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TD n°8 Filtrage linéaire − Filtres passifs
Thème I. Ondes et signaux (Électricité)

Avant la séance de TD :
F Sur une feuille de brouillon, avec un crayon à la main et le chapitre ouvert sous les yeux.
F Essayer des « trucs » même si cela n’aboutit pas.
F Faire des schémas complets et suffisamment grands.
F Ne rien écrire sur l’énoncé de TD afin de pouvoir refaire les exercices après la correction en classe.
F Réfléchir environ 10 à 15 min sur chaque exercice demandé. Si vous bloquez complètement sur une

question/un exercice, passez à la suite au bout de 10 min, et me poser des questions soit directement
soit par mail nvalade.pcsi@gmail.com .

Après la séance de TD :
F Refaire les exercices corrigés ensemble, sans regarder le corrigé dans un premier temps.
F Une fois l’exercice terminé ou si vous êtes totalement bloqué, reprendre avec le corrigé.

Méthode : Comment travailler des exercices ?

Capacités
Exercice n° 1 2 3 4 5 6 7 8 9 10 11

Analyser la décomposition fournie d’un signal périodique
en une somme de fonctions sinusoïdales.
Tracer le diagramme de Bode (amplitude et phase) associé
à une fonction de transfert d’ordre 1.
Utiliser les échelles logarithmiques et interpréter les zones
rectilignes des diagrammes de Bode en amplitude d’après
l’expression de la fonction de transfert.
Utiliser une fonction de transfert donnée d’ordre 1 ou 2
(ou ses représentations graphiques) pour étudier la réponse
d’un système linéaire à une excitation sinusoïdale, à une
somme finie d’excitations sinusoïdales, à un signal pério-
dique.
Choisir un modèle de filtre en fonction d’un cahier des
charges.
Expliciter les conditions d’utilisation d’un filtre en tant que
moyenneur, intégrateur, ou dérivateur.

Parcours possibles
Si vous avez des difficultés sur ce chapitre : exercices n°1, n°2, n°3, n°4 + cahier d’entraînement :

Si vous vous sentez moyennement à l’aise, mais pas en difficulté : exercices n°1, n°2, n°4, n°5, n°6.
Si vous êtes à l’aise : exercices n°1, n°6, n°8, n°9, n°10.

nvalade.pcsi@gmail.com
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I Exercices d’application directe du cours
Exercice n°1 TP : Mesure d’un déphasage
Q1. Qui de u1 ou u2 est en avance sur l’autre ?
Q2. Quel est le signe du déphasage de u2 par rapport à u1 ?
Q3. Déterminer le déphasage de u2 par rapport à u1.

0
t (ms)

s(t) (V)

0, 5 V

1 ms

u1(t)
u2(t)

Exercice n°2 Spectre d’un signal triangulaire
On étudie un signal triangulaire de période 1 ms, et d’amplitude 0, 5 V.

t

Le développement en série de Fourier du signal triangulaire est donné par :

s(t) =
∞∑

n=1

8A
((2n− 1)π)2 cos((2n− 1)ωt) avec ω = 2πf

Q1. Quelle est la fréquence du signal triangulaire ?
Q2. Quelles sont les fréquences et amplitudes des 4 premiers harmoniques ?
Q3. Tracer le spectre.

Exercice n°3 Comportements asymptotiques
Q1. À partir des comportements asymptotiques, assigner à chaque grandeur

ci-dessous le type de filtre correspondant.

w • • Passe-bas
u • • Passe-bande
v • • Passe-haut e

R

w
i

C

u

L

v

Q2. Pour chacun des circuits ci-dessous, déterminer la nature du filtre.

(a) e

L

R s (b) e

R

L C s (c) e

L

R

L R s
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Exercice n°4 Filtre RL

On étudie le filtre ci-contre constitué d’une résistance R = 1, 0 kΩ
et d’une bobine idéale d’inductance L = 0, 5 H.

R
Lue R us

Q1. Déterminer la nature du filtre d’après le comportement asymptotique des dipôles.
Q2. Établir sa fonction de transfert.
Q3. Identifier la ou les affirmations fausses concernant la pulsation de coupure d’un filtre :

© c’est la pulsation de l’intersection des deux asymptotes du diagramme de Bode en gain ;
© c’est la pulsation pour laquelle le gain en décibels vaut le gain en décibels maximal diminué de 3

décibels ;
© c’est la pulsation pour laquelle le gain vaut la moitié du gain maximal.

Q4. Établir l’expression de la pulsation de coupure du filtre étudié. Faire l’application numérique.
Q5. Diagramme de Bode asymptotique

(a) À basse fréquence :
i. Déterminer l’équivalent de la fonction de transfert.
ii. En déduire l’équation de l’asymptote au gain en décibel. Comment est-elle ?
iii. Déterminer l’équation de l’asymptote de la phase.

(b) Faire de même à haute fréquence.
(c) Tracer le diagramme de Bode asymptotique sur le papier semi-log fourni ci-dessous.

Q6. Tracer le diagramme de Bode réel en ajoutant les points essentiels.
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−60

−50

−40

−30
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B
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)
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Exercice n°5 Filtrage avant un haut-parleur tweeter
Avant d’envoyer le signal en entrée d’un haut-parleur tweeter chargé d’émettre les sons aigus, on place un

filtre passe-haut du premier ordre de fréquence de coupure fc = 3500 Hz.
On en donne la fonction de transfert :

H =
j f

fc

1 + j f
fc

et son diagramme de Bode :

102 103 104

−30

−25

−20
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f (Hz)
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d
B
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φ
(◦
)

On modélise le son que l’on souhaite transmettre par la somme de trois signaux sinusoïdaux (le spectre de
musique est bien plus complexe, ce qui en donne toute sa beauté, mais l’objectif est de comprendre l’idée...) :

ue = E cos(2πf1t) + E cos(2πf2t+ π/4) + E cos(2πf3t− π/5)

avec f1 = 587 Hz (do du milieu du piano) ; f2 = 2093 Hz (do7) ; f3 = 4186 Hz (do8 : dernière touche du piano)
Q1. Représenter le spectre en amplitude de ue.
Q2. Proposer une écriture générale du signal en sortie du filtre et qui sera envoyée en entrée du haut-parleur.
Q3. Déterminer toutes les caractéristiques du signal de sortie.
Q4. En utilisant une autre couleur, superposer sur le spectre de Q1 le spectre en amplitude de us.

II Exercices d’approfondissement
Exercice n°6 Filtre de Wien

On s’intéresse au filtre de Wien représenté ci-dessous.
Q1. Par analyse des comportements asymptotiques des dipôles,

déterminer le type de filtre dont il s’agit.
Q2. Déterminer la fonction de transfertH du filtre et l’écrire

sous la forme H = H0

1 + jQ
(
x− 1

x

) où x = ω

ω0
.

Identifier l’expression de ω0. Quelle valeur commune ont Q et
H0 ? On vérifiera succinctement l’homogénéité.

•
R

C

•

• •

R Ce(t) s(t)

Q3. Pour quelle pulsation le gain de ce filtre est-il maximal ?
Calculer la valeur maximale du gain. En déduire sa valeur de dB, et calculer le déphasage correspondant.

Q4. On donne le diagramme de Bode du filtre de Wien ci-dessous.
En exploitant la fonction de transfert, retrouver les pentes des asymptotes du diagramme de Bode en gain
fourni.
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Q5. Mesurer graphiquement la largeur en fréquence de la bande passante. Retrouver la valeur du facteur de
qualité.

Exercice n°7 Dimensionnement d’un moyenneur
Le signal ci-dessous est délivré par un capteur. La grandeur que vous cherchez à mesurer est directement

reliée à la valeur moyenne du signal.

Électronique — Filtres linéaires TD

Exercice 8 Dimensionnement d’un moyenneur STARSTARSTAR

Chouchou souhaite extraire la valeur moyenne du signal qu’il reçoit sur son os-
cilloscope :

horizontal:
100 µs / div

vertical:
1 V / div

1. Où se trouve la valeur moyenne d’un signal dans son spectre ? En déduire
duquel de ces filtres Chouchou a besoin :

e s

L

C R

e s

R

C L e s

C

L R

2. Exprimer la fonction de transfert et la mettre sous la forme

H = 1

1 −
(

ω
ω0

)2
+ j ω

Qω0

avec ω0 = 1√
LC

Donner l’expression du facteur de qualité Q en fonction de R, L et C.
3. Tracer le diagramme asymptotique de Bode en amplitude et y faire expli-

citement apparaître ω0. Quel rôle joue cette grandeur ?
4. Chouchou cherche-t-il à produire un phénomène de résonance, ou bien à

l’éviter ? En déduire parmi les jeux proposés ci-dessous le plus adapté pour
moyenner le signal observé :

Composant Jeu 1 Jeu 2 Jeu 3
R (Ω) 10 100 1
L (H) 1 10−2 10−2

C (F) 10−4 10−2 10−6

Lycée Jean Zay, PTSI Clément de la Salle © clementdelasalle.fr 5/5

Q1. Où se trouve la valeur moyenne d’un signal dans son spectre ?
Q2. En déduire duquel de ces filtres vous avez besoin.

e

R

C L s e

C

L R s e

L

C R s

Q3. Exprimer la fonction de transfert et la mettre sous la forme

H = 1

1−
(
ω

ω0

)2
+ j

ω

Qω0

avec ω0 = 1√
LC

Donner l’expression du facteur de qualité Q en fonction de R,L et C.
Q4. Tracer le diagramme asymptotique de Bode en amplitude et y faire explicitement apparaître ω0. Quel rôle

joue cette grandeur ?
Q5. Cherchez-vous à produire un phénomène de résonance, ou bien à l’éviter ? En déduire parmi les jeux proposés

ci-dessous le plus adapté pour moyenner le signal observé :
Composant Jeu 1 Jeu 2 Jeu 3
R (Ω) 10 100 1
L (H) 1 10−2 10−2

C (F) 10−4 10−2 10−6
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Exercice n°8 Transformation d’un triangle
On considère un signal triangle, dont l’allure est représentée ci-après. T représente la période du signal, qu’on

pourra faire varier, tout en maintenant l’amplitude constante.
On obtient pour les fréquences f = 100 Hz et f = 10 kHz les oscillogrammes suivants.

H1 = H0

1 + j
f

fc

H2 =
H0j

f

fc

1 + j
f

fc

H3 = H0

1 + jQ

(
f

fc

− fc

f

)

H4 = H0

1 + j

Q

f

fc

−
(
f

fc

)2

Q1. Quelle opération réalise ce filtre pour f = 100 Hz ? et pour f = 10 kHz ? En déduire la nature du filtre.
Q2. Parmi les fonctions de transferts suivantes, laquelle choisiriez-vous pour décrire ce filtre ?
Q3. En vous servant des oscillogrammes fournis, déterminer les paramètres inconnus intervenant dans cette

fonction de transfert.
Q4. Proposer un montage simple qui permettrait de réaliser ce filtre. On proposera des valeurs pour les com-

posants.

Exercice n°9 Filtre passe-haut
On cherche à traiter un signal électrique issu d’un enregistrement musical proche de 300 Hz (plutôt dans les

sons graves), bruité par le réseau électrique à 50 Hz que l’on veut filtrer. Plus précisément, on souhaite construire
un filtre présentant une atténuation importante à f1 = 50 Hz (GdB(f1) ≤ −20 dB), mais la plus faible possible
à f2 = 300 Hz (GdB(f2) ≥ −0, 5 dB).
Q1. On appelle gabarit d’un filtre la traduction graphique sur le diagramme de Bode des contraintes imposées

par le cahier des charges, c’est-à-dire une représentation du plan (GdB, log(ω)) sur laquelle sont matérialisées
les zones interdites (à hachurer) du diagramme de Bode.
Le représenter pour le filtre considéré

Q2. Rappeler les pentes des asymptotes d’un filtre passe-haut du premier ordre.
Q3. Un filtre passe-haut du premier ordre peut-il convenir ? Justifier.
Q4. Proposer un montage simple (avec R, L et C) répondant au cahier des charges.

Exercice n°10 Mesure d’un écart de fréquence
Le décalage Doppler fD proportionnel à la vitesse à mesurer est souvent inférieur à 1 Hz et il concerne une

onde dont la fréquence initiale est de l’ordre de 10 MHz. La mesure précise de cette minuscule variation est
réalisée par détection synchrone.

On considère deux signaux sinusoïdaux v1(t) = A cos (2πf1t) et v2 = B cos (2πf2t+ ϕ0), où A,B et ϕ0 sont
des constantes, dont on souhaite mesurer l’écart de fréquence f2 − f1, supposé très inférieur aux fréquences f1
et f2. Le montage de détection synchrone qui permet d’y parvenir est représenté schématiquement sur la figure
1 : il est formé d’un multiplieur analogiqueM (qui donne une tension de sortie proportionnelle au produit de
ses deux tensions d’entrée) et d’un filtre F dont la nature sera étudiée plus loin.
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0.6 0.8 1.00.4

R1
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Perranporth

vitesse (en m/s)

M

#  ”uE

#  ”uN

#   ”ux1

#   ”ux2

Figure 4 – Carte des courants en Mer Celtique fournie par les radars de Pendeen et Perranporth repérés par les
points R1 et R2 [1]. Les spectres de la figure 3 concernent le point M signalé par un carré au bord blanc.

Partie B – Traitement des signaux radar
Le décalage Doppler fD proportionnel à la vitesse à mesurer est souvent inférieur à 1 Hz et il concerne une onde dont
la fréquence initiale est de l’ordre de 10 MHz. La mesure précise de cette minuscule variation est réalisée par détection
synchrone, technique dont la section I introduit le principe. Parallèlement, l’antenne réceptrice capte une multitude
d’échos provenant de chaque petit élément de la mer sur une surface de plusieurs centaines de kilomètres carrés. Pour
établir une carte de courant du type de celle visible sur la figure 4, il faut analyser simultanément tous ces échos et
déterminer d’où chacun provient, en calculant notamment la distance à l’antenne de chaque petit élément réflecteur.
Cette résolution en distance fait elle aussi appel à la détection synchrone (section II) et, dans les installations modernes,
on la conduit conjointement à la détermination des décalages Doppler. Par souci de simplicité, on dissocie l’étude de
ces deux aspects.

I – Mesure d’une différence de fréquence par détection synchrone
On considère deux signaux sinusoïdaux v1(t) = A cos(2πf1t) et v2 = B cos(2πf2t + φ0), où A, B et φ0 sont des
constantes, dont on souhaite mesurer l’écart de fréquence f2 − f1, supposé très inférieur aux fréquences f1 et f2.
Le montage de détection synchrone qui permet d’y parvenir est représenté schématiquement sur la figure 5 : il est
formé d’un multiplieur analogique M (qui donne une tension de sortie proportionnelle au produit de ses deux tensions
d’entrée) et d’un filtre F dont la nature sera étudiée plus loin.

Figure 5 – Principe d’un montage de détection synchrone.
Jusqu’à la question Q20 incluse, la partie inférieure

sur fond gris n’a pas à être considérée.

5 / 12

Figure 1 – Principe d’un montage de détection synchrone. Jusqu’à la question Q3 incluse, la partie inférieure
sur fond gris n’a pas à être considérée.

Q1. Exprimer à un facteur près le signal intermédiaire vi, puis justifier que son spectre fait apparaître les
fréquences f2 + f1 et |f2 − f1|. Indiquer le type de filtrage qui permet d’obtenir, à la sortie du filtre, un
signal vd de fréquence |f2 − f1|.

Le traitement des signaux radars fait intervenir des composants spécifiques aux hautes fréquences. Pour des
ultrasons au contraire, avec des fréquences de l’ordre de 104 Hz, des composants usuels disponibles dans un
lycée (résistances, condensateurs et bobines d’auto-induction) fonctionneraient.
Q2. Proposer pour F un schéma électrique de filtre passif convenable, sans préciser pour l’instant les valeurs

des composants. Un filtre d’ordre 1 est acceptable mais le jury valorisera davantage un filtre d’ordre 2, plus
efficace.

Q3. Exprimer la fonction de transfert du montage de la question précédente. Pour f1 ≈ f2 ≈ 40 kHz, proposer
des valeurs réalistes pour les composants du filtre F .

À l’issue du filtrage, vd est pratiquement sinusoïdal et mesurer sa fréquence revient à mesurer |f2 − f1|, ce qui
était le but à atteindre.
Cependant, dans le cas de l’effet Doppler (où f1 = f et f2 = fr), il est important de connaître le signe de f2−f1
(pour connaître le sens de déplacement). Pour cela, on complète le montage de la figure 1 par une seconde voie
(représentée sur fond gris) dans laquelle on applique des opérations analogues après avoir déphasé v1 de +π/2
(démodulation en quadrature).
Q4. Dans l’hypothèse d’un filtrage idéal, exprimer le signal vdQ et expliquer comment son observation conjointe

à celle de vd permet d’obtenir le signe de f2 − f1.

III Résolution de problème
Exercice n°11 Identification d’un filtre

On soumet un filtre à un signal créneau de fréquence 400 Hz puis 3600 Hz, et on obtient les courbes ci-dessous.
Déterminer la nature et les caractéristiques du filtre.

0.000 0.001 0.002 0.003 0.004 0.005
t (s)

0.5

0.0

0.5

1.0

1.5

2.0

v e
,v

s (
V)

0.0000 0.0001 0.0002 0.0003 0.0004 0.0005
t (s)

0.6

0.4

0.2

0.0

0.2

0.4

0.6

v s
 (V

)
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IV Extraits du cahier d’entrainement de physique-chimie
Entraînement 5.8 — Pêle-mêle.
Un étudiant dispose de quatre spectres en amplitude et de quatre signaux. Malheureusement, l’ensemble
est mélangé. Pouvez-vous l’aider à associer le bon signal au bon spectre ( a , b , c ou d ) ?

Spectre a Spectre b

f (en kHz)

Amplitude (en V)

10

0,2
0

• •

•
•

f (en kHz)

Amplitude (en V)

10

0,2
0

• •

•
•

Spectre c Spectre d

f (en kHz)

Amplitude (en V)

0 1

0,2
0

•

•
•

f (en kHz)

Amplitude (en V)

0 1

0,2
0

•

•
•

Signal no 1 Signal no 2

A1

(
cos(ω0t) + 1

2 cos(3ω0t) + 1
3 cos(5ω0t)

)
A2

(
1 + sin(ω0t) + 1

2 sin(2ω0t) + 1
3 sin(3ω0t)

)

avec A1 = 1 V et f0 = 1 kHz avec A2 = 1 V et f0 = 2 kHz

Signal no 3 Signal no 4

A3

(
cos((ω0 − ω1)t) + 1

2 cos((ω0 + ω1)t) A4

(
1 + sin(ω0t) + 1

2 sin(3ω0t) + 1
3 sin(5ω0t)

)

+ 1
3 cos((ω0 + 3ω1)t)

)

avec A3 = 1 V, f0 = 3 kHz et f1 = 1 kHz avec A4 = 1 V et f0 = 1 kHz

a) Spectre du signal no 1 . . . . . . .

b) Spectre du signal no 2 . . . . . . .

c) Spectre du signal no 3 . . . . . . .

d) Spectre du signal no 4 . . . . . . .

36 Fiche no 5. Étude des filtres
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Fonctions de transfert

Entraînement 5.9 — Filtre passe-bande.

Nous disposons du filtre ci-contre, constitué de deux dipôles dont les
impédances complexes sont :

Z1 = R+ 1
jCω et Z2 = R

1 + jRCω avec C = 47 nF et R = 1 kΩ.

Z1

Z2 usue

Nous souhaitons écrire la fonction de transfert du filtre H(jω) = us

ue

sous sa forme canonique :

H(jx) = H0

1 + jQ
(
x− 1

x

) avec x = ω

ω0
.

a) À l’aide d’un pont diviseur de tension,

exprimer H(jω) . . . . . . . . . . . .

b) Identifier H0 . . . . . . . . . . .

c) Identifier Q . . . . . . . . . . . .

d) Identifier et calculer ω0 .

Entraînement 5.10 — Filtre du second ordre.

Nous disposons d’un filtre passe-bas de fonction de
transfert :

H(jx) = us

ue

= H0

1 + jx
Q − x2

avec x = ω

ω0
. On a C = 10 µF et R = 220 Ω.

•
M

C

R
i

Ri1

C

i2

usuue

Un étudiant obtient les trois égalités suivantes :

Ri = ue − u, Ri1 = u− us et Ri2 = jRCωu.

a) À l’aide de la loi des noeuds, exprimer i en fonction de i1 et i2. . . . . . . . . . . . . . . . . .

b) Utiliser la réponse précédente et les trois égalités fournies pour exprimer ue en fonction de u et us.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L’étudiant montre grâce à un pont diviseur de tension que u = (1 + jRCω)us.

c) En déduire la fonction de transfert simplifiée H(jω). . . . . . . . . .

En comparant la réponse précédente à la forme canonique de H(jω) donnée, identifier

d) H0 . . . . . . . . . . e) ω0 . . . . . . . . . . . f) Q . . . . . . . . . . . .

Fiche no 5. Étude des filtres 37
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De la fonction de transfert au diagramme de Bode

Entraînement 5.11 — Calcul de gain en décibel.

On considère les fonctions de transfert suivantes : H1 = 3,0 et H2 = j ω
ω0

et H3 = 1 + j ω
ω1

.

Le gain en décibel GdB d’un filtre se détermine à partir de la relation :

GdB = 20 log
(

|H|
)
.

Déterminer le gain en décibel associé aux différentes fonctions de transfert ou combinaisons de fonctions
de transfert ci-dessous.

a) H1 . . . . . . . . . .

b) H2 . . . . . . . . . .

c) H3 . . . . . . . . . .

d) H1 −H2 . . . .

e) H2
H3

. . . . . . . . .

f) H2 ×H3 . . . .

Entraînement 5.12 — Calcul de phase.

On reprend les mêmes fonctions de transfert que précédemment : H1 = 3,0 et H2 = j ω
ω0

et H3 = 1 + j ω
ω1

.

Le déphase φ introduit par un filtre entre les signaux d’entrée et de sortie se détermine à partir de la
relation :

φ = arg(H) = arctan
(

Im(H)
Re(H)

)
.

Déterminer le déphasage associé aux différentes fonctions de transfert ou combinaisons de fonctions de
transfert ci-dessous.

a) H1 . . . . . . . . . .

b) H2 . . . . . . . . . .

c) H3 . . . . . . . . . .

d) H1 −H2 . . . .

e) H2
H3

. . . . . . . . .

f) H2 ×H3 . . . .

Entraînement 5.13 — Diagramme de Bode en phase.

On utilise un filtre passe-haut de fonction de transfert H(jx) = jx
1 + jx avec x = ω

ω0
.

Déterminer la valeur du déphasage φ(x) = arg
(
H(jx)

)
du filtre pour des signaux tels que :

a) ω = ω0 (la pulsation propre du filtre) . . . . . . . . . . . . . . . . . . . . . . . .

b) ω ≫ ω0 (en hautes fréquences) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) ω ≪ ω0 (en basses fréquences) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 5.14 — Calcul de gain.
Pour les fonctions de transfert suivantes, évaluer le gain G(x) =

∣∣H(jx)
∣∣ pour x = 1.

a) H(jx) = 1 − jx
1 + jx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) H(jx) = − jx
1 + jx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) H(jx) = 1
1 + 2jmx+ (jx)2 avec m = 2 . . . . . . . . . .

Entraînement 5.15 — Tracé sur papier semi-logarithmique.
Un élève souhaite étudier le comportement d’un filtre passe-haut en basses fréquences. Pour cela, il relève
les amplitudes des tensions d’entrée et de sortie pour différentes fréquences bien inférieures à la fréquence
de coupure du filtre.

Fréquence (en Hz) 200 700 2 000
Amplitude du signal d’entrée (Uentrée en V) 1 1 1
Amplitude du signal de sortie (Usortie en V) 0,04 0,14 0,40

101 102 103 104
−40

−30

−20

−10

0 f

GdB

1

Le gain en décibel est donné par la relation GdB = 20 log
(
Usortie
Uentrée

)
.

Calculer le gain en décibel pour chacune des fréquences et placer le point correspondant sur le graphe
ci-dessus.

a) Point A : f = 200 Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Point B : f = 700 Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Point C : f = 2 000 Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Déterminer la pente de la droite passant les points A, B et C. . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 5.16 — Bande passante et facteur de qualité d’un filtre.
On dispose d’un filtre passe-bande de fréquence propre f0 = 15 kHz, dont les deux fréquences de coupure
à −3 dB sont fc1 et fc2 (avec fc1 < fc2), et dont la fréquence de résonance est fr.
Le diagramme de Bode en gain du filtre en fonction de x = f/f0 et un agrandissement sont fournis.

10−1 100 101 102

−40

−30

−20

−10

0 x = ω

ω0

GdB
100 101

−8

−6

−4

−2

0 x = ω

ω0

GdB

À partir des graphiques donnés ci-dessus, déterminer les différentes grandeurs caractéristiques du filtre.

a) fr . . . . . . . . . . . . b) fc1 . . . . . . . . . . . c) fc2 . . . . . . . . . . .

Réponses mélangées

0 1
2 cos(a+ b) + 1

2 cos(a− b) RjLω
R+ jLω −RLCω2 e

20 log
(
ω

ω0

)
− 10 log

(
1 +

(
ω

ω1

)2
)

u(2 + jRCω) − us

π

2 1/3 π

2 + arctan
(
ω

ω1

)

1
3

1 + 1
3jRCω + jRCω

3
10 kHz

√
a2 + b2 R

(
1 − LCω2)

1 − LCω2 + jRCω f − arctan
(

ω

3ω0

)

19,2 kHz −8,0 dB 1/
√

2 i1 + i2 10 log
(

1 +
(
ω

ω1

)2
)

d

a R+ 1
jCω 1 1

Cω
−π/2 20 log

(
ω

ω0

)
+ 10 log

(
1 +

(
ω

ω1

)2
)

1/3 d a 1/3 b/a +20 dB/décade 2,1 × 104 rad/s 1

π/2 π/2

S0 cos(2πfpt)

+mS0
2

(
cos(2π(fp + f0)t)

+ cos(2π(fp − f0)t)
)

0 1
1 + 3jRCω − (RCω)2

π

2 − arctan
(
ω

ω1

)
c arctan

(
ω

ω1

)
9,5 dB 15,0 kHz −28,0 dB

mS0/2 11,7 kHz RjLω
R+ jLω 20 log

(
ω

ω0

)
mS0/2 π/4 b R

0 Lω 2,5 V −17,1 dB 1
RC

1/4 S0 a 10 log
(

9 +
(
ω

ω0

)2
)

▶ Réponses et corrigés page 223
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