un dipole linéaire passif d’impédance complexe Z.
e D’apres les définitions ci-dessus, Z = [Z] et Apy); = pu — @i = arg(Z2).
On écrit alors 'impédance complexe sous la forme Z = Zel®%uwi = Zcos(Apyyi) + j Zsin(Apuyi)

Ainsi R(Z) = Z cos(Apyi) et I(Z) = Zsin(Apy;)

e La relation entre impédance et admittance complexes est ¥ = —, ce qui donne la relation entre les

N

arguments : arg(Y) = —arg(Z).

[1.2 Lois des nceuds et des mailles en RSF

@A retenir : Lois des nceuds et des mailles en RSF

Les loi des nceuds et loi des mailles s’écrivent en RSF comme en régime permanent, tant que 1’on se trouve
dans le cadre de ’ARQS. Dans les circuits linéaires, 1’ensemble des signaux sont de méme pulsation, et
on peut utiliser la représentation complexe.

B Dans une maille, préalablement orientée, la somme algébrique des tensions est nulle :
Zakuk =0« ng% =0« ngUmJg =0
k k k

avec € = +1 si la fleche de u;, est dans le sens d’orientation de la maille, et ¢, = —1 si la fleche de wy
est en sens opposé au sens d’orientation de la maille.

B En un nceud, la somme algébrique des intensités est nulle :

D oerin =08 ey = 0@28’“1—&:
k k k

avec € = +1 si le courant i arrive dans le nceud et €, = —1 si le courant 7, part du nceud.

AAttention — Erreur a ne pas commettre
Les lois des mailles et des noeuds DOIVENT étre écrites avec les AMPLITUDES COMPLEXES ou les
SIGNAUX COMPLEXES, mais ne doivent pas étre écrites a ’aide des amplitudes des signaux.
On ne sommera JAMAIS des amplitudes, seulement des amplitudes complexes.
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1.3 Associations d'impédances
Capacité exigible : Remplacer une association série ou parallele de deux impédances par une

impédance équivalente.
En RSF, en utilisant la représentation complexe, on associe les impédances et on écrit les relations des PDT

et PDC comme pour les résistances.

'A retenir
Série Dérivation
C Zi i
>
:IZl :22 I L
U ; U () 7
Schéma -1 -2 <
1 1 1 AVA,
Xpression de Zgq q = 241+ 42 Ze  Zh + Z q A
T
.. . Zy . Zi .
Pont diviseur de tension : 4] = ——u de courant : 1} = v+—71
~ 4t s ~ ntgm

AAttention — Erreurs a ne pas commettre
Avant d’utiliser les formules d’association et de ponts diviseurs, il faut s’assurer que les dipoles sont bien en

série ou en paralléle.
Lors de I'utilisation des relations des ponts diviseurs, faire attention aux sens des tensions ou des courants.

# Activité n°8 — Impédances équivalentes
Pour chacun des circuits suivants, exprimer 'impédance complexe Z,p équivalente au dipole AB. On notera
w la pulsation des grandeurs électriques.

Be 1 Be 1 Be .

C R| | L C C

R L
Ql. A*:M Q. A® 1 Q. A'%

# Activité n°9 — Ponts diviseurs
Etablir les expressions, en utilisant la représentation complexe, de u en fonction de e ou de i et 4; en fonction
de 49 pour les circuits ci-dessous.

R C

Q1.
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1.4 Etudier un circuit linéaire en RSF

‘pMéthode : Comment étudier un circuit linéaire en RSF ?

Dans le cadre du régime sinusoidal forcé, la représentation complexe peut (et doit!) étre
utilisée.

1. Ecrire I'impédance de chaque dipdle linéaire passif présent dans le circuit.

2. Introduire sur le schéma du circuit, toutes les tensions et intensités nécessaires : positionner les fleches
et les nommer.

3. Associer les impédances entre elles dés que possible (en série ou en parallele), qui ne font pas disparaitre
les grandeurs électriques recherchées.

4. Ecrire les lois des mailles et/ou lois des noeuds nécessaires en représentation complexe.

5. Ne pas oublier les PONTS DIVISEURS de tension et de courant en représentation complexe, bien
utiles, qui remplacent des lois des mailles/des nceuds.

Il Résonances dans un circuit RLC série

http://www.sciences.univ-nantes.fr/sites/genevieve_tulloue/Elec/Alternatif/transfert2RLC.php

s Expérience : Cf TP Résonances du circuit RLC série
$ Relire/reprendre le compte rendu de ce TP.

[11.1 Résonance en tension aux bornes de

Capacité exigible : Utiliser la représentation complexe pour étudier le régime forcé. Relier ’acuité
d’une résonance forte au facteur de qualité.

# Exercice a maftriser n°10 — Etude de la résonance en tension du RLC série
On souhaite déterminer les caractéristiques en RSF de la tension aux bornes du condensateur uc(t) =

Ucm, cos(wt + ¢,,) dans le circuit RLC' série alimenté par un générateur de fem e(t) = E,, cos(wt).
Comportement asymptotique

Q1. Déterminer le comportement asymptotique de Ug,,, sans calculs.

Amplitude complexe de la tension aux bornes du condensateur

Q2. Etablir I'expression de Ugyy, en fonction de E,,, w, L, C, R.

E
Mettre Ug,, sous la forme : Ug,,(w) = T— T et identifier les expressions de wy et Q).
— — w w
1—— 4 j——
wh Q wo

Q3. Commenter. Quelle situation reconnaissez-vous? Que pourra-t-on dire du comportement de la tension
aux bornes du condensateur ?


http://www.sciences.univ-nantes.fr/sites/genevieve_tulloue/Elec/Alternatif/transfert2RLC.php
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I11.2  Analogie résonance en élongation / en tension

Résonance en élongation | Circuit RLC série aux bornes de C
Excitation 2A(t) = Z am cos(wt) e(t) = E,, cos(wt)
Fquation différentiell Jr oz 4 kZ(t) = kea(t) | LT gdte | 1 Lo
uation différentielle m ! =kz — U, = —¢€
d 4 de? it Cc ¢
Réponse de l'oscillateur en RSF,
une fois le régime transitoire ter- Z(t) = Zp cos(wt + @) ue(t) = Ucy, cos(wt + )
miné
. ZAm o Em
Amplitude complexe Ly (w) = 1 CLQ . T Ucpm(w) = wfz N T
R Quy R Quy
k 1
Pulsation propre |rad/s wo =4/ — Wy = —F—
propre [rad/s] 0=/ v/re
mk 1 /L
Facteur d lité ité = I
acteur de qualité [sans unité] Q ” Q e
« R
Parametres de I'oscillateur m L
1
k il
C

Graphe de 'amplitude

Tgo : Déphasage de la réponse par rapport a l’excitation
wo
- W

T
!
|
|

Graphe de la phase

[11.3 Résonance en intensité
I11.3.a) Bande passante a —3 dB

Déﬁnition : Bande passante et pulsation de coupure
B Les pulsations de coupure sont les pulsations w, telles que

Im,max

[m(('UC) = \/i

B La bande passante, est I'intervalle de pulsation [w.,ws] telle que pour toute pulsation w € [wer, wes]

Im,max

V2

avec I, max la valeur maximale prise par I'amplitude de l'intensité (=valeur de 'amplitude de I'intensité

Im(w) >

a la résonance).
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111.3.b) Etude de la résonance

Capacité exigible : Utiliser la représentation complexe pour étudier le régime forcé. Relier acuité
d’une résonance au facteur de qualité.

# Exercice a maitriser n°11 — Etude de la résonance en intensité dans le RLC série

On étudie I'intensité, une fois le régime transitoire terminé, dans le circuit RLC série alimenté par un générateur
idéal de fem e(t) = E,, cos(wt). On écrit 'intensité sous la forme i(t) = I, cos(wt + ¢;), avec I, 'amplitude
de i(t) et ¢; le déphasage de i(t) par rapport a e(t).

Comportement asymptotique

Q1. Déterminer, a l'aide des comportements asymptotiques des dipoles, la valeur de I, a basse et haute
fréquences.

Amplitude complexe de l'intensité

Q2. Déterminer, en représentation complexe, I’amplitude complexe I,,, de I'intensité du courant.

La mettre sous la forme : I,,,(w) = R > et identifier les trois constantes A, wy et Q.

1+jQ(= -2
Wo w
Q3. Déterminer les équivalents de ’amplitude ,,, pour w < wy et pour w > wy.
Q4. En déduire les valeurs limites de 'amplitude I,, de l'intensité, et du déphasage entre i et e a basse et
haute fréquence.

Etude de 'amplitude I,,

Q5. Déterminer 'expression de I,,,(w).

Q6. Etudier I'existence d’une résonance.

Q7. Tracer l'allure de I,,,(w).

Q8. Déterminer les expressions des pulsations de coupure en fonction de wg et Q.

Q9. En déduire que la largeur de la bande passante Aw = weo — w,q est reliée a Q par : Aw = il

Que dire de la dépendance de 'acuité de la résonance avec le facteur de qualité ?

Etude du déphasage ¢; entre i et e

Q10. Que vaut le déphasage a la résonance ? Comment sont e(t) et i(t) a la résonance ?
Q11. Tracer l'allure de ¢;(w).

0.025
/2
0.020
/4
0.015
5}
w5 g 0
<
0.010
—m/4
0.005 |
|
I —m/2
|
0.000 | Il l Il | | | |
0 10000 20000 30000 40000 0 10000 20000 30000 40000
w (rad/s) w (rad/s)

I, (w) et p;(w) pour différentes valeurs de R, a L et C' fixées.
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'A retenir : Largeur de la bande passante et facteur de qualité
La largeur de la bande passante est reliée au facteur de qualité par :

wWo Wo
Aw = — =
w & Q A

Q

Plus le facteur de qualité est élevée, plus la bande passante est faible, plus la résonance est aigiie.

I11.3.c) Exploitation graphique

Capacité exigible : Déterminer la pulsation propre et le facteur de qualité a partir de graphes
expérimentaux d’amplitude et de phase.

‘¢gMéthode : Déterminer graphiquement w, et ()
Quand sont fournies les courbes d’amplitude I, et de phase ¢ en présence d’une résonance du type de la
résonance en intensité d’'un RLC série :

B Lire wy sur la courbe d’amplitude : wy est la pulsation pour laquelle Pamplitude est maximale (ou sur
la courbe de phase : p;(wg) = 0).

B Déterminer la largeur de la bande passante Aw :
e Lire la valeur maximale de 'amplitude I, max = Im(wo) ;

ok

e Lire les abscisses w.; et wq pour lesquelles 'amplitude vaut

e (Calculer

m,max

ik

e En déduire Aw = we — wey.

B En déduire le facteur de qualité Q) = Z—O.
w

# Activité n°12 — Déterminer wy et ) sur le graphique ci-dessous.
0.9

N\
.

0.8

0.7 \

0.6 / \

/,

= 0.5

~—

< 04

N\
/

0.3

01 =

L~

A~

0
0 01 02 03 04 05 06 07 08 09 1 11 12 13 14 15 16 1.7 1.8 1.9 2
w (rad/s) - 104
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Comment déterminer graphiquement wy

et Q7

Nous avons rencontré deux types de résonance, de natures tres différentes. La lecture graphique de

wo et () est différente dans les deux cas.

On considere un systeme linéaire excité par une excitation sinusoidale Zexet () = Xexe,m cos(wt) dont on étudie
la réponse d’une grandeur physique (tension, intensité, position, vitesse,...) exprimée selon x(t) = X, cos(wt+p).

Type élongation / tension aux bornes du condensa-
teur dans le RLC série

Type intensité dans le RLC série

Expressions
_ Xexc,m & = Xm’max
l—u*+j5 1—{—jQ<u—)
Courbes
X, : Amplitude de la réponse
1
>
“
Xm,max

Ava,max/\/§

/2

MIE

wo

Pulsation propre wq ?

T
wo est l'antécédent de —5 a lire sur la courbe de

X

wp est 'antécédent de la phase ¢ = 0, a lire sur la
courbe de phase

ou wy est 'antécédent du maximum de la courbe de

qualité Q7?7

phase
Facteur de
Ré 1 Isati 1 1
ésonance pour la pulsation : w, = w - —
b p 0 202

Lire w, c’est I'antécédent du maximum de X,,.

En déduire Q = Jg (1 - ( >2>

Wr

Wo

telles que X,,

Lire les pulsations de coupure w, (les antécédents)

m,max

V2

(we) =

Wo
Q=-— avec Aw=wem — Wa
Aw
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QUAND LE

BALANCE,
LES PIETON
DANSENT

On croyait tout savoir sur la conception des ponts.
En fait, on avait oublié I'effet de leurs vibrations
sur la marche des pie¢tons qui les franchissent.

€ 10 juin 2000, le Millennium

Bridge (la «passerelle du millé-

naire»), a Londres, était inau-

guré. Alors qu’une foule

compacte le traversait, le pont

s’est mis a osciller d'un coté a
lautre. L’amplitude du mouvement a
atteint plusieurs centimetres, au point
que les personnes étaient obligées de se
tenir aux balustrades pour ne pas tomber.
Les autorités fermeront la passerelle au
public deux jours plus tard. Et il faudra
18 mois et 5 millions de livres de travaux
sur la structure pour empécher que la
situation se reproduise.

Pourquoi les ingénieurs n’avaient-ils
pas prévu une oscillation aussi forte? En
fait, un mécanisme original avait échappé
a toutes les modélisations antérieures:
lorsque les piétons sont assez nombreux,
leur marche se synchronise spontanément
avec les oscillations de la passerelle.
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Pour comprendre les oscillations du
Millennium Bridge, deux catastrophes
datant du x1x° siecle sont riches d’ensei-
gnements. La premiere s’est produite
en 1831 avec le pont de Broughton, au
Royaume-Uni: il s’est effondré lorsqu’une
troupe de 60 militaires marchant au pas
le franchissait. Pourquoi? A cause d’un
effet de résonance bien connu, di a la
coincidence entre la fréquence du pas des
soldats avec l'une des fréquences natu-
relles de vibration du pont.

RESONANCE SUR PONT
OU SUR BALANCOIRE

Le phénomene est le méme que celui
al’ceuvre lorsqu’on pousse un enfant sur
une balancoire a chaque fois qu’il revient
vers nous. Il n’est pas nécessaire que
I’énergie fournie a chaque poussée soit
importante pour que ’amplitude de I’os-
cillation augmente. Il suffit qu’elle soit

PONT

supérieure aux pertes subies par la balan-
coire lors d’une oscillation.

Dans le cas du pont de Broughton,
Peffet d’un seul piéton marchant norma-
lement était insuffisant pour le faire
vibrer, car la dissipation ’'emportait. Tel
n’était plus le cas lorsque I’énergie était
apportée par 60 gaillards marchant au
pas; d’autant plus que, amusés par les
oscillations naissantes, ils se sont mis a
marcher au rythme exact des mouve-
ments du pont. Ainsi, a chaque pas, l'ef-
fet de I'impulsion verticale des pieds
s’ajoutait a celui des pas précédents.
L’amplitude des vibrations - ici verti-
cales - s’est alors amplifiée jusqu’a ce
que le pont cede.

© Dessins de Bruno Vacaro



Force 4-
1atéraleA

Soyons un peu plus quantitatifs.
Lorsque nous marchons, nous faisons, en
gros, deux pas par seconde. Cela signifie
que deux fois par seconde, c’est-a-dire a
une fréquence de 2 hertz, nous appuyons
sur le sol vers le bas avec une force dont
Pamplitude moyenne est égale a notre
poids. Et avec 60 piétons marchant au
pas, ’ensemble de ces individus engendre
une force périodique dont ’amplitude
est 60 fois celle d’une personne.

Cependant, si les marcheurs ne se
coordonnent pas, ’'amplitude totale est
bien plus faible, car certains vont par
exemple marcher a contretemps. Les lois
des phénomenes aléatoires montrent que
la force augmente alors comme la racine

,;\\ ( J —~

£
i

_Centre ™
de masse

'/ latérale

: Force
i verticale

carrée du nombre de marcheurs.
Autrement dit, la force exercée par une
foule de 60 piétons sur un pont est pres
de 8 fois supérieure a celle exercée par
1 piéton, mais 8 fois plus faible que celle
de 60 individus marchant au pas.

On comprend donc pourquoi, depuis
la catastrophe de Broughton, les mili-
taires ont pour consigne de rompre le pas
sur les ponts. On comprend également
pourquoi les ingénieurs congoivent des
ponts dont les fréquences naturelles de
vibration different de 2 hertz. Ils font
aussi en sorte que les vibrations du pont
soient amorties au voisinage de cette fré-
quence, afin que les mouvements verti-
caux du pont engendrés par les marcheurs

| Vitesse x_, v

UNE FORCE QUI SE DANDINE

orsqu'une personne marche, son centre de masse fait des va-et-vient
L verticalement, mais aussi latéralement. Ce mouvement latéral a pour
conséquence que le pied qui touche le sol exerce sur celui-ci une force ayant
une petite composante latérale, vers la droite pour le pied droit et vers la gauche pour
le pied gauche (on omet ici la composante dans la direction de la marche, qui est nulle
en moyenne). Cette force latérale et périodique a un effet sensible sur
les oscillations latérales d'un pont dés que le nombre de piétons
qui marchent dessus est important.

Lors de son inauguration,
le Millennium Bridge

a oscillé latéralement

de fagon inquiétante,

en relation avec une
synchronisation

des mouvements

des nombreux piétons.

restent limités et ne nuisent pas au
confort de la marche.

Ces contraintes sont bien connues
depuis longtemps et parfaitement inté-
grées par les cabinets d’architecture.
Alors que s’est-il passé sur le Millennium
Bridge? Une autre catastrophe va nous
orienter vers la réponse. Le 16 avril 1850,
en France, 220 soldats du 11° régiment
d’infanterie 1égere et 3 civils ont trouvé la
mort lors de effondrement du pont de la
Basse-Chaine a Angers, I'un des premiers >

Les auteurs ont

récemment publié:
En avant la physique!,

[.lj une sélection de leurs
chroniques (Belin, 2017).
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> ponts suspendus. L’ordre avait pourtant
été donné aux soldats de rompre le pas.
Toutefois, sous P’effet de rafales de vent,
le pont a commencé a s’agiter latérale-
ment. Pour s’équilibrer, les soldats se sont
portés d’un coté puis de ’autre; ces mou-
vements coordonnés ont alors amplifié
les embardées horizontales du pont
jusqu’a provoquer son effondrement.
Ainsi, alors qu’en arrivant sur le pont, les
soldats avaient cessé de coordonner leurs
pas, les oscillations de la structure ont
resynchronisé ces derniers!

ENDEZ-VOUS

UNE SYNCHRONISATION
INATTENDUE

C’est un phénomene de méme nature
qui s’est produit a Londres avec le
Millennium Bridge, mais selon un méca-
nisme non anticipé. Lorsque nous mar-
chons, nos deux pieds avancent chacun
sur deux lignes paralleles distantes 'une
de l’autre de la largeur de nos hanches.
Par conséquent, en plus d’oscillations
verticales, notre centre de masse oscille
horizontalement.

La force exercée par nos pieds sur le
sol a donc une petite composante horizon-
tale dirigée vers ’extérieur du pied: versla
gauche pour le pied gauche, vers la droite
pour le pied droit (voir Pencadré page pré-
cédente). Comme nous posons chaque pied
une fois par seconde, la fréquence de cette
force latérale est de 1 hertz. Son amplitude
est de 'ordre de 1 % du poids, et ’on s’at-
tend donc a un effet tres faible.

C’est vrai pour leffet sur ’amplitude
du mouvement du pont qui, dans notre
cas, n’a jamais dépassé quelques centi-
metres, mais pas pour leffet sur la
marche des piétons. Pourquoi? Parce que
lorsque le sol bouge sous nos pieds, nous
sommes bien plus déstabilisés par des
mouvements latéraux que par des mou-
vements verticaux; nous essayons alors
de retrouver notre équilibre par des réa-
justements de la position des pieds et
divers autres mouvements.

Détaillons. Puisque les piétons ne
marchent pas tous exactement au méme
rythme, ’'amplitude de la force latérale
est de I'ordre de la force d’un seul mar-
cheur multipliée par la racine carrée du
nombre de piétons. Cela fait légeérement
osciller latéralement le pont. Tant que
lamplitude de cette oscillation reste
faible, les piétons ne sont pas perturbés.
Mais quand le nombre de marcheurs est
élevé, elle devient assez importante pour
affecter la marche de quelques-uns, ceux
dont les pas étaient pratiquement au
rythme des oscillations latérales.

90 / POUR LA SCIENCE N° 505 / Novembre 2019

DES MARCHES QUI SE SYNCHRONISENT

de synchronisation de la marche de piétons qui franchissent un pont, sous

D iverses modélisations et simulations numériques ont reproduit le phénomene

Ueffet des oscillations latérales de celui-ci. Les graphiques ci-dessous montrent
les résultats d'une telle modélisation, publiée en 2017 par Bruno Eckhardt et ses
collégues (voir la bibliographie). Le graphique du haut montre l'amplitude des
oscillations du pont en fonction du temps ; celui du bas représente, toujours en
fonction du temps, la phase de la marche (codée en couleur) de chaque piéton d'une
foule constituée de 80 personnes. On constate que l'amplitude des oscillations
augmente a mesure que les marches des piétons se synchronisent.

Amplitude
d'oscillation

Ces piétons vont alors spontanément
synchroniser leurs pas avec les mouve-
ments du pont, ce qui accroit 'amplitude
des oscillations. Celles-ci deviennent

alors suffisantes pour affecter des piétons
qui étaient un peu moins en rythme et les
synchroniser. Ainsi, par un effet boule de
neige, ’'amplitude des oscillations et le
nombre de piétons qui marchent en syn-
chronie se renforcent mutuellement. Les
accélérations latérales atteignent alors
des valeurs suffisantes (de lordre de
0,3 metre par seconde carrée, soit 3% de
laccélération de la pesanteur) pour désé-
quilibrer les marcheurs.

Des simulations numériques et des
expériences en grandeur réelle sont
venues confirmer quantitativement cette
explication (voir Pencadré ci-dessus).
Leffet avait été mentionné depuis long-
temps, a la fois par des ingénieurs et par
des scientifiques, mais il était considéré
comme anecdotique. Il a fallu la mésaven-
ture du Millennium Bridge et les études
qui ont suivi pour qu’on Iidentifie claire-
ment et qu’on le prenne en compte cor-
rectement dans les modélisations et la
construction de nouveaux ponts. Cet
incident a aussi permis de se rendre
compte que ce phénomene d’oscillation
latérale n’était pas isolé et concernait de
nombreux ponts dans le monde, quel que
soit leur type de structure. ®

ET LE PONT
DE TACOMA?

La rupture en 1940 du

fameux pont de Tacoma,

aux Etats-Unis, ne reléve pas
des mécanismes de résonance
ou de synchronisation décrits
ici. Cette catastrophe était

due a linteraction des
oscillations de torsion du pont
avec les tourbillons d'air créés
au niveau du pont par des vents
forts (voir « Pont de Tacoma:
la contre-enquéte »,

Pour la Science, février 2008).
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