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Chapitre n°7 Oscillateurs amortis en régime
sinusoïdal forcé

Thème I. Ondes et signaux (Oscillateurs)

Résonance d’une balançoire : l’amplitude des oscillations est maximale
lorsque les parents poussent « à la bonne fréquence » la balançoire.

Résonance d’un verre : lorsqu’il est soumis à une onde sonore de fréquence
égale à sa fréquence propre, l’amplitude des oscillations du verre augmente,
il peut alors éclater.
Vidéo : « Rupture par résonance d’un verre »
https://www.youtube.com/watch?v=47cPhhywvOo

Les vibrations et le phénomène de résonance sont également étudiés
dans les structures comme les immeubles, les ponts afin d’éviter leur
effondrement.
Le 10 juin 2000, le Millenium Bridge à Londres était inauguré. Lorsque
la foule a traversé ce pont, le pont s’est mis à osciller, avec une am-
plitude de plusieurs centimètres, et les passants ont du se tenir aux
balustrades. Après étude du phénomène, il s’avère que la fréquence des
pas des passants coïncidait avec celle de résonance du pont. Des tra-
vaux ont eu lieu afin de déplacer la fréquence de résonance du pont par
l’installation d’amortisseurs hydrauliques et de masse pour contrôler
les oscillations horizontales et latérales.
https://commons.wikimedia.org/w/index.php?curid=59615772"

Pré-requis
• Terminale : Thème Mouvement et interactions
◦ Vecteurs position, vitesse et accélération d’un point : définition et expression en coordonnées cartésiennes.
◦ Deuxième loi de Newton.
• PCSI : Thème Ondes et signaux.
◦ Chapitre n°3. Signaux électriques dans l’ARQS.
◦ Chapitre n°6. Oscillateurs libres amortis

https://www.youtube.com/watch?v=47cPhhywvOo
https://commons.wikimedia.org/w/index.php?curid=59615772"
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Objectifs du chapitre
— Introduire la représentation complexe des signaux sinusoïdaux.
— Introduire les notions nécessaires à l’étude des circuits linéaires alimentés en régime sinusoïdal.
— Résoudre, en régime forcé, et en utilisant la représentation complexe les équations différentielles du type :

d2y

dt2 + ω0

Q

dy
dt + ω2

0y = Am cos(ωt)

— Étudier le phénomène de résonance des deux systèmes étudiés dans le chapitre précédent.

Plan du cours
I Oscillateur mécanique en RSF 3

I.1 Observations expérimentales . . . . . . . 3
I.2 Équation du mouvement . . . . . . . . . 3
I.3 RT et RSF . . . . . . . . . . . . . . . . . 3
I.4 Représentation complexe . . . . . . . . . 4

I.4.a) Définition . . . . . . . . . . . . . 4
I.4.b) Opérations . . . . . . . . . . . . . 5

I.5 Résonance en élongation . . . . . . . . . 6
I.5.a) Résolution : Amplitude complexe 6
I.5.b) Résonance . . . . . . . . . . . . . 6

I.6 Exploitation graphique de Zm et ϕ . . . 7

II Étude de circuits linéaires en RSF 8
II.1 Impédances . . . . . . . . . . . . . . . . 8
II.2 Lois des nœuds et des mailles en RSF . . 10
II.3 Associations d’impédances . . . . . . . . 11
II.4 Étudier un circuit linéaire en RSF . . . . 12

IIIRésonances dans un circuit RLC série 12
III.1 Résonance en tension aux bornes de C . 12
III.2 Analogie . . . . . . . . . . . . . . . . . . 13
III.3 Résonance en intensité . . . . . . . . . . 13

III.3.a)Bande passante à −3 dB . . . . . 13
III.3.b)Étude de la résonance . . . . . . 14
III.3.c) Exploitation graphique . . . . . . 15

Ai-je bien appris mon cours ?
1 − − − Définir la représentation complexe d’un signal sinusoïdal.
2 − − − Donner l’expression de la dérivée et de la primitive de la représentation complexe d’un signal

sinusoïdal.
3 − − − Établir l’équation du mouvement d’une masse suspendue à un ressort, dont le point d’attache est

animé d’un mouvement sinusoïdal.
4 − − − Déterminer, à partir de l’équation différentielle, l’expression de l’amplitude complexe de la réponse

à l’excitation sinusoïdale.
5 − − − Déterminer la pulsation de résonance de la réponse en élongation.
6 − − − Établir les expressions des impédances complexes des dipôles R, L et C.
7 − − − Donner les expressions des impédances complexes des dipôles R, L et C.
8 − − − Donner les comportements asymptotiques (à basse et haute fréquences) du condensateur et de la

bobine.
9 − − − Donner l’expression de l’impédance complexe équivalente d’une association série ou parallèle de

deux impédances.
10 − − − Donner les relations du pont diviseur de tension pour deux impédances en série et de courant

pour deux impédances en parallèle.
11 − − − Établir les expressions des amplitudes complexes de la tension aux bornes du condensateur et de

l’intensité du courant dans le RLC série.
12 − − − Déterminer les pulsations de résonance en tension et en intensité dans le RLC série.
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I Oscillateur mécanique en RSF
I.1 Observations expérimentales

Animation : Résonance d’un oscillateur mécanique

On étudie le dispositif ci-contre, constitué d’une masse m accrochée à un ressort vertical
de longueur à vide `0 et de constante de raideur k et dont l’autre extrémité est mise en
oscillation par un dispositif extérieur.
Le point A d’attache du ressort oscille sinusoïdalement à la pulsation ω :

−→
OA = zA(t)−→uz avec zA(t) = ZAm cos(ωt)

Les frottements exercés par l’air sur le système sont modélisés par la force de frottement
fluide −→f = −α−→v , avec α une constante positive qui dépend du fluide.

O

A

z

zA(t)

z(t)
`(t)

Qu’observez-vous ? Noter vos observations selon la fréquence (la pulsation) de l’excitation (c’est-à-dire du
mouvement de A).

Expérience

On dit qu’un système excité périodiquement présente une résonance pour une grandeur physique lorsque
l’amplitude de celle-ci admet un maximum pour une fréquence particulière de l’excitation appelée
fréquence de résonance.

Définition : phénomène de résonance

I.2 Équation du mouvement

Q1. On étudie l’équilibre de M(m), en l’absence d’excitation sinusoïdale tel que ∀ t, zA(t) = 0.
Déterminer la longueur du ressort à l’équilibre `éq.

Q2. Exprimer la force de rappel élastique en fonction de k, zA, z, `0 et −→uz .
Q3. Établir l’équation différentielle du mouvement vérifiée par z(t).

On repère la position de la masse M à partir de sa position d’équilibre en utilisant la variable Z telle que
Z(t) = z(t)− zéq.
Q4. Écrire l’équation différentielle vérifiée par Z(t).

La mettre sous forme canonique

d2Z

dt2 + ω0

Q

dZ
dt + ω2

0Z(t) = ω2
0ZAm cos(ωt)

identifier les expressions de ω0 et Q.

Exercice à maîtriser n°1 − Équation du mouvement

I.3 Régime transitoire et régime sinusoïdal forcé
La solution générale de l’équation différentielle précédente s’écrit :

Z(t) = ZH(t) + ZP (t)

avec :
• ZH(t) la solution générale de l’équation homogène : elle caractérise le régime transitoire qui disparaît

au bout de quelques fois la constante de temps caractéristique d’évolution : lim
t>qq τ

ZH(t) = 0.

• ZP (t) un solution particulière, que l’on recherche sous la même forme que le second membre, donc
sous la forme d’une fonction sinusoïdale de même pulsation ω que le 2nd membre : ZP (t) = Zm cos(ωt+ ϕ)
Elle caractérise le régime établi.
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Au bout de quelques τ : Z(t) ≈ ZP (t) = Zm cos(ωt+ ϕ)
Dans ce chapitre, nous n’étudierons pas le régime transitoire, mais uniquement le régime

permanent sinusoïdal, appelé « régime sinusoïdal forcé », une fois le régime transitoire terminé.
Dans le cas de l’oscillateur mécanique, la réponse en régime établi s’écrit Z(t) = Zp(t) = Zm cos(ωt+ ϕ) et
comporte deux inconnues : l’amplitude Zm et la phase à l’origine ϕ .

La réponse d’un système linéaire soumis à une excitation sinusoïdale e(t) = Em cos(ωt) régi par une
équation différentielle

d2s

dt2 + ω0

Q

ds
dt + ω2

0s = ω2
0e

est, après le régime transitoire, de la forme s(t) = Sm cos(ωt+ ϕ)

À retenir : Système linéaire en régime sinusoïdal forcé

But de la résolution : déterminer l’amplitude Zm(ω) et la phase à l’origine ϕ(ω) qui dépendent de la
pulsation de l’excitation.

Pour cela, on pourrait procéder comme dans les chapitres précédents quand le 2nd membre était constant,
à savoir injecter ZP (t) dans l’équation différentielle et déterminer les inconnues (Zm et ϕ). Mais les calculs
s’avèrent ici très longs et fastidieux. On opte pour l’utilisation de la représentation complexe.

I.4 Représentation complexe
I.4.a) Définition

À tout signal sinusoïdal
s(t) = Sm cos(ωt+ ϕ)

on associe la représentation complexe :

Le signal complexe s n’a pas de réalité physique, c’est uniquement un outil, c’est s qui en a : s(t) = <
(
s
)

À retenir : Représentation complexe d’un signal sinusoïdal

Introduction de l’amplitude complexe

� On introduit l’amplitude complexe, notée Sm telle que

� L’amplitude Sm de s(t) est le module de Sm :

� La phase à l’origine ϕ ∈ [−π, π] de s(t) est l’argument de Sm :

Ainsi la connaissance de l’amplitude complexe Sm donne accès aux deux grandeurs inconnues du signal
s(t) : l’amplitude Sm et la phase à l’origine des temps ϕ.

À retenir : Amplitude et phase à l’origine des temps

Page 4
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E, ω, τ , ω0, Q sont des réels positifs.
Q1. Donner le signal complexe associé aux signaux suivants et identifier l’amplitude complexe.

(a) e(t) = E cos(ωt+ π/3) (b) i(t) = Im
√

2 cos(ωt)

Q2. Donner le module des complexes ci-dessous.

(a) Um = E

1 + jωτ
(b) u = Ejωτ

1 + jωτ
ejωt (c) Um = −Eω2

0
−ω2 + jωω0/Q+ ω2

0

Q3. Comment exprime-t-on l’argument d’un nombre complexe z = a + ib, si a > 0 ? si a < 0 et b > 0 ? si
a < 0 et b < 0 ?

Q4. Déterminer l’expression de l’argument de Um.

(a) Um = Ejωτ

1 + jωτ
(b) Um = E

1 + jQ
(
ω

ω0
− ω0

ω

) (c) Um = Eω2
0

ω2
0 − ω2 + jωω0

Q

Activité n°2 − Représentation complexe de signaux sinusoïdaux

I.4.b) Opérations
Soit s(t) = Sm cos(ωt+ ϕ), de représentation complexe s = Sme

jωt

ds
dt = d(Smejωt)

dt
= Sm × jωejωt

= jω × s

∫
s dt =

∫
Sme

jωt dt

= Sm
jω

ejωt

= s

jω

� Dériver un signal complexe revient à le multiplier par jω.

ds
dt =

� Primitiver un signal complexe revient à le diviser par jω.∫
s dt =

� La somme de s1(t) = S1m cos(ωt+ ϕ1) et s2(t) = S2m cos(ωt+ ϕ2) est d’amplitude complexe

Sm = S1m + S2m = S1me
jϕ1 + S2me

jϕ2

L’amplitude de s1(t) + s2(t) s’obtient avec Sm = |Sm| = |S1m + S2m|

À retenir : Opérations à l’aide de la représentation complexe

Il est formellement interdit d’utiliser la représentation complexe pour les équations non-linéaires.
Notamment, il est interdit d’utiliser la représentation complexe pour les grandeurs énergétiques qui sont
toutes non-linéaires. Pour toute étude énergétique il faut donc revenir à la notation réelle.

Attention
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I.5 Résonance en élongation
Capacité exigible : Utiliser la représentation complexe pour étudier le régime forcé.
I.5.a) Résolution : Amplitude complexe

On étudie la réponse de l’oscillateur mécanique régit par l’équation différentielle

Z̈ + ω0

Q
Ż + ω2

0Z = ω2
0zA ⇔ Z̈ + ω0

Q
Ż + ω2

0Z = ω2
0ZAm cos(ωt)

Q1. Proposer une expression de la solution Z(t) en régime sinusoïdal forcé.
Q2. Donner les représentations complexes de zA et de Z et introduire l’amplitude complexe Zm de Z.
Q3. Passer l’équation différentielle vérifiée par Z(t) en représentation complexe et en déduire l’expression de

Zm en fonction de ω0, Q, ω et ZAm sous la forme :

Zm = ZAm

1− x2 + j
x

Q

où x = ω

ω0

Q4. Exprimer l’amplitude Zm de Z(t).
Q5. Pour mener l’étude de la phase ϕ = arg(Zm), il est nécessaire de connaître l’intervalle de [−π, π], auquel

ϕ appartient.
Quel est le signe de la partie imaginaire de Zm ? Que peut-on en déduire sur l’intervalle de ϕ ?
Quel est le signe de la partie réelle de Zm pour x < 1 (ω < ω0) ? pour x > 1 (ω > ω0) ? Que peut-on en
déduire sur ϕ ?

Exercice à maîtriser n°3 − Amplitude complexe

I.5.b) Étude de l’amplitude : Existence d’une résonance ?

Définition : f est équivalente à g si (f − g) est négligeable devant g.
Notation : L’équivalent entre deux fonctions en a se note : f ∼

a
g.

• Un équivalent en ±∞ d’une fonction polynomiale est son monôme de plus haut degré : a+bx+cx2 ∼
∞
cx2

• On retiendra les équivalents suivants :

a+ bx+ cx2 ∼
0
a ax+ b

x
∼
0

b

x
ax+ b

x
∼
∞
ax

Méthode maths : les équivalents

Étude des situations limites
Q1. Exprimer l’équivalent de Zm à basse fréquence (c’est-à-dire pour x� 1, soit ω � ω0).

En déduire les limites de Zm et ϕ à basse fréquence (ω � ω0). Commenter physiquement.
Q2. Exprimer l’équivalent de Zm à haute fréquence, (c’est-à-dire pour x� 1 soit ω � ω0).

En déduire les limites de Zm(ω) et de ϕ(ω) à haute fréquence (ω � ω0). Commenter physiquement.
Q3. Exprimer Zm(ω0). En déduire Zm(ω0) et ϕ(ω0). Commenter.

Résonance en élongation
L’amplitude s’écrit : Zm = ZAm√

(1− x2)2 + x2

Q2

. Pour mener son étude on définit la fonction g : x 7→ (1−x2)2+ x2

Q2 .

Q4. Montrer que g admet un minimum si Q >
1√
2
. Exprimer xr où g est minimale.

Exercice à maîtriser n°4 − Étude de l’amplitude et de la phase
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Q5. En déduire qu’il se produit une résonance pour une pulsation ωr que l’on exprimera en fonction de ω0 et
Q, à condition que Q vérifie une certaine inégalité.

Q6. Tracer l’allure de Zm(ω) pour différentes valeurs de Q.
Q7. Quelle est l’influence du facteur de qualité sur la résonance d’élongation ?

Allure de la phase
Q8. Tracer l’allure de ϕ(ω).

0 5 10 15 20 25 30 35 40 45 50 55

ω (rad/s)

ZA

2ZA

3ZA

4ZA

5ZA

6ZA

Z
m

Q=6

Q=1.5

Q=0.7

Q=0.3

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

ω (rad/s)

−π

−3π/4

−π/2

−π/4

0

φ
 (

ra
d
)

Q=6

Q=1.5

Q=0.7

Q=0.3

I.6 Exploitation graphique de Zm et ϕ
Capacité exigible : Déterminer la pulsation propre et le facteur de qualité à partir de graphes
expérimentaux d’amplitude et de phase.

En présence d’une résonance du type de celle en élongation pour un facteur de qualité modéré :
� Lire ω0 sur la courbe de phase ϕ(ω) : ω0 est la pulsation pour laquelle ϕ(ω0) = −π2
� Deux méthodes sont possibles pour déterminer Q :
•

:::
1ère

::::::::::
méthode

::::::::::
(possible

::
si

:::
Q

:::::
n’est

::::
pas

::::::
trop

::::::
élevé,

:::
et

::::
que

:::
ωr:::

et
:::
ω0:::::

sont
::
«
:::::::::
éloignés

::::
») :

◦ Lire la pulsation ωr de résonance sur la courbe de Zm(ω) : ωr est la pulsation à laquelle Zm est
maximale.

◦ En déduire le facteur de qualité Q grâce à la relation ωr = ω0

√
1− 1

2Q2 .

•
::::
2ème

::::::::::
méthode

:::::::::::
(nécessaire

:::
si

::::::::
Q� 1,

:::
et

:::::
donc

::::::::::
ωr ≈ ω0) :

◦ Lire l’amplitude Zm(ω0) en ω0 et l’amplitude Zm(0) en ω = 0.
◦ Utiliser la relation Zm(ω0) = Q× Zm(0) pour en déduire Q.

Méthode : Comment déterminer graphiquement ω0 et Q ?
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Activité n°5 − Déterminer les valeurs de la pulsation propre et le facteur de qualité.

II Étude de circuits linéaires en RSF
Dans le chapitre précédent nous avons établi l’analogie entre le système masse-ressort et le circuit RLC série.

Nous pouvons toujours utiliser cette analogie, et avoir l’intuition que nous observerons également des résonances
selon les paramètres du circuit. L’étude des circuits électriques en régime sinusoïdal ne nécessite pas d’établir
une équation différentielle, puis de la passer en représentation complexe, comme nous venons de le faire pour
l’oscillateur mécanique, ce qui peut s’avérer un peu long pour des circuits contenant plusieurs mailles. L’objectif
de cette partie est d’introduire de nouvelles grandeurs qui pourront rendre l’étude des circuits
en régime sinusoïdal très facile.

II.1 Impédances

On considère un dipôle D linéaire passif, dont la tension à ses bornes s’écrit u(t) = Um cos(ωt+ϕu) et
traversé par un courant d’intensité i(t) = Im cos(ωt+ ϕi).
En régime sinusoïdal forcé et en utilisant la représentation complexe, on définit l’impédance
complexe Z du dipôle D telle que :

� En convention récepteur, la relation entre u et i s’écrit u = Z i
D

i

u

� En convention générateur, la relation entre u et i s’écrit : u = −Z i
D

i

u

Définitions : Impédance complexe

L’admittance complexe est l’inverse de l’impédance complexe Y = 1
Z

en Siemens (S) ou en Ω−1

Définition : Admittance complexe
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� Le module de l’impédance complexe relie les amplitudes de l’intensité et de la tension :

Z =
∣∣∣Z∣∣∣ = Um

Im
et s’exprime en Ohm (Ω).

� L’argument de l’impédance complexe est le déphasage de la tension aux bornes du dipôles
par rapport à l’intensité du courant qui le traverse : arg(Z) = ϕu − ϕi

À retenir : Caractéristiques de l’impédance complexe

Capacité exigible : Établir et connaître l’impédance d’une résistance, d’un condensateur, d’une
bobine en régime harmonique.

Pour la résistance, la bobine et le condensateur,
— établir les expressions de l’impédance complexe, de l’admittance complexe, ainsi que de l’impédance et

de l’admittance ;
— déterminer les comportements des dipôles à basse et haute fréquence.

Démonstration à maîtriser n°6 − Impédances des dipôles linéaires

Dipôle Résistance Bobine Condensateur

Schéma

R
i

u

L
i

u

C
i

u

Impédance
complexe ZR = R ZL = Ljω ZC = 1

Cjω

ω −→ 0 ZR → R

ZL → 0

L
i

u

⇔ L

i
u = 0

ZC →∞

C
i

u

⇔
C

i = 0
u

ω −→∞ ZR → R

ZL →∞

L
i

u

⇔
L

i = 0
u

ZC → 0

C
i

u

⇔ C

i
u = 0

À retenir

interrupteur ouvert fil
Tension aux bornes d’un . . . QUELCONQUE NULLE
Intensité à travers d’un . . . NULLE QUELCONQUE

Attention
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Déterminer la tension u dans les circuits ci-dessous à basse et haute fréquences. Tous les circuits sont alimentés
par un générateur idéal de tension de fem e(t) = Em cos(ωt).

Q1.

e

R

C u

Q2.

e

R

L u

Q3.

e

L R

C R u

Activité n°7 − Comportement basse et haute fréquences de circuits

REMARQUES
Soit un dipôle linéaire passif d’impédance complexe Z.
• D’après les définitions ci-dessus, Z = |Z| et ∆ϕu/i = ϕu − ϕi = arg(Z).

On écrit alors l’impédance complexe sous la forme Z = Zej∆ϕu/i = Z cos(∆ϕu/i) + j Z sin(∆ϕu/i)
Ainsi <(Z) = Z cos(∆ϕu/i) et =(Z) = Z sin(∆ϕu/i)

• La relation entre impédance et admittance complexes est Y = 1
Z
, ce qui donne la relation entre les

arguments : arg(Y ) = −arg(Z).

II.2 Lois des nœuds et des mailles en RSF

Les loi des nœuds et loi des mailles s’écrivent en RSF comme en régime permanent, tant que l’on se trouve
dans le cadre de l’ARQS. Dans les circuits linéaires, l’ensemble des signaux sont de même pulsation, et
on peut utiliser la représentation complexe.
� Dans une maille, préalablement orientée, la somme algébrique des tensions est nulle :∑

k

εkuk = 0⇔
∑
k

εkuk = 0⇔
∑
k

εkUm,k = 0

avec εk = +1 si la flèche de uk est dans le sens d’orientation de la maille, et εk = −1 si la flèche de uk
est en sens opposé au sens d’orientation de la maille.

� En un nœud, la somme algébrique des intensités est nulle :∑
k

εkik = 0⇔
∑
k

εkik = 0⇔
∑
k

εkIm,k = 0

avec εk = +1 si le courant ik arrive dans le nœud et εk = −1 si le courant ik part du nœud.

À retenir : Lois des nœuds et des mailles en RSF

Les lois des mailles et des nœuds DOIVENT être écrites avec les AMPLITUDES COMPLEXES ou les
SIGNAUX COMPLEXES, mais ne doivent pas être écrites à l’aide des amplitudes des signaux.
On ne sommera JAMAIS des amplitudes, seulement des amplitudes complexes.

Attention − Erreur à ne pas commettre
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II.3 Associations d’impédances
Capacité exigible : Remplacer une association série ou parallèle de deux impédances par une
impédance équivalente.

En RSF, en utilisant la représentation complexe, on associe les impédances et on écrit les relations des PDT
et PDC comme pour les résistances.

Série Dérivation

Schéma

Z1 Z2

u1 u2

u Z1 i1

Z2
i2

i i

Expression de Zéq Zéq = Z1 + Z2
1
Zéq

= 1
Z1

+ 1
Z2
⇔ Zéq = Z1Z2

Z1 + Z2

Pont diviseur de tension : u1 = Z1

Z1 + Z2
u de courant : i1 =

1
Z1

1
Z1

+ 1
Z2

i

À retenir

Avant d’utiliser les formules d’association et de ponts diviseurs, il faut s’assurer que les dipôles sont bien en
série ou en parallèle.
Lors de l’utilisation des relations des ponts diviseurs, faire attention aux sens des tensions ou des courants.

Attention − Erreurs à ne pas commettre

Pour chacun des circuits suivants, exprimer l’impédance complexe ZAB équivalente au dipôle AB. On notera
ω la pulsation des grandeurs électriques.

Q1. •A
R L

C

•B

Q2. •A

R

•B
L C

Q3.
•A

C L

•B
R

Activité n°8 − Impédances équivalentes

Établir les expressions, en utilisant la représentation complexe, de u en fonction de e ou de i et i1 en fonction
de i0 pour les circuits ci-dessous.

Q1.

e

R
C

R C u

Q2.

3C
i

i0

L
i1

Activité n°9 − Ponts diviseurs
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II.4 Étudier un circuit linéaire en RSF

Dans le cadre du régime sinusoïdal forcé, la représentation complexe peut (et doit !) être
utilisée.
1. Écrire l’impédance de chaque dipôle linéaire passif présent dans le circuit.
2. Introduire sur le schéma du circuit, toutes les tensions et intensités nécessaires : positionner les flèches

et les nommer.
3. Associer les impédances entre elles dès que possible (en série ou en parallèle), qui ne font pas disparaître

les grandeurs électriques recherchées.
4. Écrire les lois des mailles et/ou lois des nœuds nécessaires en représentation complexe.
5. Ne pas oublier les PONTS DIVISEURS de tension et de courant en représentation complexe, bien

utiles, qui remplacent des lois des mailles/des nœuds.

Méthode : Comment étudier un circuit linéaire en RSF ?

III Résonances dans un circuit RLC série
http://www.sciences.univ-nantes.fr/sites/genevieve_tulloue/Elec/Alternatif/transfert2RLC.php

Relire/reprendre le compte rendu de ce TP.
Expérience : Cf TP Résonances du circuit RLC série

III.1 Résonance en tension aux bornes de C
Capacité exigible : Utiliser la représentation complexe pour étudier le régime forcé. Relier l’acuité
d’une résonance forte au facteur de qualité.

On souhaite déterminer les caractéristiques en RSF de la tension aux bornes du condensateur uC(t) =
UCm cos(ωt+ ϕu) dans le circuit RLC série alimenté par un générateur de fem e(t) = Em cos(ωt).
Comportement asymptotique
Q1. Déterminer le comportement asymptotique de UCm, sans calculs.

Amplitude complexe de la tension aux bornes du condensateur
Q2. Établir l’expression de UCm en fonction de Em, ω, L, C, R.

Mettre UCm sous la forme : UCm(ω) = Em

1− ω2

ω2
0

+ j
1
Q

ω

ω0

, et identifier les expressions de ω0 et Q.

Q3. Commenter. Quelle situation reconnaissez-vous ? Que pourra-t-on dire du comportement de la tension
aux bornes du condensateur ?

Exercice à maîtriser n°10 − Étude de la résonance en tension du RLC série
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III.2 Analogie résonance en élongation / en tension
Résonance en élongation Circuit RLC série aux bornes de C

Excitation zA(t) = ZAm cos(ωt) e(t) = Em cos(ωt)

Équation différentielle mZ̈ + αŻ + kZ(t) = kzA(t) L
d2uc
dt2 +R

duc
dt + 1

C
uc = 1

C
e(t)

Réponse de l’oscillateur en RSF,
une fois le régime transitoire ter-
miné

Z(t) = Zm cos(ωt+ ϕ) uc(t) = UCm cos(ωt+ ϕ)

Amplitude complexe Zm(ω) = ZAm

1− ω2

ω2
0

+ j
1
Q

ω

ω0

UCm(ω) = Em

1− ω2

ω2
0

+ j
1
Q

ω

ω0

Pulsation propre [rad/s] ω0 =
√
k

m
ω0 = 1√

LC

Facteur de qualité [sans unité] Q =
√
mk

α
Q = 1

R

√
L

C

Paramètres de l’oscillateur
α R

m L

k
1
C

Graphe de l’amplitude
ω

UCm, Zm : Amplitude de la réponse
Q >

1√
2

Q <
1√
2

ωrω0

QEm

Em

Graphe de la phase

ω

ϕ : Déphasage de la réponse par rapport à l’excitation
ω0

−π
2

−π

III.3 Résonance en intensité
III.3.a) Bande passante à −3 dB

� Les pulsations de coupure sont les pulsations ωc telles que

Im(ωc) = Im,max√
2

� La bande passante, est l’intervalle de pulsation [ωc1, ωc2] telle que pour toute pulsation ω ∈ [ωc1, ωc2]

Im(ω) ≥ Im,max√
2

avec Im,max la valeur maximale prise par l’amplitude de l’intensité (=valeur de l’amplitude de l’intensité
à la résonance).

Définition : Bande passante et pulsation de coupure
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III.3.b) Étude de la résonance
Capacité exigible : Utiliser la représentation complexe pour étudier le régime forcé. Relier l’acuité
d’une résonance au facteur de qualité.

On étudie l’intensité, une fois le régime transitoire terminé, dans le circuit RLC série alimenté par un générateur
idéal de fem e(t) = Em cos(ωt). On écrit l’intensité sous la forme i(t) = Im cos(ωt + ϕi), avec Im l’amplitude
de i(t) et ϕi le déphasage de i(t) par rapport à e(t).
Comportement asymptotique
Q1. Déterminer, à l’aide des comportements asymptotiques des dipôles, la valeur de Im à basse et haute

fréquences.

Amplitude complexe de l’intensité

Q2. Déterminer, en représentation complexe, l’amplitude complexe Im de l’intensité du courant.

La mettre sous la forme : Im(ω) = A

1 + jQ
(
ω

ω0
− ω0

ω

) et identifier les trois constantes A, ω0 et Q.

Q3. Déterminer les équivalents de l’amplitude Im pour ω � ω0 et pour ω � ω0.
Q4. En déduire les valeurs limites de l’amplitude Im de l’intensité, et du déphasage entre i et e à basse et

haute fréquence.

Étude de l’amplitude Im
Q5. Déterminer l’expression de Im(ω).
Q6. Étudier l’existence d’une résonance.
Q7. Tracer l’allure de Im(ω).
Q8. Déterminer les expressions des pulsations de coupure en fonction de ω0 et Q.
Q9. En déduire que la largeur de la bande passante ∆ω = ωc2 − ωc1 est reliée à Q par : ∆ω = ω0

Q
.

Que dire de la dépendance de l’acuité de la résonance avec le facteur de qualité ?

Étude du déphasage ϕi entre i et e
Q10. Que vaut le déphasage à la résonance ? Comment sont e(t) et i(t) à la résonance ?
Q11. Tracer l’allure de ϕi(ω).

Exercice à maîtriser n°11 − Étude de la résonance en intensité dans le RLC série

0 10000 20000 30000 40000

ω (rad/s)

0.000

0.005

0.010

0.015

0.020

0.025

I m

Q=6

Q=1.5

Q=0.7

Q=0.3

0 10000 20000 30000 40000

ω (rad/s)

−π/2

−π/4

0

π/4

π/2

φ
 (

ra
d
)

Q=6

Q=1.5

Q=0.7

Q=0.3

Im(ω) et ϕi(ω) pour différentes valeurs de R, à L et C fixées.

Page 14



Physique − Chapitre n°7
Page 15 / 19

PCSI
Année 2025-2026

La largeur de la bande passante est reliée au facteur de qualité par :

∆ω = ω0

Q
⇔ Q = ω0

∆ω

Plus le facteur de qualité est élevée, plus la bande passante est faible, plus la résonance est aigüe.

À retenir : Largeur de la bande passante et facteur de qualité

III.3.c) Exploitation graphique
Capacité exigible : Déterminer la pulsation propre et le facteur de qualité à partir de graphes

expérimentaux d’amplitude et de phase.

Quand sont fournies les courbes d’amplitude Im et de phase ϕ en présence d’une résonance du type de la
résonance en intensité d’un RLC série :
� Lire ω0 sur la courbe d’amplitude : ω0 est la pulsation pour laquelle l’amplitude est maximale (ou sur

la courbe de phase : ϕi(ω0) = 0).
� Déterminer la largeur de la bande passante ∆ω :
• Lire la valeur maximale de l’amplitude Im,max = Im(ω0) ;

• Calculer Im,max√
2

;

• Lire les abscisses ωc1 et ωc2 pour lesquelles l’amplitude vaut Im,max√
2

;

• En déduire ∆ω = ωc2 − ωc1.
� En déduire le facteur de qualité Q = ω0

∆ω .

Méthode : Déterminer graphiquement ω0 et Q

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
· 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ω (rad/s)

I m
(A

)

Activité n°12 − Déterminer ω0 et Q sur le graphique ci-dessous.
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Comment déterminer graphiquement ω0 et Q ?
Nous avons rencontré deux types de résonance, de natures très différentes. La lecture graphique de

ω0 et Q est différente dans les deux cas.
On considère un système linéaire excité par une excitation sinusoïdale xexct(t) = Xexc,m cos(ωt) dont on étudie

la réponse d’une grandeur physique (tension, intensité, position, vitesse,...) exprimée selon x(t) = Xm cos(ωt+ϕ).

Type élongation / tension aux bornes du condensa-
teur dans le RLC série Type intensité dans le RLC série

Expressions

Xm = Xexc,m

1− u2 + j u
Q

Xm = Xm,max

1 + jQ
(
u− 1

u

)

Courbes

ω

Xm : Amplitude de la réponse

Q >
1√
2

Q <
1√
2

ωrω0

QXexc,m

Xexc,m

0 ω

ϕ

ω0

−π
2

−π

ω

Xm : Amplitude de la réponse

ω0

Xm,max

Xm,max/
√

2

ωc2ωc1

0 ω

ϕ

ω0

−π
2

π/2

Pulsation propre ω0 ?

ω0 est l’antécédent de −π2 , à lire sur la courbe de
phase

ω0 est l’antécédent de la phase ϕ = 0, à lire sur la
courbe de phase
ou ω0 est l’antécédent du maximum de la courbe de
Xm.

Facteur de qualité Q ?

Résonance pour la pulsation : ωr = ω0

√
1− 1

2Q2

Lire ωr c’est l’antécédent du maximum de Xm.
En déduire Q = 1√√√√2

(
1−

(
ωr
ω0

)2
)

Lire les pulsations de coupure ωc (les antécédents)
telles que Xm(ωc) = Xm,max√

2
Q = ω0

∆ω avec ∆ω = ωc2 − ωc1
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On croyait tout savoir sur la conception des ponts.  
En fait, on avait oublié l’effet de leurs vibrations  
sur la marche des piétons qui les franchissent.

QUAND LE PONT 
BALANCE,  
LES PIÉTONS  
DANSENT

L
e 10  juin 2000, le Millennium 
Bridge (la « passerelle du millé-
naire »), à Londres, était inau-
guré. Alors qu’une foule 
compacte le traversait, le pont 
s’est mis à osciller d’un côté à 

l’autre. L’amplitude du mouvement a 
atteint plusieurs centimètres, au point 
que les personnes étaient obligées de se 
tenir aux balustrades pour ne pas tomber. 
Les autorités fermeront la passerelle au 
public deux jours plus tard. Et il faudra 
18 mois et 5 millions de livres de travaux 
sur la structure pour empêcher que la 
situation se reproduise. 

Pourquoi les ingénieurs n’avaient-ils 
pas prévu une oscillation aussi forte ? En 
fait, un mécanisme original avait échappé 
à toutes les modélisations antérieures : 
lorsque les piétons sont assez nombreux, 
leur marche se synchronise spontanément 
avec les oscillations de la passerelle.

Pour comprendre les oscillations du 
Millennium Bridge, deux catastrophes 
datant du xixe siècle sont riches d’ensei-
gnements. La première s’est produite 
en  1831 avec le pont de Broughton, au 
Royaume-Uni : il s’est effondré lorsqu’une 
troupe de 60 militaires marchant au pas 
le franchissait. Pourquoi ? À cause d’un 
effet de résonance bien connu, dû à la 
coïncidence entre la fréquence du pas des 
soldats avec l’une des fréquences natu-
relles de vibration du pont. 

RÉSONANCE SUR PONT  
OU SUR BALANÇOIRE

Le phénomène est le même que celui 
à l’œuvre lorsqu’on pousse un enfant sur 
une balançoire à chaque fois qu’il revient 
vers nous. Il n’est pas nécessaire que 
l’énergie fournie à chaque poussée soit 
importante pour que l’amplitude de l’os-
cillation augmente. Il suffit qu’elle soit 

supérieure aux pertes subies par la balan-
çoire lors d’une oscillation. 

Dans le cas du pont de Broughton, 
l’effet d’un seul piéton marchant norma-
lement était insuffisant pour le faire 
vibrer, car la dissipation l’emportait. Tel 
n’était plus le cas lorsque l’énergie était 
apportée par 60 gaillards marchant au 
pas ; d’autant plus que, amusés par les 
oscillations naissantes, ils se sont mis à 
marcher au rythme exact des mouve-
ments du pont. Ainsi, à chaque pas, l’ef-
fet de l’impulsion verticale des pieds 
s’ajoutait à celui des pas précédents. 
L’amplitude des vibrations –  ici verti-
cales – s’est alors  amplifiée jusqu’à ce 
que le pont cède.
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Lors de son inauguration, 
le Millennium Bridge  
a oscillé latéralement  
de façon inquiétante,  
en relation avec une 
synchronisation  
des mouvements  
des nombreux piétons. 

>

UNE FORCE QUI SE DANDINE

L orsqu’une personne marche, son centre de masse fait des va-et-vient 
verticalement, mais aussi latéralement. Ce mouvement latéral a pour 
conséquence que le pied qui touche le sol exerce sur celui-ci une force ayant  

une petite composante latérale, vers la droite pour le pied droit et vers la gauche pour 
le pied gauche (on omet ici la composante dans la direction de la marche, qui est nulle 

en moyenne). Cette force latérale et périodique a un effet sensible sur 
les oscillations latérales d’un pont dès que le nombre de piétons 

qui marchent dessus est important. 

Soyons un peu plus quantitatifs. 
Lorsque nous marchons, nous faisons, en 
gros, deux pas par seconde. Cela signifie 
que deux fois par seconde, c’est-à-dire à 
une fréquence de 2 hertz, nous appuyons 
sur le sol vers le bas avec une force dont 
l’amplitude moyenne est égale à notre 
poids. Et avec 60 piétons marchant au 
pas, l’ensemble de ces individus engendre 
une force périodique dont l’amplitude 
est 60 fois celle d’une personne. 

Cependant, si les marcheurs ne se 
coordonnent pas, l’amplitude totale est 
bien plus faible, car certains vont par 
exemple marcher à contretemps. Les lois 
des phénomènes aléatoires montrent que 
la force augmente alors comme la racine 

carrée du nombre de marcheurs. 
Autrement dit, la force exercée par une 
foule de 60 piétons sur un pont est près 
de 8 fois supérieure à celle exercée par 
1 piéton, mais 8 fois plus faible que celle 
de 60 individus marchant au pas. 

On comprend donc pourquoi, depuis 
la catastrophe de Broughton, les mili-
taires ont pour consigne de rompre le pas 
sur les ponts. On comprend également 
pourquoi les ingénieurs conçoivent des 
ponts dont les fréquences naturelles de 
vibration diffèrent de 2  hertz. Ils font 
aussi en sorte que les vibrations du pont 
soient amorties au voisinage de cette fré-
quence, afin que les mouvements verti-
caux du pont engendrés par les marcheurs 

restent limités et ne nuisent pas au 
confort de la marche.

Ces contraintes sont bien connues 
depuis longtemps et parfaitement inté-
grées par les cabinets d’architecture. 
Alors que s’est-il passé sur le Millennium 
Bridge ? Une autre catastrophe va nous 
orienter vers la réponse. Le 16 avril 1850, 
en France, 220 soldats du 11e  régiment 
d’infanterie légère et 3 civils ont trouvé la 
mort lors de l’effondrement du pont de la 
Basse-Chaîne à Angers, l’un des premiers 

Les auteurs ont 
récemment publié : 
En avant la physique !, 
une sélection de leurs 
chroniques (Belin, 2017).

Force 
verticale

Force 
latérale

Force 
totale

Centre 
de masse Vitesse 

latérale

Vitesse
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DES MARCHES QUI SE SYNCHRONISENT

D iverses modélisations et simulations numériques ont reproduit le phénomène 
de synchronisation de la marche de piétons qui franchissent un pont, sous 
l’effet des oscillations latérales de celui-ci. Les graphiques ci-dessous montrent 

les résultats d’une telle modélisation, publiée en 2017 par Bruno Eckhardt et ses 
collègues (voir la bibliographie). Le graphique du haut montre l’amplitude des 
oscillations du pont en fonction du temps ; celui du bas représente, toujours en 
fonction du temps, la phase de la marche (codée en couleur) de chaque piéton d’une 
foule constituée de 80 personnes. On constate que l’amplitude des oscillations 
augmente à mesure que les marches des piétons se synchronisent.

ponts suspendus. L’ordre avait pourtant 
été donné aux soldats de rompre le pas. 
Toutefois, sous l’effet de rafales de vent, 
le pont a commencé à s’agiter latérale-
ment. Pour s’équilibrer, les soldats se sont 
portés d’un côté puis de l’autre ; ces mou-
vements coordonnés ont alors amplifié 
les embardées horizontales du pont 
jusqu’à provoquer son effondrement. 
Ainsi, alors qu’en arrivant sur le pont, les 
soldats avaient cessé de coordonner leurs 
pas, les oscillations de la structure ont 
resynchronisé ces derniers !

UNE SYNCHRONISATION 
INATTENDUE

C’est un phénomène de même nature 
qui s’est produit à Londres avec le 
Millennium Bridge, mais selon un méca-
nisme non anticipé. Lorsque nous mar-
chons, nos deux pieds avancent chacun 
sur deux lignes parallèles distantes l’une 
de l’autre de la largeur de nos hanches. 
Par conséquent, en plus d’oscillations 
verticales, notre centre de masse oscille 
horizontalement. 

La force exercée par nos pieds sur le 
sol a donc une petite composante horizon-
tale dirigée vers l’extérieur du pied : vers la 
gauche pour le pied gauche, vers la droite 
pour le pied droit (voir l’encadré page pré-
cédente). Comme nous posons chaque pied 
une fois par seconde, la fréquence de cette 
force latérale est de 1 hertz. Son amplitude 
est de l’ordre de 1 % du poids, et l’on s’at-
tend donc à un effet très faible. 

C’est vrai pour l’effet sur l’amplitude 
du mouvement du pont qui, dans notre 
cas, n’a jamais dépassé quelques centi-
mètres, mais pas pour l’effet sur la 
marche des piétons. Pourquoi ? Parce que 
lorsque le sol bouge sous nos pieds, nous 
sommes bien plus déstabilisés par des 
mouvements latéraux que par des mou-
vements verticaux ; nous essayons alors 
de retrouver notre équilibre par des réa-
justements de la position des pieds et 
divers autres mouvements.

Détaillons. Puisque les piétons ne 
marchent pas tous exactement au même 
rythme, l’amplitude de la force latérale 
est de l’ordre de la force d’un seul mar-
cheur multipliée par la racine carrée du 
nombre de piétons. Cela fait légèrement 
osciller latéralement le pont. Tant que 
l’amplitude de cette oscillation reste 
faible, les piétons ne sont pas perturbés. 
Mais quand le nombre de marcheurs est 
élevé, elle devient assez importante pour 
affecter la marche de quelques-uns, ceux 
dont les pas étaient pratiquement au 
rythme des oscillations latérales. 

Ces piétons vont alors spontanément 
synchroniser leurs pas avec les mouve-
ments du pont, ce qui accroît l’amplitude 
des oscillations. Celles-ci deviennent 
alors suffisantes pour affecter des piétons 
qui étaient un peu moins en rythme et les 
synchroniser. Ainsi, par un effet boule de 
neige, l’amplitude des oscillations et le 
nombre de piétons qui marchent en syn-
chronie se renforcent mutuellement. Les 
accélérations latérales atteignent alors 
des valeurs suffisantes (de l’ordre de 
0,3 mètre par seconde carrée, soit 3 % de 
l’accélération de la pesanteur) pour désé-
quilibrer les marcheurs. 

Des simulations numériques et des 
expériences en grandeur réelle sont 
venues confirmer quantitativement cette 
explication (voir l’encadré ci-dessus). 
L’effet avait été mentionné depuis long-
temps, à la fois par des ingénieurs et par 
des scientifiques, mais il était considéré 
comme anecdotique. Il a fallu la mésaven-
ture du Millennium Bridge et les études 
qui ont suivi pour qu’on l’identifie claire-
ment et qu’on le prenne en compte cor-
rectement dans les modélisations et la 
construction de nouveaux ponts. Cet 
incident a aussi permis de se rendre 
compte que ce phénomène d’oscillation 
latérale n’était pas isolé et concernait de 
nombreux ponts dans le monde, quel que 
soit leur type de structure. 
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ET LE PONT  
DE TACOMA ?

La rupture en 1940 du  
fameux pont de Tacoma,  
aux États-Unis, ne relève pas 
des mécanismes de résonance 
ou de synchronisation décrits 
ici. Cette catastrophe était  
due à l’interaction des 
oscillations de torsion du pont 
avec les tourbillons d’air créés  
au niveau du pont par des vents 
forts (voir « Pont de Tacoma :  
la contre-enquête »,  
Pour la Science, février 2008).
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