♂Thème I. Ondes et signaux (Oscillateurs)

TD n°6 Oscillateurs mécaniques et électriques libres amortis — *Corrigé*

Exercice n°	1	2	3	4	5	6	7	8
Capacités	1		0	4			'	
Analyser, sur des relevés expérimentaux, l'évolution de la forme des régimes transitoires en fonction des paramètres caractéristiques.		\$	\$			\$	\$	
Écrire sous forme canonique l'équation différentielle afin d'identifier la pulsation propre et le facteur de qualité.			\$	\$	\$	\$	\$	
Décrire la nature de la réponse en fonction de la valeur du facteur de qualité.			\$	\$	\$	\$	\$	
Déterminer la réponse détaillée dans le cas d'un régime libre ou d'un système soumis à un échelon en recherchant les racines du polynôme caractéristique.		\$	\$	\$	\$	\$	\$	
Interpréter et utiliser la continuité de la tension aux bornes d'un condensateur ou de l'intensité du courant traversant une bobine.				\$	\$	\$		
Déterminer un ordre de grandeur de la durée du régime transitoire selon la valeur du facteur de qualité.			\$				\$	\$
Prévoir l'évolution du système à partir de considérations énergétiques.								\$
Réaliser un bilan énergétique.				\$				\$

Parcours possibles

ightharpoonup Si vous avez des difficultés sur ce chapitre : exercices n°2, n°3, n°4 (+ cahier d'entraı̂nement : 4.16, 4.17, 4.19, 6.14).

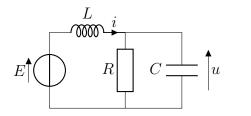
♪ Si vous vous sentez moyennement à l'aise, mais pas en difficulté : exercices n°1, n°3, n°5, n°6.

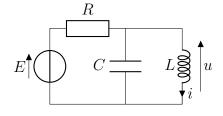
 $\rag{3}$ $\rag{3}$ Si vous êtes à l'aise : exercices n°5, n°6, n°7, n°8.

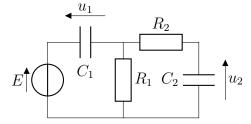
I Exercices d'application directe du cours

Exercice n°1 Étude de régime permanent 🎝 🎝

Déterminer les différentes intensités et tensions (u, i, u_1, u_2) indiquées ci-dessous lorsque le régime permanent est atteint.

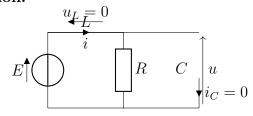


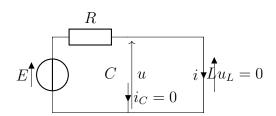




E

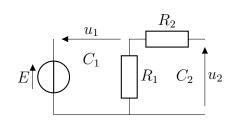
Solution:





La résistance et le générateur sont en parallèle, donc u=E .

Le condensateur est court-circuité par la bobine, donc u = 0.



Les intensités sont nulles partout.

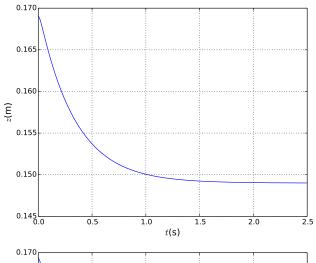
La loi des mailles dans la mailles de droite, sachant que les intensités et donc les tensions aux bornes des résistances sont nulles, donne $u_2 = 0$

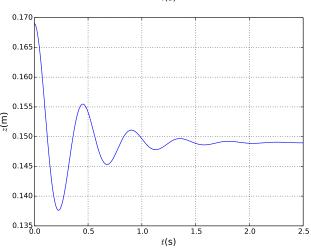
La loi des mailles à gauche donne $u_1 = E$

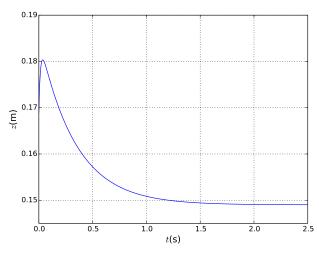
Exercice n°2 Lectures de graphes 🎝

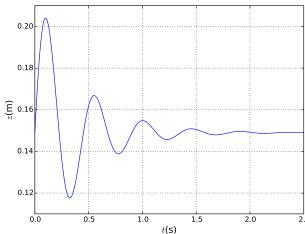
Associer à chaque graphe, le jeu de conditions initiales et le jeu de paramètre correspondant, ci-dessous.

- Les conditions initiales suivantes :
 - 1) $z(0) = z_{\text{éq}} + 2,0 \text{ cm}; \dot{z}(0) = 0 \text{ m/s}$
 - 2) $z(0) = z_{\text{éq}}$; $\dot{z}(0) = 1 \text{ m/s}$
 - 3) $z(0) = z_{\text{éq}} + 2,0 \text{ cm}; \dot{z}(0) = 1 \text{ m/s}$
- Les couples de paramètres suivants :
 - a) $k = 20 \text{ N} \cdot \text{m}^{-1}$; m = 0, 1 kg; $\alpha = 0, 5 \text{ kg} \cdot \text{s}^{-1}$
 - b) $k = 20 \text{ N} \cdot \text{m}^{-1}$; m = 0, 1 kg; $\alpha = 7 \text{ kg} \cdot \text{s}^{-1}$









Solution:

- Les conditions initiales suivantes :
 - $z(0) = z_{\text{\'eq}} + 2,0 \text{ cm}$; $\dot{z}(0) = 0 \text{ m/s}$: vitesse initiale nulle et position initiale supérieure à la position d'équilibre.

Graphes 1 et 3

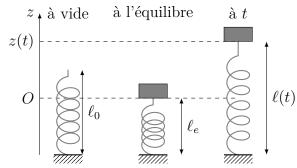
- $z(0) = z_{\text{\'eq}}$; $\dot{z}(0) = 1$ m/s : vitesse initiale strictement positive et position initiale à la position d'équilibre
 - Graphe 4

- $z(0) = z_{\text{\'eq}} + 2,0$ cm; $\dot{z}(0) = 1$ m/s : vitesse initiale strictement position et position initiale supérieure à la position d'équilibre Graphe 2
- Les couples de paramètres suivants :
 - $k = 20 \text{ N} \cdot \text{m}^{-1}$; m = 0, 1 kg; $\alpha = 0, 5 \text{ kg} \cdot \text{s}^{-1}$: $Q = 2, 8 > \frac{1}{2}$ Régime pseudo-périodique : graphes 3 et 4
 - $k = 20 \text{ N} \cdot \text{m}^{-1}$; m = 0, 1 kg; $\alpha = 7 \text{ kg} \cdot \text{s}^{-1}$: $Q = 0, 2 < \frac{1}{2}$ Régime apériodique : graphes 1 et 2

Exercice n°3 Fourche de VTT 🎝

La fourche de VTT peut être modélisée par un ressort de constante de raideur k et de longueur à vide ℓ_0 , associé à un amortisseur dont la force de frottement est $\overrightarrow{f} = -\alpha \overrightarrow{v}$. On note m la masse appuyant sur la fourche lorsque la vététiste appuie sur le guidon (par exemple en descente).

Données :
$$m = 20 \text{ kg}$$
 ; $k = 2, 5 \cdot 10^3 \text{ N} \cdot \text{m}^{-1}$; $\alpha = 5, 0 \cdot 10^2 \text{ N} \cdot \text{s} \cdot \text{m}^{-1}$; $\ell_0 = 1, 3 \text{ m}$; $g = 9, 8 \text{ m} \cdot \text{s}^{-2}$; $v_0 = 5, 0 \text{ m} \cdot \text{s}^{-1}$



R1. La cycliste appuie sur le guidon, avec une masse m. Établir l'expression de la longueur ℓ_e du ressort à l'équilibre en fonction de m, g, k et ℓ_0 . La calculer. Le ressort est-il comprimé ou étiré?

Solution: Système : masse m

Référentiel : terrestre considéré galiléen à l'échelle de l'expérience

Bilan des forces:

- poids $m\overrightarrow{g} = -mg\overrightarrow{u_z}$
- force de rappel élastique : $\overrightarrow{f_{\rm \acute{e}l}} = -k(\ell(t)-\ell_0)\overrightarrow{u_z}$
- force de frottement fluide de l'amortisseur : $\overrightarrow{f} = -\alpha \overrightarrow{v} = -\alpha \frac{\mathrm{d}z}{\mathrm{d}t} \overrightarrow{u_z}$

à l'équilibre :
$$\sum \overrightarrow{F} = \overrightarrow{0}$$
 et $\overrightarrow{v} = \overrightarrow{0}$, soit $-mg\overrightarrow{u_z} - k(\ell_e - \ell_0)\overrightarrow{u_z} = \overrightarrow{0}$, soit $\ell_e = \ell_0 - \frac{mg}{k} < \ell_0$

La vététiste se réceptionne après un dénivelé. On souhaite établir la forme du mouvement du cycliste suite à ce saut. L'origine du repère est placée à la position d'équilibre.

Les conditions initiales sont z(0) = 0 et $\dot{z}(0) = -v_0$ (avec $v_0 > 0$, $\dot{z}(0) < 0$ car dirigé vers le sol).

R2. Établir l'équation différentielle vérifiée par la position verticale $z(t) = \ell(t) - \ell_e$ et la mettre sous la forme canonique $\ddot{z} + \frac{\omega_0}{Q} \dot{z} + \omega_0^2 z = 0$ en exprimant Q et ω_0^* .

^{*.} NON : il n'y a pas de second membre dans cette équation!

Solution: D'après le principe fondamental de la dynamique :

$$m \overrightarrow{d} = m \overrightarrow{g} + \overrightarrow{f_{\text{el}}} + \overrightarrow{f}$$

$$m \frac{d^2 z}{dt^2} \overrightarrow{u_z} = -mg \overrightarrow{u_z} - k(\ell(t) - \ell_0) \overrightarrow{u_z} - \alpha \frac{dz}{dt} \overrightarrow{u_z}$$

$$m \frac{d^2 z}{dt^2} = -mg - k(\ell(t) - \ell_0) - \alpha \frac{dz}{dt}$$

$$\text{or} \quad \ell(t) = \ell_e + z(t)$$

$$m \frac{d^2 z}{dt^2} = -mg - k(\ell_e + z(t) - \ell_0) - \alpha \frac{dz}{dt}$$

$$m \frac{d^2 z}{dt^2} + \alpha \frac{dz}{dt} + kz(t) = -mg - k\ell_e + k\ell_0$$

$$m \frac{d^2 z}{dt^2} + \alpha \frac{dz}{dt} + kz(t) = -mg - k\left(\ell_0 - \frac{mg}{k}\right) + k\ell_0$$

$$m \frac{d^2 z}{dt^2} + \alpha \frac{dz}{dt} + kz(t) = 0$$

$$m \frac{d^2 z}{dt^2} + \alpha \frac{dz}{dt} + kz(t) = 0$$

$$\frac{d^2 z}{dt^2} + \frac{\alpha}{m} \frac{dz}{dt} + \frac{k}{m}z(t) = 0$$

$$\frac{d^2 z}{dt^2} + \frac{\alpha}{m} \frac{dz}{dt} + \frac{k}{m}z(t) = 0$$

$$\frac{d^2 z}{dt^2} + \frac{\omega_0}{Q} \frac{dz}{dt} + \omega_0^2 z(t) = 0$$

On identifie la pulsation propre $\omega_0 = \sqrt{\frac{k}{m}}$ et le facteur de qualité Q tel que $\frac{\omega_0}{Q} = \frac{\alpha}{m}$, soit $Q = \frac{\sqrt{km}}{\alpha}$

R3. Calculer Q et ω_0 (en précisant leur unité).

Quelle est la nature du mouvement de la vététiste (pseudo périodique, critique ou apériodique)? **Exprimer** puis **calculer** le temps d'amortissement caractéristique compte tenu du régime.

Solution: A.N. :
$$Q = \frac{\sqrt{2, 5.10^3 \times 20}}{5.10^2} = \frac{1}{\sqrt{5}} < \frac{1}{2}$$

$$\omega_0 = \sqrt{\frac{k}{m}} = \sqrt{\frac{2, 5.10^3}{20}} = \sqrt{1, 25.10^2} = \sqrt{125} = 15 \text{ rad} \cdot \text{s}^{-1}$$

C'est un régime apériodique, donc le temps d'amortissement est de l'ordre de quelques $\tau=\frac{Q}{\omega_0}=\frac{1}{15\sqrt{5}}=s$

R4. **Déterminer** la solution z(t) avec les conditions initiales. On pourra introduire la grandeur $\gamma = \omega_0 \sqrt{\frac{1}{4Q^2} - 1}$. Montrer qu'elle peut s'écrire $z(t) = -\frac{v_0}{\gamma} e^{-\frac{\omega_0}{2Q}t} \operatorname{sh}(\gamma t)$

Solution:

Q étant inférieur à $\frac{1}{2}$, le régime transitoire est apériodique.

Polynôme caractéristique : $r^2 + \frac{\omega_0}{Q}r + \omega_0^2 = 0$

Discriminant :
$$\Delta = 4\omega_0^2 \left(\frac{1}{4Q^2} - 1\right)$$

Racines: $r = -\frac{\omega_0}{2Q} \pm \omega_0 \sqrt{\frac{1}{4Q^2} - 1} = -\frac{\omega_0}{2Q} \pm \gamma$

Solution générale :
$$z(t) = Ae^{\left(-\frac{\omega_0}{2Q} + \gamma\right)t} + Be^{\left(-\frac{\omega_0}{2Q} - \gamma\right)t}$$

$$z(0) = 0 = A + B, \text{ donc } A = -B$$

$$\dot{z} = A\left(-\frac{\omega_0}{2Q} + \gamma\right)e^{\left(-\frac{\omega_0}{2Q} + \gamma\right)t} + B\left(-\frac{\omega_0}{2Q} - \gamma\right)e^{\left(-\frac{\omega_0}{2Q} - \gamma\right)t}$$

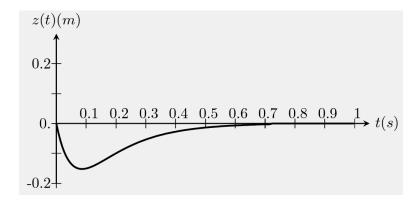
$$\dot{z}(0) = A\left(-\frac{\omega_0}{2Q} + \gamma\right) + B\left(-\frac{\omega_0}{2Q} - \gamma\right) = -v_0$$

$$-v_0 = A\left(-\frac{\omega_0}{2Q} + \gamma\right) - A\left(-\frac{\omega_0}{2Q} - \gamma\right)$$

$$-v_0 = 2A\gamma$$

$$A = -\frac{v_0}{2\gamma} = -B$$
Ainsi $z(t) = -\frac{v_0}{2\gamma}e^{\left(-\frac{\omega_0}{2Q} + \gamma\right)t} + \frac{v_0}{2\gamma}e^{\left(-\frac{\omega_0}{2Q} - \gamma\right)t}$
Ainsi $z(t) = \frac{v_0}{2\gamma}e^{-\frac{\omega_0}{2Q}t}(e^{-\gamma t} - e^{\gamma t})$
Enfin $z(t) = -\frac{v_0}{\gamma}e^{-\frac{\omega_0}{2Q}t}\sinh(\gamma t)$

R5. La figure ci-dessous représente z(t). De quelle longueur s'enfonce approximativement la fourche?



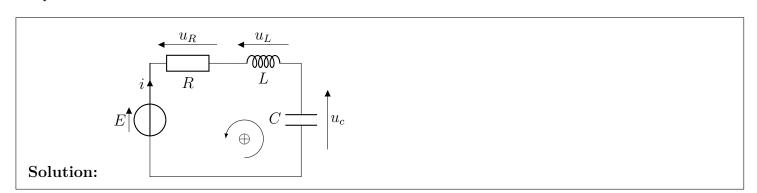
Solution: La fourche s'enfonce d'environ 15 cm.

Exercice n°4 RLC série 🎝

On étudie le circuit RLC série alimenté par un générateur idéal de force électromotrice e qui délivre un échelon de tension. Pour t < 0: e(t) = 0, et pour t > 0: e(t) = E (constante). Aucun courant ne circule pour t < 0. Le condensateur a été préalablement chargé sous une tension E/2, c'est-à-dire $u_c(t < 0) = E/2$.

On donne $C=100~\mathrm{nF}$; $L=100~\mathrm{mH}$; $R=100~\Omega$

R1. Représenter le circuit en plaçant le générateur en convention générateur et le condensateur en convention récepteur.



R2. **Déterminer** rigoureusement les valeurs de $u_c(0^+)$, $i(0^+)$ et $\frac{\mathrm{d}i}{\mathrm{d}t}(0^+)$.

Solution:

Le condensateur est initialement chargé sous E/2 avant la fermeture de l'interrupteur, donc $u_c(0^-) = E/2$ Avant la fermeture de l'interrupteur, l'intensité du courant est nulle, $i(0^-) = 0$.

La tension aux bornes du condensateur ne peut pas subir de discontinuité, donc $u_c(0^+) = u_c(0^-)$, d'où

$$u_c(0^+) = \frac{E}{2}$$

L'intensité du courant à travers la bobine ne peut pas subir de discontinuité, donc $i(0^+) = i(0^-)$, d'où $i(0^+) = 0$

La loi des mailles à $t = 0^+$ donne $E = u_c(0^+) + u_R(0^+) + u_L(0^+)$, soit $u_L(0^+) = E - \frac{E}{2} = \frac{E}{2}$

Or d'après la relation de la bobine : $u_L = L \frac{\mathrm{d}i}{\mathrm{d}t}$, donc $\left[\frac{\mathrm{d}i}{\mathrm{d}t}(0^+) = \frac{u_L(0^+)}{L} = \frac{E}{2L}\right]$

R3. Déterminer $u_c(\infty)$ et $i(\infty)$ une fois le nouveau régime permanent atteint \dagger .

Solution:

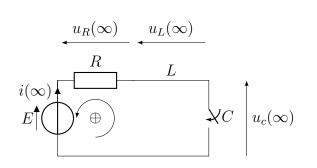
Une fois le régime permanent atteint, la bobine est équivalente à un fil et le condensateur est équivalent à un interrupteur ouvert.

On déduit immédiatement de ces comportements :

$$i(\infty) = 0$$
 et $u_L(\infty) = 0$

 $\overline{\mathrm{D'après\ la}}\ \mathrm{loi\ d'Ohm}: u_R(\infty) = 0$

La loi des mailles donne $u_c(\infty) = E$



R4. Établir l'équation différentielle vérifiée par l'intensité du courant i dans le circuit. Identifier les expressions de la pulsation propre et du facteur de qualité.

Solution:

On applique la loi des mailles : $u_c + u_L + u_R = E$

Pour établir l'équation différentielle vérifiée par i, il faut tout exprimer en fonction de i:

- Intensité du courant à travers le condensateur : $i = C \frac{\mathrm{d}u_c}{\mathrm{d}t}$
- Tension aux bornes de la bobine : $u_L = L \frac{\mathrm{d}i}{\mathrm{d}t}$,
- Tension aux bornes de $R: u_R = Ri$

D'où :
$$u_c + L \frac{\mathrm{d}i}{\mathrm{d}t} + Ri = 0.$$

Pour exprimer u_c en fonction de i, il est nécessaire de dériver par rapport au temps l'équation précédente :

$$\frac{\mathrm{d}u_c}{\mathrm{d}t} + L\frac{\mathrm{d}^2i}{\mathrm{d}t^2} + R\frac{\mathrm{d}i}{\mathrm{d}t} = 0, \text{ avec } \frac{\mathrm{d}u_c}{\mathrm{d}t} = \frac{i}{C}, \text{ d'où } \frac{i}{C} + L\frac{\mathrm{d}^2i}{\mathrm{d}t^2} + R\frac{\mathrm{d}i}{\mathrm{d}t} = 0$$

$$\mathrm{soit} \left[\frac{\mathrm{d}^2i}{\mathrm{d}t^2} + \frac{R}{L}\frac{\mathrm{d}i}{\mathrm{d}t} + \frac{i}{LC} = 0 \right]$$

Que l'on peut écrire sous forme canonique : $\frac{d^2i}{dt^2} + \frac{\omega_0}{Q}\frac{di}{dt} + \omega_0^2i = 0$

On identifie : $\omega_0 = \frac{1}{\sqrt{LC}}$ et $\frac{\omega_0}{Q} = \frac{R}{L} \Leftrightarrow Q = \frac{L}{R}\omega_0 = \frac{1}{R}\sqrt{\frac{L}{C}}$

^{†.} Le circuit en régime permanent devra absolument être représenté.

R5. Compte-tenu des valeurs numériques et des conditions initiales, **déterminer** complètement (**littéralement**) l'expression de i(t).

Solution: Facteur de qualité : $Q = \frac{1}{R} \sqrt{\frac{L}{C}} = 10 > \frac{1}{2}$, donc le régime transitoire est pseudo-périodique.

Polynôme caractéristique : $x^2 + \frac{\omega_0}{Q}x + \omega_0^2 = 0$

Discriminant : $\Delta = 4\omega_0^2 \left(\frac{1}{4Q^2} - 1 \right)$

Racines complexes conjuguées : $x=-\frac{\omega_0}{2Q}\pm j\omega_0\sqrt{1-\frac{1}{4Q^2}}=-\frac{1}{\tau}\pm j\Omega$

Solutions générales : $i(t) = e^{-\frac{t}{\tau}} (A\cos(\Omega t) + B\sin(\Omega t))$

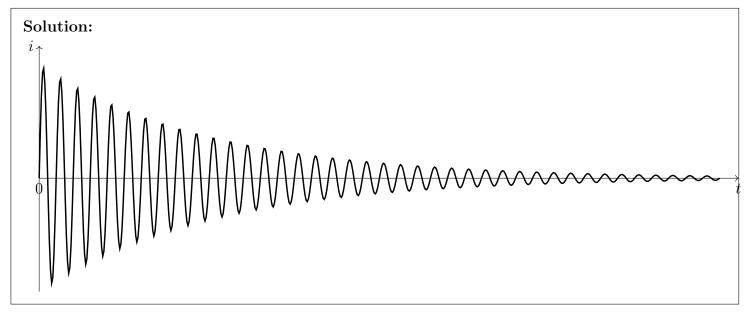
D'après les CI : i(0) = 0 = A

et $\frac{\mathrm{d}i}{\mathrm{d}t} = Be^{-\frac{t}{\tau}} \left(-\frac{1}{\tau} \sin(\Omega t) + \Omega \cos(\Omega t) \right)$

à t = 0: $\frac{\mathrm{d}i}{\mathrm{d}t}(0) = B\Omega = \frac{E}{2L}$, soit $B = \frac{E}{2L\Omega}$

Conclusion : $i(t) = \frac{E}{2L\Omega}e^{-\frac{t}{\tau}}\sin(\Omega t)$

R6. Représenter l'allure i en fonction du temps.



R7. Déterminer les énergies reçues par le condensateur et la bobine, l'énergie fournie par le générateur au cours du régime transitoire. Conclure et commenter.

Solution:

— Énergie reçue par le condensateur :

$$\mathcal{E}_{C,\text{reçue}} = \mathcal{E}_{C}(\infty) - \mathcal{E}_{C}(0)$$

$$= \frac{1}{2}CE^{2} - \frac{1}{2}C\left(\frac{E}{2}\right)^{2}$$

$$= \frac{3}{8}CE^{2}$$

— Énergie reçue par la bobine :

$$\mathcal{E}_{L,\text{reçue}} = \mathcal{E}_{L}(\infty) - \mathcal{E}_{L}(0)$$

$$= \frac{1}{2}L \times 0^{2} - \frac{1}{2}L(0)^{2}$$

$$= 0$$

— Énergie fournie par le générateur :

$$\mathcal{E}_f = \int_0^\infty \mathcal{P}_f dt$$

$$= \int_0^\infty E \times i dt$$

$$= \int_0^\infty E \times C \frac{du_c}{dt}$$

$$= EC(u_c(\infty) - u_c(0))$$

$$= EC\left(E - \frac{E}{2}\right)$$

$$= \frac{E^2C}{2}$$

— Par conservation de l'énergie, la puissance fournie par le générateur est reçue pour 3/4 par le condensateur, la résistance en reçoit l'autre quart, soit $\mathscr{E}_J = \frac{CE^2}{8}$, et la dissipe par effet Joule.

II Exercices d'approfondissement

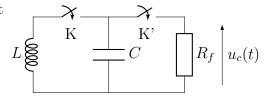
Exercice n°5 Encore un RLC! J J J

On considère un circuit constitué d'une bobine idéale d'inductance L et d'un condensateur réel de capacité C et de résistance de fuite R_f .

Pour t < 0, la tension aux bornes du condensateur vaut U_0 .

À t = 0, on ferme les interrupteurs.

Donnée : $C=5,0~\mathrm{nF}$



R1. ightharpoonup
ightharpoonup

Solution:

Loi des mailles : $u_c + u_L = 0$ (1)

Loi des nœuds : $i = i_C + i_R$ (2)

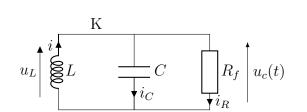
Loi d'Ohm : $u_c = Ri_R$ (3)

Condensateur : $i_C = C \frac{\mathrm{d}u_c}{\mathrm{d}t}$ (4)

Bobine: $u_L = L \frac{\mathrm{d}i}{\mathrm{d}t} = -u_c$ (5)

(2) dans (5):
$$-u_c = L \frac{di_C}{dt} + L \frac{di_R}{dt}$$
 (5')

(3) et (4) dans (5'):
$$-u_c = LC \frac{\mathrm{d}u_c}{\mathrm{d}t} + \frac{L}{R} \frac{\mathrm{d}u_c}{\mathrm{d}t}$$



- ‡. Indications :
- Introduire 3 intensités (rien d'autre n'est utile).
- Écrire les 4 équations indépendantes.
- Mélanger les 4 équations pour obtenir une équation différentielle avec uniquement u_c , où $\omega_0 = \sqrt{\frac{1}{LC}}$ et $Q = R_f \sqrt{\frac{C}{L}}$.

Ainsi
$$\frac{\mathrm{d}u_c}{\mathrm{d}t} + \frac{1}{RC}\frac{\mathrm{d}u_c}{\mathrm{d}t} + \frac{u_c}{LC} = 0$$

Ainsi $\left[\frac{\mathrm{d}u_c}{\mathrm{d}t} + \frac{1}{RC} \frac{\mathrm{d}u_c}{\mathrm{d}t} + \frac{u_c}{LC} = 0 \right]$ On identifie $\omega_0^2 = \frac{1}{LC}$, avec ω_0 la pulsation propre

et
$$\frac{\omega_0}{Q} = \frac{1}{RC}$$
, soit $Q = R\sqrt{\frac{C}{L}}$, le facteur de qualité.

R2. ightharpoonup Déterminer les expressions de $u_c(0^+)$ et $\frac{du_c}{dt}(0^+)$ en fonction de U_0, R_f, C .

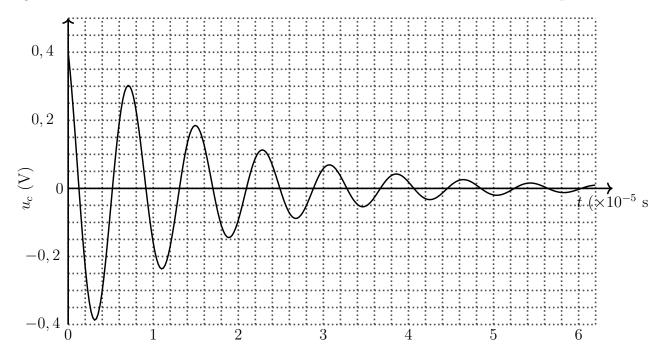
Solution: $u_c(0^-) = U_0$, or la tension aux bornes du condensateur ne peut pas subir de discontinuité, donc $u_c(0^+) = u_c(0^-) = U_0$

Pour t < 0, l'interrupteur est ouvert, donc $i(0^-) = 0$. Or l'intensité du courant à travers une bobine ne peut pas subir de discontinuité, donc $|i(0^+)| = i(0^-) = 0$

Loi des nœuds à $t = 0^+ : i(0^+) = i_R(0+) + i_C(0^+)$

On en déduit :
$$0 = \frac{u_c(0^+)}{R_f} + C\frac{\mathrm{d}u_c}{\mathrm{d}t}(0^+), \, \mathrm{donc} \left[\frac{\mathrm{d}u_c}{\mathrm{d}t}(0^+) = -\frac{U_0}{R_fC} \right]$$

On a enregistré l'évolution de la tension aux bornes du condensateur en fonction du temps.



R3. ightharpoonup Établir complètement la solution $u_c(t)$ de l'équation différentielle précédente.

Solution: D'après l'évolution de $u_c(t)$, c'est un régime pseudo-périodique, donc Q >

L'équation différentielle précédente n'ayant pas de 2^e membre, on n'aura pas de solution particulière à

Équation caractéristique : $x^2 + \frac{\omega_0}{Q}x + \omega_0^2 = 0$

- §. Indications:
- Déterminer les deux grandeurs « évidentes » en notant qu'aucun courant ne circule pour t < 0.
- Exploiter la loi des nœuds et les lois des dipôles pour conclure : $\frac{du_c}{dt}(0^+) = -\frac{U_0}{R_fC}$

Discriminant : $\Delta = \frac{\omega_0^2}{Q^2} - 4\omega_0^2$

 $Q > \frac{1}{2} \Leftrightarrow \Delta < 0$, EC possède deux racines complexes conjuguées :

$$x_{1,2} = -\frac{\omega_0}{2Q} \pm \frac{1}{2}j\sqrt{-\Delta} = -\frac{\omega_0}{2Q} \pm j\omega_0\sqrt{1 - \frac{1}{4Q^2}}$$

La solution générale s'écrit : $u_c(t) = \exp(\Re(r)t) \left(A\cos(\Im(r)t) + B\sin(\Im(r)t)\right)$, avec $\Re(r) = -\frac{\omega_0}{2O}$ et

$$\Im(r) = \omega_0 \sqrt{1 - \frac{1}{4Q^2}}$$

Soit
$$:u_c(t) = \exp\left(-\frac{\omega_0}{2Q}t\right) \left(A\cos\left(\omega_0\sqrt{1-\frac{1}{4Q^2}t}\right) + B\sin\left(\omega_0\sqrt{1-\frac{1}{4Q^2}t}\right)\right)$$

 $\omega_0\sqrt{1-\frac{1}{4Q^2}}$ est homogène à une pulsation.

On pose
$$\Omega = \omega_0 \sqrt{1 - \frac{1}{4Q^2}}$$
, la **pseudo-pulsation**.

 $\frac{\omega_0}{2Q}$ est homogène à l'inverse d'un temps, on introduit le temps caractéristique $\tau = \frac{2Q}{\omega_0}$

On réécrit
$$u_c$$
: $u_c(t) = e^{-t/\tau} (A\cos(\Omega t) + B\sin(\Omega t))$

Déterminons les deux constantes d'intégration à l'aide des deux conditions initiales

$$u_c(0^+) = U_0 = A$$

$$\frac{\mathrm{d}u_c}{\mathrm{d}t}(0^+) = -\frac{A}{\tau} + B\Omega = -\frac{U_0}{RC}, \text{ donc } B = \frac{U_0}{\tau\Omega} - \frac{U_0}{\Omega RC}$$

Soit
$$u_c(t) = U_0 e^{-\frac{t}{\tau}} \left(\cos(\Omega t) + \left(\frac{1}{\Omega \tau} - \frac{1}{\Omega RC} \right) \sin(\Omega t) \right)$$

On peut simplifier:

$$\frac{1}{\tau} - \frac{1}{RC} = \frac{\omega_0}{2Q} - \frac{1}{RC}$$
$$= \frac{1}{2RC} - \frac{1}{RC}$$
$$= -\frac{1}{2RC}$$

$$u_c(t) = U_0 e^{-\frac{t}{\tau}} \left(\cos(\Omega t) - \frac{1}{2\Omega RC} \sin(\Omega t) \right)$$

Solution:

$$\begin{split} \delta &= \ln \left(\frac{u_c(t)}{u_c(t+T)} \right) \\ &= \ln \frac{U_0 e^{-\frac{t}{\tau}} \left(\cos(\Omega t) - \frac{1}{2\Omega RC} \sin(\Omega t) \right)}{U_0 e^{-\frac{t+T}{\tau}} \left(\cos(\Omega (t+T)) - \frac{1}{2\Omega RC} \sin(\Omega (t+T)) \right)} \\ &= \ln \frac{e^{-\frac{t}{\tau}} \left(\cos(\Omega t) - \frac{1}{2\Omega RC} \sin(\Omega t) \right)}{e^{-\frac{t+T}{\tau}} \left(\cos(\Omega t) - \frac{1}{2\Omega RC} \sin(\Omega t) \right)} \\ &= \ln e^{\frac{T}{\tau}} \\ &= \frac{T}{\tau} \\ &= \frac{2\pi}{\omega_0 \sqrt{1 - \frac{1}{4Q^2}}} \times \frac{\omega_0}{2Q} \\ &= \frac{2\pi}{\sqrt{4Q^2 - 1}} \end{split}$$

R5. Déterminer graphiquement la valeur du décrément logarithmique δ .

Solution:

On lit $u_c(t) = 0, 3 \text{ V}$; $u_c(t+T) = 0, 18 \text{ V}$, donc $\delta = \ln\left(\frac{0, 3}{0, 18}\right) = 0, 51$

Solution:

Charge initiale du condensateur : $U_0 = u_c(0) = 0.4 \text{ V}$

$$\delta = \frac{\omega_0 T}{2Q}$$

On peut déterminer Q à l'aide de δ : $Q = \sqrt{\frac{\pi^2}{\delta^2} + \frac{1}{4}} = 6, 2$

$$R_f = -\frac{u_c(0)}{i(0)} = 1,6.10^3 \,\Omega$$

On peut maintenant déterminer $\omega_0: \frac{\omega_0}{Q} = \frac{1}{RC}$, donc $\omega_0 = \frac{Q}{RC}$

A.N.
$$\underline{\omega_0 = 8.10^5 \text{ rad} \cdot \text{s}^{-1}}$$

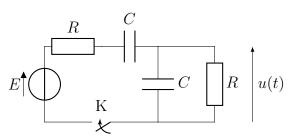
On peut finir par déterminer $L: \omega_0 = \frac{1}{\sqrt{LC}}$, donc $L = \frac{1}{\omega_0^2 C} = 3, 1.10^{-4} \text{ H}$

Exercice n°6 Pont de Wien 🎝 🎝

On considère le circuit représenté ci-contre, appelé pont de Wien.

Pour t < 0, l'interrupteur K est ouvert et les deux condensateurs, de même capacité C, sont déchargés.

On ferme l'interrupteur K à t=0. Les deux résistances sont identiques.



R1. Établir \P l'équation différentielle vérifiée par la tension u et montrer qu'elle s'écrit sous la forme

$$\frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + 3\omega_0 \frac{\mathrm{d}u}{\mathrm{d}t} + \omega_0^2 u = 0$$

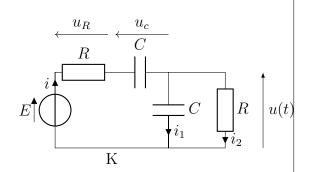
Solution:

Loi des mailles : $u + u_c + u_R = E$ (1)

Loi des nœuds : $i = i_1 + i_2$ (2)

Lois d'Ohm : $u = Ri_2$ (3) et $u_R = Ri$ (4)

Condensateurs: $i_1 = C \frac{\mathrm{d}u}{\mathrm{d}t}$ (5) et $i = C \frac{\mathrm{d}u_c}{\mathrm{d}t}$ (6)



(3) et (5) dans (2) :
$$i = C \frac{du}{dt} + \frac{u}{R}$$
 (2')

(1):
$$u_c = E - u_R - u = E - Ri - u$$
, avec (2'): $u_c = E - R\left(C\frac{\mathrm{d}u}{\mathrm{d}t} + \frac{u}{R}\right) - u = E - RC\frac{\mathrm{d}u}{\mathrm{d}t} - 2u$ (1')

On injecte (1') dans (6):
$$i = -RC^2 \frac{d^2 u}{dt^2} - 2C \frac{du}{dt}$$
 (6')

On égalise (2') et (6') :
$$C\frac{\mathrm{d}u}{\mathrm{d}t} + \frac{u}{R} = -RC^2\frac{\mathrm{d}^2u}{\mathrm{d}t^2} - 2C\frac{\mathrm{d}u}{\mathrm{d}t}$$

Soit
$$\frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + \frac{3}{RC} \frac{\mathrm{d}u}{\mathrm{d}t} + \frac{u}{(RC)^2} = 0$$
, avec $\omega_0 = \frac{1}{RC}$

R2. **Déterminer** les conditions initiales
$$u(t = 0^+)$$
 et $\frac{du}{dt}(t = 0^+)$.

Solution:

Les condensateurs sont initialement chargés, donc $u(0^-) = u_c(0^-) = 0$

Or la tension aux bornes des condensateurs ne peuvent pas subir de discontinuité, donc $u(0^+) = u(0^-) = 0$ et $u_c(0^+) = u_c(0^-) = 0$

Loi des nœuds à $t = 0^+ : i(0^+) = i_1(0^+) + i_2(0^+)$, avec $i_2(0^+) = \frac{u(0^+)}{R} = 0$, donc $i(0^+) = i_1(0^+)$

\P . Indications:

- Introduire 3 intensités et deux tensions.
- Écrire les 6 équations indépendantes.
- Mélanger les 6 équations pour obtenir une équation différentielle avec uniquement u, pour obtenir : $\omega_0 = 1/(RC)$.
- | Indications :
- Déterminer les tensions aux bornes des condensateurs.
- Exploiter la loi d'Ohm et la loi des nœuds.
- Exploiter la loi des mailles et la loi du condensateur pour conclure : $\frac{du}{dt}(0^+) = \frac{E}{RC}$

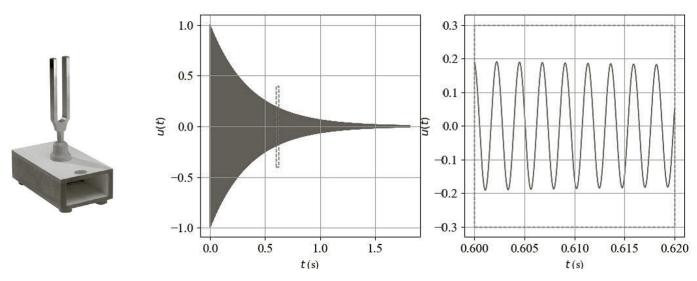
Loi des mailles à
$$t = 0^+$$
: $u_R(0^+) + \underbrace{u_c(0^+)}_{=0} + \underbrace{u(0^+)}_{=0} = E$, soit $Ri(0^+) = E$
Ainsi $i_1(0^+) = C\frac{\mathrm{d}u}{\mathrm{d}t}(0^+) = \frac{E}{R}$, soit $\underbrace{\frac{\mathrm{d}u}{\mathrm{d}t}(0^+)}_{=0} = \frac{E}{RC}$

R3. Résoudre complètement l'équation différentielle précédente pour déterminer l'expression de u(t). Représenter graphiquement son allure.

Solution: Équation caractéristique : $x^2 + 3\omega_0 x + \omega_0^2 = 0$ Discriminant : $\Delta = 5\omega_0^2 > 0$, le régime est donc apériodique Racines : $x = \frac{-3\omega_0 \pm \sqrt{5}\omega_0}{2} = \frac{-3 \pm \sqrt{5}}{2}\omega_0$ Ainsi : $u(t) = Ae^{\left(-\frac{3+\sqrt{5}}{2}\omega_0\right)t} + Be^{\left(\frac{-3+\sqrt{5}}{2}\omega_0\right)t}$ $u(0^+) = 0 = A + B$ $\frac{\mathrm{d}u}{\mathrm{d}t} = Ae^{\left(-\frac{3+\sqrt{5}}{2}\omega_0\right)t} \left(-\frac{3+\sqrt{5}}{2}\omega_0\right) + Be^{\left(\frac{-3+\sqrt{5}}{2}\omega_0\right)t} \left(\frac{-3+\sqrt{5}}{2}\omega_0\right)$ À $t = 0^+$: $\frac{\mathrm{d}u}{\mathrm{d}t}(0^+) = \frac{E}{RC} = A\left(-\frac{3+\sqrt{5}}{2}\omega_0\right) + B\left(\frac{-3+\sqrt{5}}{2}\omega_0\right)$, avec B = -AAinsi $E\omega_0 = 2A\frac{-\sqrt{5}}{2}\omega_0$, soit $A = -\frac{E}{\sqrt{5}}$ Ainsi $u(t) = \frac{E}{\sqrt{5}}\left(-e^{\left(\frac{-3-\sqrt{5}}{2}\omega_0\right)t} + e^{\left(\frac{-3+\sqrt{5}}{2}\omega_0\right)t}\right) = \frac{E}{\sqrt{5}}e^{-\frac{3}{2}\omega_0 t} \times 2\mathrm{sh}\left(\frac{\sqrt{5}}{2}\omega_0 t\right)$

Exercice n°7 Diapason 🎝 🎝 🔊

Un diapason peut être modélisé par un système masse-ressort amorti. L'amortissement provient principalement de la transmission des oscillations des tiges métalliques en vibration sonore.



- R1. Rappeler l'équation différentielle canonique d'un oscillateur amorti en faisant apparaître la pulsation propre ω_0 et le coefficient de qualité Q.
- R2. À partir de l'enregistrement sonore représenté ci-dessus, **estimer** le facteur d'amortissement Q, la pseudo-pulsation, la pulsation propre.

Exercice n°8 Interprétation énergétique du facteur de qualité 🎝 🎝 🧳

Un corps (S), de masse m=50 g, est suspendu à un point fixe O par l'intermédiaire d'un ressort vertical de raideur k=20 N · m⁻¹ et de longueur à vide $\ell_0=20$ cm. Lorsqu'il est animé d'une vitesse \overrightarrow{v} , (S) est soumis

de la part de l'air à une force de frottement fluide $\overrightarrow{F} = -h \overrightarrow{v}$. La position de (S) est repérée par la coordonnée z(t) de son centre d'inertie M sur un axe vertical descendant Oz. On note z_{eq} la cote de M à l'équilibre.

On lâche (S) à t=0 avec une vitesse nulle dans la position $z_0=z_{eq}+a>z_{eq}$. Le référentiel \mathscr{R} lié au sol est supposé galiléen.

En introduisant la variable $Z(t) = z(t) - z_{eq}$, on peut montrer que Z vérifie l'équation différentielle :

$$\ddot{Z} + \frac{\omega_0}{Q}\dot{Z} + \omega_0^2 Z = 0$$
 avec $\omega_0 = \sqrt{\frac{k}{m}}$ et $Q = \frac{\sqrt{mk}}{h}$

On donne l'expression de Z dans le cadre du régime pseudo-périodique :

$$Z(t) = ae^{-\frac{t}{\tau}} \left(\cos(\Omega t) + \frac{1}{\Omega \tau} \sin(\Omega t) \right) \quad \text{avec} \quad \Omega = \omega_0 \sqrt{1 - \frac{1}{4Q^2}} \quad \text{et} \quad \tau = \frac{2Q}{\omega_0}$$

On s'intéresse aux aspects énergétiques de ce mouvement. On se place dans l'hypothèse $Q \gg 1$.

R1. Déterminer une expression approchée ** de Z compte tenu de $Q\gg 1$.

Solution: Pour
$$Q \gg 1$$
, $\Omega \approx \omega_0$, et $\frac{1}{\Omega \tau} \approx \frac{\omega_0}{\omega_0 \times 2Q} \ll 1$
On peut simplifier $Z(t) = ae^{-\frac{t}{\tau}}\cos(\omega_0 t)$

R2. Montrer que l'expression approchée † de l'énergie mécanique de (S) s'écrit $\mathscr{E}_m = \frac{1}{2}ka^2e^{-\frac{2t}{\tau}}$

Solution: Vitesse:

$$\dot{z} = ae^{-\frac{t}{\tau}} \left(-\frac{1}{\tau} \cos(\omega_0 t) - \omega_0 \sin(\omega_0 t) \right)$$

$$= -ae^{-\frac{t}{\tau}} \left(\frac{\omega_0}{2Q} \cos(\omega_0 t) + \omega_0 \sin(\omega_0 t) \right)$$

$$\approx -a\omega_0 e^{-\frac{t}{\tau}} \sin(\omega_0 t)$$

Énergie mécanique, avec C la constante provenant des énergies potentielles définies à une constante additive près.

$$\mathcal{E}_{m} = \mathcal{E}_{c} + \mathcal{E}_{pp} + \mathcal{E}_{p,\acute{e}l}$$

$$= \frac{1}{2}m\dot{z}^{2} - mgZ + \frac{1}{2}k(\ell - \ell_{0})^{2}$$

$$= \frac{1}{2}m\dot{z}^{2} - mgZ + \frac{1}{2}k(Z + z_{\acute{e}q} - \ell_{0})^{2} + C$$

$$= \frac{1}{2}ma^{2}\omega_{0}^{2}e^{-\frac{2t}{\tau}}\sin^{2}(\omega_{0}t) - mgae^{-\frac{t}{\tau}}\cos(\omega_{0}t) + \frac{1}{2}k\left(ae^{-\frac{t}{\tau}}\cos(\omega_{0}t) + \frac{mg}{k}\right)^{2} + C$$

$$= \frac{1}{2}ma^{2}\omega_{0}^{2}e^{-\frac{2t}{\tau}}\sin^{2}(\omega_{0}t) - mgae^{-\frac{t}{\tau}}\cos(\omega_{0}t) + \frac{1}{2}k\left(a^{2}e^{-\frac{2t}{\tau}}\cos^{2}(\omega_{0}t) + \frac{(mg)^{2}}{k^{2}} + 2a\frac{mg}{k}e^{-\frac{t}{\tau}}\cos(\omega_{0}t)\right) + C$$

$$= \frac{1}{2}a^{2}ke^{-\frac{2t}{\tau}}(\sin^{2}(\omega_{0}t) + \cos^{2}(\omega_{0}t)) + ae^{-\frac{t}{\tau}}\cos(\omega_{0}t)(-mg + mg) + \frac{(mg)^{2}}{2k} + C$$

$$= \frac{1}{2}ka^{2}e^{-\frac{2t}{\tau}} + \frac{(mg)^{2}}{2k} + C$$

Pour simplifier la suite, choisissons C pour que la constante additive soit nulle : $\frac{(mg)^2}{2k} + C = 0$

^{**.} Z devra s'écrire sous la forme $Ae^{-\frac{t}{\tau}}\cos(\Omega t + \varphi)$ où A et φ sont à déterminer en fonction de a

^{††.} Indication : Les énergies potentielles sont définies à une constante additive près. La constante C totale sera choisie de sorte qu'à l'équilibre, l'énergie potentielle totale est nulle, ce qui impose $C = -\frac{(mg)^2}{2L}$.

R3. Quel est le signe de la dérivée temporelle de $\mathscr{E}_m(t)$? Commenter le résultat.

Solution:
$$\frac{\mathrm{d}\mathscr{E}_m}{\mathrm{d}t} < 0$$

R4. Établir une expression approchée de la variation relative $\frac{\Delta \mathcal{E}_m}{\mathcal{E}_m} = \frac{\mathcal{E}_m(t+T) - \mathcal{E}_m(t)}{\mathcal{E}_m(t)}$ de l'énergie mécanique pendant une période. En déduire une interprétation énergétique du facteur de qualité Q. On donne : $e^{-x} \sim 1 - x$ pour $x \ll 1$.

Solution:

$$\frac{\Delta \mathcal{E}_m}{\mathcal{E}_m} = \frac{\mathcal{E}_m(t+T) - \mathcal{E}_m(t)}{\mathcal{E}_m(t)}$$

$$= \frac{\frac{1}{2}ka^2e^{-\frac{2(t+T)}{\tau}} - \frac{1}{2}ka^2e^{-\frac{2t}{\tau}}}{\frac{1}{2}ka^2e^{-\frac{2t}{\tau}}}$$

$$= \frac{e^{-\frac{2t}{\tau}}(e^{-\frac{2T}{\tau}} - 1)}{e^{-\frac{2t}{\tau}}}$$

$$= e^{-\frac{2T}{\tau}} - 1$$

$$\approx 1 - \frac{2T}{\tau} - 1$$

$$\approx -\frac{2T}{\tau}$$

$$\approx -2 \times \frac{2\pi}{\Omega} \times \frac{\omega_0}{2Q}$$

$$\approx -\frac{2\pi}{Q}$$

Le facteur de qualité est donc inversement proportionnel à la variation relative d'énergie mécanique au cours d'une période : $Q=-2\pi\frac{\mathscr{E}_m}{\Delta\mathscr{E}_m}$

Si Q est élevé, l'oscillateur revient à sa position d'équilibre avec un grand nombre d'oscillations, car il perd peu d'énergie à chaque oscillation.

R5. Quel est l'ordre de grandeur de la durée du régime transitoire en lien avec le facteur de qualité et la période propre ?

Solution: