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Chapitre n°11 Lois de Newton
Thème II. Mouvements et interactions (Mécanique)

Isaac Newton (1643 - 1727) : physicien, mathématicien et philosophe anglais, surtout
reconnu pour avoir fondé la mécanique classique, aussi appelée « mécanique newto-
nienne », à partir des trois lois universelles du mouvement et de la loi universelle de la
gravitation.

Émilie du Châtelet (1706-1749) est une femme de lettres, mathématicienne et physi-
cienne française, figure du Siècle des Lumières. Elle est renommée pour sa traduction
en français des Principia Mathematica de Newton, qui fait encore autorité au-
jourd’hui. Elle refait aussi les calculs du scientifique ; elle ajoute à la suite de l’œuvre de
Newton un commentaire décrivant le système planétaire, définissant les termes utilisés
et citant différents scientifiques, puis adjoint au tout une partie scientifique inspirée
des travaux de Clairaut avant de terminer avec un résumé des travaux de Daniel Ber-
noulli concernant les marées. Elle consacrera cinq ans à l’ensemble de ce travail. Au
cours de ce travail, elle a aussi un regard critique sur ce qu’elle traduit et émet des
hypothèses, qui seront plus tard confirmées par les travaux de Pierre-Simon de Laplace
(1749-1827), notamment concernant l’inclinaison de la Terre sur un point qu’avait omis
Newton. Clairaut participe à la supervision de la traduction et des calculs.

Pré-requis
• Seconde : Thème Mouvement et interactions
◦ Modélisation d’une action par une force. Caractéristiques d’une force. Exemples de forces : force d’interaction

gravitationnelle ; poids ; force exercée par un support et par un fil.
◦ Principe des actions réciproques.
◦ Principe d’inertie.

• Première : Thème Mouvement et interactions
◦ Interactions fondamentales et introduction à la notion de champ : Force de gravitation et champ de gravitation.

• Terminale : Thème Mouvement et interactions
◦ Centre de masse d’un système. Référentiel galiléen. Équilibre d’un système.
◦ Mouvement dans un champ de pesanteur uniforme.

• PCSI : Thème Mouvement et interactions
◦ Chapitre n°12 : Description et paramétrage du mouvement d’un point

Objectifs du chapitre
Dans le chapitre précédent, nous nous sommes intéressés à la cinématique, c’est-à-dire à la description du

mouvement, sans se préoccuper des causes. Ce chapitre traite de la dynamique, qui fait le lien entre les causes
du mouvement, les actions mécaniques exercées sur le système, et le mouvement du système.
— Énoncer les lois de Newton.
— Étudier différents mouvements.
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Ai-je bien appris mon cours ?
1 − − − Définir le centre d’inertie.
2 − − − Établir l’expression de la quantité de mouvement pour un système de deux points en fonction de

la masse totale et du vecteur vitesse du centre d’inertie.
3 − − − Définir référentiel galiléen − Énoncer le principe d’inertie.
4 − − − Énoncer la 3e loi de Newton.
5 − − − Énoncer le principe fondamental de la dynamique.
6 − − − Donner la méthode de résolution d’un exercice de mécanique.
7 − − − Donner les expressions de la force gravitationnelle et du poids.
8 − − − Étudier le mouvement d’un système modélisé par un point matériel dans un champ de pesanteur

uniforme en l’absence de frottement : établir les équations horaires et l’équation de la trajectoire.
9 − − − Étudier le mouvement d’un système soumis à une force de frottement fluide : établir l’équation

différentielle vérifiée par le vecteur vitesse, en déduire la vitesse limite. Établir une équation
équation adimensionnée.

10 − − − Modéliser le comportement élastique d’un matériau par la loi de Hooke. Donner les limites de
cette loi.

11 − − − À partir des lois de Coulomb sur le frottement, déterminer : une condition d’équilibre (sur une
pente par exemple) ; une distance de freinage ; l’équation du mouvement.

12 − − − Établir l’équation du mouvement du pendule simple.
Linéariser l’équation différentielle obtenue. Commenter.
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I Cadre de l’étude et lois générales de la dynamique
I.1 Système

Les systèmes étudiés dans ce chapitre sont soit assimilés à des points matériels (de taille très petite par
rapport aux obstacles rencontrés), soit des solides en translation dont on décrira le mouvement du
centre de masse.

I.2 Référentiel galiléen et principe d’inertie
Capacité exigible : Décrire le mouvement relatif de deux référentiels galiléens.

� Un point matériel est isolé s’il n’est soumis à aucune action mécanique extérieure.
� Un point matériel est pseudo-isolé s’il est soumis à des actions mécaniques extérieures qui se

compensent, c’est-à-dire de résultante nulle.

Définition

Il existe une classe privilégiée de référentiels, appelés référentiels galiléens, dans lesquels un point
matériel isolé ou pseudo-isolé persévère dans un mouvement rectiligne uniforme.

Énoncé du principe d’inertie − définition des référentiels galiléens

Tous les référentiels galiléens sont en translation rectiligne uniforme les uns par rapport aux autres.
À retenir

Exemples :
— Le référentiel terrestre peut être considéré comme galiléen pour des expériences de durées très petites

devant 24 h et sur des distances très petites devant le rayon de la Terre. Il sera utilisé pour étudier le
mouvement d’objets à la surface (ou à proximité) de la Terre.

— Le référentiel géocentrique peut être considéré comme galiléen pour des expériences de durées très
petites devant 1 année. Il sera utilisé pour étudier le mouvement des satellites autour de la Terre. Le
phénomène des marées s’explique par la nature non galiléenne du référentiel géocentrique.

— Le référentiel héliocentrique peut être considéré comme galiléen pour des expériences de durées allant
jusqu’à plusieurs millions d’années. Pour l’instant, aucune expérience n’a mis en évidence le caractère non
galiléen de ce référentiel.

I.3 Actions mécaniques
I.3.a) Actions mécaniques et forces

� Les actions mécaniques sont l’ensemble des causes subies par un système de la part d’autres systèmes
pouvant modifier, provoquer ou empêcher son mouvement. Elles peuvent également déformer l’objet.

� Les actions mécaniques peuvent être à distance (poids, action exercée par un aimant) ou de contact
(frottement, réaction du support).

� Les forces sont représentées mathématiquement par des vecteurs. Une force est donc caractérisée par
son point d’application, sa direction, son sens et son intensité (la norme du vecteur). Elles s’expriment
en Newton (N).

� Les forces ne dépendent pas du référentiel et sont additives, c’est-à-dire un système soumis à
deux forces −→F1 et −→F2 est soumis à la résultante −→F = −→F1 +−→F2

Définition : Actions mécaniques et forces
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I.3.b) Réaliser un bilan des actions mécaniques
Capacité exigible : Établir un bilan des forces sur un système, ou plusieurs systèmes en interaction et
en rendre compte sur une figure.

Après avoir défini le système étudié et précisé le référentiel d’étude, il est nécessaire de
— réaliser un bilan des actions mécaniques extérieures subies par le système étudié ;
— représenter les forces sur un schéma, pour cela, prendre l’habitude de faire des GRANDS

schémas avec des angles positifs, compris entre 0 et π
2 , et non égaux à π

4 .

Méthode

I.3.c) Principe des actions réciproques

Soient deux corps A et B en interaction :
— le corps A exerce sur B la force −−−→FA→B ;
— le corps B exerce sur A la force −−−→FB→A.

Les forces −−−→FA→B exercée par A sur B et −−−→FB→A exercée par B sur A sont :
• portées par la droite (AB) : −−−→FB→A ∧

−→
AB = −→0 ;

• opposées : −−−→FB→A = −−−−→FA→B

•
A

•
B

−−−→
FB→

A

−−−→
FA→

B

À connaître : Principe des actions réciproques

I.4 Masse et centre d’inertie
I.4.a) Masse
Capacité exigible : Exploiter la conservation de la masse pour un système fermé.

En physique, la masse est une grandeur physique positive intrinsèque d’un corps. En physique newto-
nienne, qui est le cadre de notre étude, c’est une grandeur extensive, c’est-à-dire que la masse d’un corps formé
de parties est la somme des masses de ces parties. Elle est conservative, c’est-à-dire qu’elle reste constante
pour un système fermé n’échangeant pas de matière avec son environnement.

L’unité de masse est le kilogramme dans le Système international d’unités (SI).
I.4.b) Centre d’inertie d’un système de points
Capacité exigible : Énoncer la définition du barycentre. Utiliser son associativité. Exploiter les
symétries pour prévoir la position du barycentre d’un système homogène.

On définit le centre d’inertie G d’un système de points S = {Mi(mi)}i∈[1,n] par :

∀ point O
( n∑
i=1

mi

)−→
OG =

n∑
i=1

(
mi

−−→
OMi

)
⇔ −→0 =

n∑
i=1

(
mi

−−→
GMi

)
G est le barycentre des points Mi affectés des coefficients mi.

Définition : centre d’inertie
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Q1. Déterminer la position du centre d’inertie G d’un système de deux masse m1 et m2, avec m1 = m et
m2 = 2m.

Q2. Déterminer la position du centre d’inertie G d’une tige cylindrique de rayon R, de longueur L et de masse
m répartie uniformément.

Activité n°1 −

I.5 Quantité de mouvement et principe fondamental de la dynamique
I.5.a) Quantité de mouvement d’un point matériel

La quantité de mouvement d’un point matériel M de masse m animé d’une vitesse
−−−−−→
v(M/R) dans le

référentiel R est définie par : −−−−−→
p(M/R) = m

−−−−−→
v(M/R)∥∥∥−−−−−→p(M/R)

∥∥∥ s’exprime en kg · m · s−1

Définition : Quantité de mouvement d’un point matériel

I.5.b) Quantité de mouvement d’un système de points

La quantité de mouvement d’un système S de points {Mi(mi)}i∈[1,n] dans un référentiel R est
la somme des quantités de mouvement de chaque point dans R :

−−−−−→
p(S/R) =

n∑
i=1

−−−−−−→
p(Mi/R) =

n∑
i=1

mi

−−−−−−→
v(Mi/R)

Définition : Quantité de mouvement d’un système de points
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Capacité exigible : Établir l’expression de la quantité de mouvement d’un système restreint au cas de
deux points sous la forme −→p = m

−−−−−→
v(G/R).

On considère un système constitué de deux points matériels M1(m1) et M2(m2).
Q1. Exprimer la quantité de mouvement du système en fonction des vecteurs positions −−−→OM1 et −−−→OM2.

:::::::::::::::
Démonstration

::
:
:

Soit S = (M1(m1),M2(m2)) : −→p (S/R) = m1
−→v (M1/R) +m2

−→v (M2/R)

Q2. En utilisant la définition du centre d’inertie, établir que
−−−−−→
p(S/R) = m

−−−−−→
v(G/R), avec m la masse totale du

système, soit m = m1 +m2.

:::::::::::::::
Démonstration

::
:
:

−→p (S/R) = m1
−→v (M1/R) +m2

−→v (M2/R)

−→p (S/R) = m1
d−−−→OM1

dt +m2
d−−−→OM2

dt
−→p (S/R) = dm1

−−−→
OM1 +m2

−−−→
OM2

dt
or (m1 +m2)−→OG = m1

−−−→
OM1 +m2

−−−→
OM2

Ainsi −→p (S/R) = dm−→OG
dt = m−→v (G/R)

Démonstration à maîtriser n°2 − Quantité de mouvement d’un système de points

La quantité de mouvement d’un système S de masse m et de centre d’inertie G dans le réfé-
rentiel R s’écrit −−−−−→

p(S/R) = m
−−−−−→
v(G/R)

À retenir : Quantité de mouvement d’un système de points

I.6 Principe fondamental de la dynamique

Soit un système S, dont on étudie le mouvement dans un référentiel R galiléen.
Le théorème de la quantité de mouvement ouPrincipe Fondamental de la Dynamique exprime
que la dérivée temporelle de la quantité de mouvement du système S dans le référentiel R galiléen est
égale à la somme des forces extérieures s’exerçant sur le système :

d
−−−−−→
p(S/R)

dt


/R

=
∑−−→

Fext ⇔

d
(
m
−−−−−→
v(G/R)

)
dt


/R

=
∑−−→

Fext

Pour un système S fermé, de masse m constante, on peut l’écrire sous la forme :

m
−−−−−→
a(G/R) =

∑−−→
Fext

avec
−−−−−→
p(S/R) la quantité de mouvement du solide et

∑−−→
Fext la résultante des forces extérieures au système.

La loi de la quantité de mouvement pour un solide permet de déterminer le mouvement de
son centre d’inertie G, de la même façon qu’on étudiait le mouvement d’un point matériel.

À retenir : Théorème de la quantité de mouvement
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Cinématique

Dynamique

−−→
OM

(
d•
dt

)
/R

( ∫
•dt

)
+ CI

−−−−−→
v(M/R)

(
d•
dt

)
/R

( ∫
•dt

)
+ CI

−−−−−→
a(M/R)

PFD
dans R

−→
F

(1)

(2)

(1) : Si la résultante des forces exercées sur M est connue, on peut remonter au vecteur vitesse
−−−−−→
a(M/R), puis

au vecteur position −−→OM
(2) : Si le mouvement est connu, c’est-à-dire −−→OM ou

−−−−−→
v(M/R) ou

−−−−−→
a(M/R) connu, on peut déterminer la résultante

des forces qui s’exercent sur M

I.7 Résolution d’un problème de mécanique
• Données :

— Système étudié (objet dont on étudie le mouvement) : M(m) ;
— Conditions initiales : vecteurs position et vitesse initiaux (à l’instant t = 0 pris pour origine des temps)
— Hypothèses sur le mouvement : frottements . . .

• But : trouver le mouvement de M dans le référentiel R à tout instant t, ou déterminer l’expression d’une
force « inconnue ».

¬ Définir le système étudié (=l’objet dont on étudie le mouvement).
­ Préciser le référentiel d’étude Rg, ainsi que le repère cartésien

(
O;−→ux,−→uy,−→uz

)
lié au référentiel.

En 1ère année, ce référentiel sera supposé galiléen à l’échelle de l’expérience.
® Choisir le système de coordonnées adapté à la description du mouvement.
¯ Faire un SCHÉMA clair et de taille suffisante sur lequel vous représentez le système, le référentiel

Rg et la base choisie. Introduire les notations nécessaires associées aux grandeurs utiles dont seules les
valeurs sont fournies (par exemple : m pour la masse, v0 pour la vitesse initiale).

° Faire un bilan des actions mécaniques précis et complet : les nommer et en donner leurs expres-
sions.
Représenter toutes les forces sur le schéma précédent.

Ne pas oublier les forces de liaison (réaction du support notamment).
± Écrire « D’après le Principe Fondamental de la Dynamique au système dans le référentiel ter-

restre / du laboratoire galiléen ». (D’autres méthodes seront vues dans la suite du cours de mécanique,
on verra que certaines sont plus adaptées selon le problème posé.)

² Projeter les équations vectorielles dans la base associée au système de coordonnées choisi pour
repérer M .

³ Déterminer l’expression littérale de la grandeur demandée (force, équations horaires, équation de la
trajectoire. . .) en prenant garde à vérifier l’homogénéité.
On fait enfin l’éventuelle application numérique, sans omettre l’unité.

Méthode
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Les schémas doivent toujours :
� être grands ;
� avec la base de projection adaptée (cartésienne, polaire, cylindrique ou sphérique) représentée ;
� avec toutes les forces dont on connait les caractéristiques représentées dessus ;
� les angles doivent être :
• positifs,
• compris entre 0 et 90 ◦ ,
• et très différents de 45 ◦ (sinon le cos et le sin ont la même valeur et vous risquez de les confondre

lors des projections).

Méthode : Schémas

Même si vous avez des valeurs numériques dans un énoncé, il ne faut JAMAIS remplacer les grandeurs (m,
v0 . . .) par leurs valeurs numériques dans le calcul (exclusivement à la fin pour l’A.N. : dernière ligne !)

Attention

II Mouvements dans le champ de pesanteur terrestre uniforme
II.1 Interaction gravitationnelle et poids

À proximité de la Terre, un point M de masse m subit la force gravitationnelle exercée par la Terre :
−−−→
FT→M = −GmMT

TM2

−−→
TM

TM
, qui est portée par la droite (TM) passant par le centre de la Terre et est dirigée vers

le centre de la Terre. En première approximation, et dans le cadre où le référentiel terrestre peut être considéré
galiléen à l’échelle des expériences étudiées, nous pouvons assimiler la force d’attraction gravitationnelle
exercée par la Terre sur l’objet au poids de l’objet (Cf cours de 2e année PC).

Le poids de l’objet de masse m s’écrit −→P = m−→g , avec −→g le vecteur champ de pesanteur terrestre. Le
poids :
• s’exerce au centre d’inertie de l’objet ;
• est dirigé selon la verticale du lieu considéré ;
• est dirigé vers le centre de la Terre ;
• et est de norme mg, avec à la surface de la Terre, g ≈ 9, 8 m · s−2 (on peut considérer g uniforme

jusqu’à des altitudes de quelques kilomètres).

◦T sol

À connaître : le poids

• G est la constante universelle de gravitation, elle vaut G = 6, 67.10−11 m3 · kg−1 · s−2, partout dans
l’Univers (puisque universelle !)
• g est le champ de pesanteur dont la valeur dépend de l’astre sur lequel on se trouve et la distance à l’astre.

Sur terre, g vaut environ 9, 8 m · s−2, mais elle varie d’un point à l’autre du globe (de 9, 78 m · s−2 à
l’équateur à 9, 83 m · s−2 aux pôles) et avec l’altitude.

Attention : Ne pas confondre g et G
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II.2 Chute libre
Capacité exigible : Étudier le mouvement d’un système modélisé par un point matériel dans un
champ de pesanteur uniforme en l’absence de frottement.

On étudie le mouvement d’une balle de tennis modélisée par un point matériel M de masse m = 60 g, dans le
référentiel terrestre supposé galiléen. On choisit (Oz) la verticale ascendante et (Oxy) le plan horizontal.
À t = 0, la balle est située à une hauteur h = 1, 5 m par rapport au sol, à la verticale de l’origine O du repère,
située sur le sol. Elle est frappée par la raquette et a un vecteur vitesse initiale −→v0 contenue dans le plan (Oxz)
de norme v0 = 25 m · s−1, faisant un angle ψ = 30◦ avec l’horizontale.
Tous les frottements sont négligés.
Q1. Schématiser la situation.
Q2. Au cours du mouvement, que peut-on dire du vecteur accélération ?

Q3. Par intégrations successives, établir les équations horaires du mouvement :


x(t) =
y(t) =
z(t) =

Q4. Établir l’équation cartésienne z(x) de la trajectoire. Dessiner l’allure de la trajectoire. Représenter dessus
également le vecteur vitesse et le vecteur accélération à différents instants.

Q5. Comment peut-on caractériser le sommet de la trajectoire ?

Exercice à maîtriser n°3 − Le mouvement parabolique

L’équation différentielle issue du PFD est du second ordre et son intégration conduit donc à l’introduction
de deux constantes d’intégration.

Attention

II.3 Poussée d’Archimède

Tout corps au repos ou en mouvement dans un fluide subit de la part de ce fluide une action mécanique,
la poussée d’Archimède (qui est égale à la résultante des forces de pression s’exerçant dessus, cf partie
de statique des fluides en fin d’année) qui possède les caractéristiques suivantes :
• point d’application : centre de masse du fluide déplacé C (centre de masse

du fluide qui occuperait la place du corps s’il n’était pas là) ;
• direction : verticale du lieu considéré (droite passant par le point d’applica-

tion et le centre de la Terre) ;
• sens : du centre de la Terre vers le point d’application (« vers le haut » ) ;
• norme : égale au poids du fluide déplacé

∥∥∥−→ΠA

∥∥∥ = mfluide déplacég.

Solide•C

−→ΠA

Ainsi la poussée d’Archimède est opposée au poids du fluide déplacé : −→ΠA = −mfluide déplacée
−→g .

Dans le cas où le fluide est homogène (corps uniquement dans l’eau, ou dans l’air, et pas entre deux
fluides), la poussée d’Archimède s’écrit :

−→ΠA = −ρfluideVfluide déplacé
−→g

Définition : Poussée d’Archimède

� La poussée d’Archimède peut être négligée pour un solide plein dans l’air.
� La poussée d’Archimède ne peut pas être négligée, pour un solide vide (par ex. ballon de

baudruche) dans l’air ou un solide quelconque dans un liquide.

Méthode : Prise en compte de la poussée d’Archimède ?
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II.4 Frottements fluides
Capacité exigible : Exploiter, sans la résoudre analytiquement, une équation différentielle : analyse en
ordres de grandeur, détermination de la vitesse limite, utilisation des résultats obtenus par simulation
numérique. Écrire une équation adimensionnée.

II.4.a) Modèles
Un corps en mouvement dans un fluide subit la force de trainée, ou force de frottement fluide. La trainée a
pour direction celle du mouvement, elle est opposée au mouvement et est d’autant plus importante que la
vitesse du corps est importante.
Il n’existe pas de « formule théorique » pour la force de frottement fluide. Des études expérimentales ont
conduit à deux expressions pour la force de frottement fluide selon la vitesse du corps :
— à « faible vitesse » : −→f = −k1

−→v , avec k1 > 0 ;
— à « vitesse élevée » : −→f = −k2

∥∥∥−→v ∥∥∥−→v , avec k2 > 0.
Les coefficients k1 et k2 sont déterminés expérimentalement ; ils dépendent du fluide et de l’objet en mouve-
ment (forme et matière).
Le cadre d’utilisation de chaque expression sera précisé en 2ème année dans le cours de mécanique des fluides.

II.4.b) Frottements fluides linéaires

Dans un viscosimètre à bille, une bille en acier de rayon R = 3, 0 mm est lâchée dans un cylindre rempli d’huile
(de masse volumique ρh).
La mesure du temps de chute ∆t entre deux repères distants de d permet d’obtenir la viscosité du liquide.
Pour une sphère de rayon R dans un fluide de viscosité η, la force de frottement fluide est modélisée par la
formule de Stokes : −→f = −6πRη−→v .
On choisit l’axe (Oz) vertical descendant.
Q1. Effectuer un bilan des forces, on prendra en compte la poussée d’Archimède.
Q2. Établir l’équation différentielle vérifiée par vz.
Q3. Déterminer la vitesse limite atteinte par la bille.
Q4. Mettre l’équation différentielle précédente sous la forme :

dvz
dt + 1

τ
vz = vlim

τ

où on explicitera les expressions de τ et vlim .
Q5. On suppose que la bille a atteint sa vitesse limite avant les deux repères. On mesure ∆t = 4, 0 s pour

d = 20 cm. En déduire la viscosité de l’huile.
Q6. Calculer l’ordre de grandeur de la durée du régime transitoire et commenter (cf Figure 1).
Données :
— masse volumique de l’huile ρh = 0, 90 kg · m−3 ;
— masse volumique de l’acier ρa = 7, 8 · 103 kg · m−3 ;
— accélération de la pesanteur : g = 9, 81 m · s−2.

Exercice à maîtriser n°4 − Viscosimètre à bille
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Figure 1 – Mouvement en présence de frottements
linéaires
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Figure 2 – Mouvement en présence de frottements
quadratiques

II.4.c) Frottements fluides quadratiques

Pour les mouvements dans l’air, à des vitesses plus élevées, le modèle linéaire ne permet pas de rendre compte
des observations expérimentales. Dans ce cas, on utilise le modèle quadratique :

−→
f = −1

2ρCxSv
−→v

où ρ est la masse volumique du fluide, S l’aire du solide selon la direction perpendiculaire au déplacement. Le
coefficient Cx, appelé coefficient de traînée dépend principalement de la forme de l’objet.
Les parachutistes (m = 80 kg) peuvent changer leur vitesse en chute libre en changeant la position de leur
corps.
On choisit l’axe (Oz) vertical descendant.
Q1. Déterminer l’équation vérifiée par vz.
Q2. Exprimer la vitesse limite atteinte par le parachutiste.
Q3. En assimilant le parachutiste à un pavé, calculer sa vitesse limite lorsqu’il se place horizontalement, puis

lorsqu’il se place verticalement.
Q4. Il n’est pas possible d’identifier la constante de temps τ dans ce cas.

Pour cela, on peut établir une équation différentielle adimensionnée vérifiée par V ∗ = vz
vlim

(vitesse adi-

mensionnée) et avec pour variable t∗ = t

τ
(temps adimensionné).

Établir l’équation différentielle adimensionnée, vérifiée par V ∗ et la mettre sous la forme :

τ
dV ∗
dt + (V ∗)2 = 1

En déduire l’expression et la valeur de la constante de temps τ . Faire l’application numérique. Commenter
(cf Figure 2).

Données :
— masse volumique de l’air : ρ = 1, 2 kg · m−3 ;
— Coefficient de pénétration dans l’air : Cx = 0, 9
— Surface du corps : Smax = 0, 8 m2 et Smin = 0, 2 m2.

Exercice à maîtriser n°5 − Parachutisme
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III Le pendule simple
III.1 Tension d’un fil

Un fil, infiniment souple, tendu, exerce sur un objet accroché à une de ses extrémités une force de contact,
appelée tension du fil et notée −→T , dont les caractéristiques sont :
• Direction : celle du fil ;
• Sens : d’une extrémité du fil vers l’autre ;
• Norme : T dépend des autres forces mises en jeu et du mouvement, on la détermine a

posteriori une fois le mouvement déterminé.
Pour un fil idéal, inextensible et de masse négligeable, la norme

∥∥∥−→T ∥∥∥ est uniforme le
long du fil.

Si le fil n’est pas tendu, la tension est nulle.

×O

•
M

Définition : Tension du fil

III.2 Mouvement du pendule simple
Capacité exigible : Établir l’équation du mouvement du pendule simple. Justifier l’analogie avec
l’oscillateur harmonique dans le cadre de l’approximation linéaire.

On considère un pendule simple constitué d’un point M de masse m accroché
à l’extrémité d’un fil inextensible, sans masse et sans rigidité, dont l’autre
extrémité O est fixe dans le référentiel R du laboratoire galiléen.
On néglige les frottements dus à l’air.

�
y

O x

z

`

•M
θ

Q1. Quel est le mouvement du point M ? Quel est le système de coordonnées adapté ? Le représenter sur un
schéma.

Q2. Faire le bilan des forces et représenter les forces sur le schéma précédent.
Q3. Appliquer le principe fondamental de la dynamique.
Q4. Sur quel vecteur de la base choisie faut-il projeter le PFD afin d’en déduire l’équation différentielle du

mouvement ?
Établir l’équation différentielle du mouvement. Quelle est la nature de cette équation différentielle ?

On se place, dans la suite, dans le cadre des mouvements de petite amplitude : θ reste petit devant 1 rad.
Q5. Linéariser l’équation différentielle dans ce cas. À quel type de système déjà étudié cette année l’équation

différentielle correspond-elle ?
Q6. La résoudre avec les conditions initiales suivantes : θ(0) = θ0 et −→v (0) = −→0 .

Exercice à maîtriser n°6 − Le pendule simple
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IV Mouvements sur un support solide
IV.1 Réaction du support

Lorsque le système étudié repose sur un support solide, le support exerce sur lui une action mécanique,
appelée réaction du support, que l’on décompose en deux composantes :
• la réaction normale, notée −→RN :
◦ de direction : orthogonale au support ;
◦ de sens : dirigée du support vers le système ;
◦ de point d’application : le point de contact ;
◦ de norme :

∥∥∥−→RN

∥∥∥, qui dépend des autres actions mécaniques en jeu (cf § sui-
vant).

• la réaction tangentielle (= force de frottement solide), notée −→RT :
◦ de direction : tangente au support ;
◦ de sens : qui dépend du mouvement du système par rapport à celui du support

(cf § suivant) ;
◦ de point d’application : le point de contact ;
◦ de norme :

∥∥∥−→RT

∥∥∥,qui dépend des autres actions mécaniques en jeu et du mou-
vement (cf § suivant).

Support (2)

(1)

−→
RN

−→
RT

Définition : Réaction du support

IV.2 Lois de Coulomb sur le frottement solide

On considère un système (1) en translation en contact avec un support (2).
On définit la vitesse de glissement du système 1 par rapport au support 2 :

−−−−→
vg(1/2) =

−−−−→
v(1/R)−

−−−−→
v(2/R)

Définition : Vitesse de glissement

Les lois de Coulomb du frottement solide (lois phénoménologiques : obtenues expérimentalement)
fournissent une relation entre les composantes tangentielle et normale de la réaction du support.
Elles vous seront systématiquement fournies, vous devez savoir les exploiter.
On considère un système (1) en translation en contact
avec un support (2).

La réaction normale −→RN et la réaction tangentielle−→
RT exercées par le support sur le système sont reliées
par les lois de Coulomb du frottement : Support (2)

(1)

−→
RN

−→
RT

� S’il n’y a pas glissement :
−−−−→
v(1/R) =

−−−−→
v(2/R) ⇔

−−−−→
vg(1/2) = −→0 , alors

∥∥∥−→RT

∥∥∥ < fs
∥∥∥−→RN

∥∥∥, avec fs le
coefficient de frottement statique [sans dimension, sans unité].

� S’il y a glissement du système sur le support :
−−−−→
v(1/R) 6=

−−−−→
v(2/R)⇔

−−−−→
vg(1/2) 6= −→0 , alors :

•
−→
RT colinéaire à

−−−−→
vg(1/2)

−→
RT ·

−−−−→
vg(1/2) < 0

 −→RT est dans le sens opposé au vecteur vitesse de glissement

•
∥∥∥−→RT

∥∥∥ = fd
∥∥∥−→RN

∥∥∥ avec fd le coefficient de frottement dynamique [sans dimension, sans unité].

fd < fs , mais comme souvent les deux ne sont pas très différents, nous les confondrons la plupart du temps.
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REMARQUES
◦ Un contact sans frottement, c’est-à-dire avec un coefficient de frottement f = 0, impose une réaction
purement normale.
◦ Lorsqu’on cherche à montrer que le contact entre le système et son support est rompu, on peut le

déterminer par le fait que −→R = −→0 lorsqu’il n’y a plus de contact .

Quelques valeurs de fd et fs :
Matériaux pneus/béton sec pneus/béton mouillé bois/bois Corde/bois chaussure/glace

fs 1 0,7 0,5 0,5 0,1
fd 0,7-0,8 0,5 0,3 0,3 0,05

Attention à « poids et réaction du support se compensent » ou « poids et réaction normale du support se
compensent » : ceci est faux dans la plupart des cas !

Attention − Erreur à ne pas commettre

IV.3 Exploitation des lois de Coulomb
Capacité exigible : Exploiter les lois de Coulomb fournies dans les trois situations : équilibre,
mise en mouvement, freinage. Formuler une hypothèse (quant au glissement ou non) et la valider.

On étudie le mouvement d’une pierre de curling, lancée, à l’instant t = 0, à la vitesse v0 = 3 m · s−1. Elle
décrit un mouvement rectiligne horizontal.
Les frottements dûs à la glace sont modélisés par les lois de Coulomb sur le frottement solide de coefficient de
frottement f = 0, 015.
Q1. Réaliser un schéma de la situation, y placer les axes nécessaires.
Q2. Effectuer un bilan des forces. Les représenter sur le schéma.
Q3. Par application du PFD, puis projection, exprimer la norme de la réaction normale.

En déduire la norme ‖−→RT‖ de la réaction tangentielle, puis l’expression du vecteur −→RT .
Q4. Obtenir l’équation du mouvement, puis l’intégrer deux fois pour obtenir l’équation horaire qui donne la

position de la pierre en fonction du temps.
Q5. Déterminer l’instant tf d’arrêt de la pierre, puis la distance parcourue avant son arrêt.

Exercice à maîtriser n°7 − Freinage en présence de frottement solide

Le petit Gabriel, presque 5 ans, est assis sur sa luge, en haut d’une descente. On souhaite répondre à la
question : « à quelle condition sur l’angle par rapport à l’horizontal l’ensemble {luge + Gabriel} peut rester
en équilibre et ne pas glisser ? »
Q1. Réaliser un schéma du problème, sur lequel on indiquera la base adaptée judicieusement placée.
Q2. Après avoir effectué un bilan des forces, écrire la conséquence de l’équilibre.
Q3. En déduire les expressions des composantes des réactions normale et tangentielle.
Q4. En exploitant la loi de Coulomb, déterminer la condition sur l’angle pour que la luge puisse ne pas glisser.

Vérifier la cohérence physique de la relation obtenue.

Exercice à maîtriser n°8 − Équilibre en présence de frottements solides
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La mise en œuvre des lois de Coulomb nécessite souvent de faire une hypothèse concernant la présence
ou l’absence de glissement, que l’on traduit par une équation assortie d’une condition de validité.
� Je fais l’hypothèse de non glissement :

1. Je connais le mouvement du système :
−−−−−→
v(M/R) =

−−−−−−−−−→
v(support/R) (= −→0 si le support est fixe dans

le référentiel d’étude).
2. En appliquant le PFD, j’en déduis l’expression des forces −→RN et −→RT (en effet je connais −→a (M/R),

puisque je connais le vecteur vitesse).
3. Je vérifie l’hypothèse en comparant

∥∥∥−→RT

∥∥∥ et fs
∥∥∥−→RN

∥∥∥ :

— Si
∥∥∥−→RT

∥∥∥ < fs
∥∥∥−→RN

∥∥∥, l’hypothèse est vérifiée : le système ne glisse pas ;
— Sinon, l’hypothèse n’est pas vérifiée, et il faut supposer que le système glisse sur le support.

� Je fais l’hypothèse de glissement :
1. Je connais la relation entre

∥∥∥−→RT

∥∥∥ et
∥∥∥−→RN

∥∥∥ grâce à la loi de Coulomb :
∥∥∥−→RT

∥∥∥ = fd
∥∥∥−→RN

∥∥∥.
Le sens de −→RT est opposé au sens de la vitesse de glissement :
— Si le support est fixe et que le sens du mouvement est connu, le sens de −→RT est connu.
— Si le support est mobile et/ou que le sens du mouvement est inconnu, il en est de même pour
−→
RT , et donc il ne faut rien supposer ; le sens de −→RT sera déduit de la vérification de l’hypothèse.

2. En appliquant le PFD, j’en déduis l’expression du vecteur vitesse et du vecteur position.
3. Je vérifie l’hypothèse en contrôlant que :

— la vitesse de glissement n’est pas nulle ;
— et −→RT ·

−−−−→
vg(1/2) < 0, ce qui permet par ailleurs de déterminer le sens de −→RT si cela n’était pas

possible avant.

Méthode

Le petit Alex, 1 an 1/2 (15 kg), souhaite faire de la luge. Après sa première descente en luge, il souhaite en
refaire une. Petit, il a encore du mal à marcher dans la neige, Louise, sa grande cousine propose de tirer sa
luge pour remonter la pente enneigée. Elle tire sur la corde à laquelle est attachée la luge avec une force −→F .

La pente est inclinée de 15 % par rapport à l’horizontale.
Les frottements solides entre la luge et la neige sont modélisés selon les lois de Coulomb du frottement

solide de coefficient f = 0, 1..
Le but de cet exercice est de déterminer si Louise pourra remonter le petit Alex ou non, en exerçant une

force de 40 N.
Q1. Est-ce que la luge peut-être à l’équilibre ?
Q2. Supposer que Louise parvient à faire glisser la luge et à la tirer vers le haut.

Exprimer le vecteur vitesse de la luge. Son sens est-il compatible avec l’hypothèse ?
Q3. Sinon, supposer que Louise ne parvient pas à tirer la luge vers le haut et que cette dernière glisse vers le

bas de la pente.

Activité n°9 − Tirer une luge ?
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le vérifieront facilement en scotchant un 
smartphone sur une assiette, en faisant 
glisser cette dernière sur la nappe et en 
mesurant sa décélération avec une appli-
cation spécifique, comme « phyphox ». 
Durant toute la phase de ralentissement, 
la décélération mesurée est constante et 
vaut typiquement 3 mètres par seconde 
carrée (3 m.s-2), soit 0,3 fois l’accéléra-
tion de la pesanteur.

C’est cette même accélération cons-
tante que subira l’assiette – et en fait tous 
les objets qui l’accompagnent sur la table – 
quand on tirera la nappe, quelle que soit la 
vitesse de cette dernière. Des mesures 
(toujours avec smartphone) faites par les 
auteurs montrent qu’on tire environ 50 
centimètres de nappe en un dixième de 
seconde. Cela signifie d’abord que la vitesse 
de tirage est typiquement de 5 mètres par 

Comment retirer une nappe d’une table dressée 
sans casser de vaisselle ? Trucs et astuces pour  
un tour spectaculaire plus facile qu’il n’y paraît.

TIRER LA NAPPE  
SOUS LES COUVERTS

L’une des applications de la 
physique, et non des moindres, est de bril-
ler dans les dîners en ville… surtout si l’on 
s’en prend à la table de ce même dîner ! En 
effet, l’un des plus spectaculaires « tours 
de physique » consiste à retirer une nappe 
d’une table dressée en y laissant assiettes, 
verres, couverts… quasiment à la même 
place. Difficile ? Non, cette prouesse est 
bien plus facile à réaliser qu’il n’y paraît. 
Découvrons les lois de la physique qui 
rendent possible ce tour et les astuces qui 
garantissent de le réussir sans risque pour 
le service en cristal et la porcelaine.

Cette expérience et ses variantes sont 
couramment utilisées pour illustrer 
la notion d’inertie. C’est effectivement 
l’inertie de tous les objets présents sur la 
table qui explique qu’ils restent en place 
lorsqu’on tire la nappe d’un geste rapide. 

Elle se manifeste ici de façon nette parce 
que la force de frottement qu’exerce la 
nappe en mouvement sur la base des 
objets n’augmente pas avec sa vitesse.

FROTTEMENTS ET VITESSE
C’est l’une des propriétés du frotte-

ment entre solides : lors d’un glissement 
de l’un sur l’autre, la force de frottement 
entre les deux est presque constante. De 
plus, la valeur de cette dernière ne dépend 
pas de la taille de l’aire de contact entre 
les solides. Elle est proportionnelle à la 
force qui presse un solide contre l’autre 
et qui, ici, n’est rien d’autre que le poids 
des objets disposés sur la nappe. Le coef-
ficient de proportionnalité, ou plutôt le 
coefficient de frottement dynamique, 
vaut typiquement 0,3 entre une assiette 
et une nappe. Les amateurs de physique 

Attention, un tour spectaculaire, 
et néanmoins facile, mais pour 
lequel un peu d’entraînement 

peut s’avérer nécessaire…
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Les auteurs ont 
notamment publié : 
En avant la physique !, 
une sélection de leurs 
chroniques (Belin, 2017).©
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nappe qui glisse sous eux et bougent donc 
proportionnellement moins.

UNE VOITURE DE COURSE
Si l’on souhaite tirer plus de nappe, 

disons 3 mètres, il faut gagner en vitesse. 
En effet, si on tire toujours à 5 mètres par 
seconde, 6 fois plus de temps est néces-
saire et le déplacement d’un objet sera 
multiplié par 36, correspondant donc à 
plus de 1 mètre dans l’exemple précédent ! 
Pour envisager des expériences plus « grand 
format » comme on peut le voir sur cer-
taines vidéos, où une nappe est tirée sous 
une grande tablée de 16 convives, mieux 
vaut utiliser à la place des mains… une 
voiture de course. C’est ce qui a été réalisé 
dans l’émission « Street Science » en tirant 
à une vitesse de 160 kilomètres par heure 
la nappe accrochée par un câble à un tel 

bolide. Une astuce a toutefois été indis-
pensable pour assurer la réussite. Après 
une première tentative infructueuse, avec 
verres et assiettes chamboulés, les expéri-
mentateurs ont placé des feuilles de plas-
tique entre les objets et la nappe. Ainsi, en 
réduisant encore drastiquement le coeffi-
cient de frottement, rien n’a bougé à la 
seconde tentative.

Sans aller dans de telles extrémités, 
quelques considérations pratiques vous 
aideront à réussir avec une plus petite 
tablée. D’abord le choix de la nappe est 
primordial ! Elle doit être lisse et glissante, 

seconde. Ensuite, un objet près du bord 
verra l’intégralité du bout de nappe défi-
ler sous lui : il sera donc accéléré à 3 m.s-2 
pendant 0,1 seconde.

Pour un physicien, c’est l’analogue 
d’une petite chute libre : il en déduira 
que la vitesse acquise par l’objet sera de 
30 centimètres par seconde et qu’il se 
sera avancé de 1,5 centimètre. Attention, 
une fois la nappe passée, l’objet se 
retrouve avec une certaine vitesse sur la 
table nue où il décélère.

Comme le coefficient de frottement 
entre les objets et la table est du même 
ordre que celui que l’on compte entre 
les objets et la nappe, il s’arrête sur une 
distance de 1,5 centimètre : cela fait un 
déplacement total de 3 centimètres. 
C’est un maximum. Les objets plus éloi-
gnés du bord ont moins de surface de ©
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UN TOUR DE FORCES

Lorsqu’on tire une nappe d’une table dressée, quelles sont  
les forces en présence ? Le poids des différents objets (en rouge), 
les forces de frottement (en jaune) et enfin la réaction de la table 
(en bleu). Précisons que plus la nappe va vite, plus les objets 
bougeront lentement, car plus la durée d’action de la force  
de frottement sera brève.

Vitesse

Nappe

Table
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mains de sorte qu’il reste une trentaine 
de centimètres de nappe entre la table et 
les mains. Rapprochez ensuite les mains 
vers la table. Ces 30 centimètres de jeu 
vous permettront d’accélérer les mains 
avant que la nappe ne commence à glisser. 
Lorsque ce sera le cas, sa vitesse sera 
presque maximale et vous minimiserez la 
durée du glissement sous les objets.

Dernière recommandation : tirer hori-
zontalement. Le plus sûr et le plus simple 
est de penser au point d’arrivée final des 
mains : la partie du corps qui est au niveau 
de la table, en général la ceinture. Vient 
ensuite le moment crucial où il vous faut 
tirer le plus rapidement possible, sans 
hésiter. En ajoutant un mouvement de 
rabat des poignets durant ce mouvement, 
vous obtiendrez une vitesse de nappe 
encore plus grande. À vous de jouer.

Avec beaucoup d’entraînement, peut-
être arriverez-vous même à remettre la 
nappe sous les couverts comme le fait Mat 
Ricardo dans « Tablecloth 2.0 », voire à 
transférer la nappe d’une table à une autre, 
dans « Tablecloth 3.0 ». Tenté ? Prenez alors 
comme lui la précaution de placer l’inté-
gralité des objets situés sur la table sur des 
plateaux avec un rebord courbé vers le 
haut : la nappe glissera mieux.

Précision importante : les auteurs 
déclinent toute responsabilité concer-
nant une éventuelle casse de vaisselle. n

donc sans broderies. Pas la peine d’avoir 
une nappe en soie, la grande majorité des 
textiles synthétiques suffiront. Point 
important, aucun ourlet n’est permis : 
celui-ci entraînerait les objets au passage. 
En pratique, le plus simple est de couper 
une nappe en deux par le milieu (que ne 
ferait-on pas pour épater ses amis !).

Quant aux objets à déposer sur la 
nappe, aucune contrainte tant que l’objet 
n’est pas susceptible de l’accrocher ! Cela 
interdit pour les fourchettes, le dressage 
à la française, c’est-à-dire pointes vers le 
bas, et impose, hélas, la tradition anglaise, 
avec les pointes perfidement orientées 
vers le haut. Pour plus d’effet, nous 
conseillons des verres à pied, ça n’aug-
mente pas le risque et c’est bien plus 
impressionnant. Les remplir d’un peu de 
boisson colorée, comme du vin, ajoute 
encore au spectacle.

Ensuite, il importe de bien se posi-
tionner par rapport à la table. Deux choix 
sont possibles : de face ou de profil. La 
seconde option autorise dans la limite des 
contraintes exposées précédemment, de 
plus grandes nappes, car le corps ne gêne 
pas. Le mouvement est en revanche plus 
délicat à maîtriser et nécessite beaucoup 
d’entraînement.

La position de face est quant à elle 
plus simple. Dans cette position, avec un 
peu de concentration, il est tout à fait 
possible de réussir la manipulation du 
premier coup sans aucun entraînement. 
Positionnez-vous de sorte que si vous 
inclinez un peu le buste vers l’avant, bras 
tendus, vous touchiez juste le bord de la 
table avec le bout des doigts (80 centi-
mètres environ). La longueur de nappe à 
pouvoir passer sous les objets est alors la 
distance entre le corps et la table moins 
une trentaine de centimètres.

BIEN SAISIR LA NAPPE
La façon de se saisir de la nappe est 

très importante. Il est essentiel qu’aucun 
pli n’apparaisse sur la nappe lorsqu’on la 
tire. Un réflexe commun consiste à saisir 
la nappe avec les mains écartées puis à les 
rapprocher l’une de l’autre. Le résultat est 
la formation d’une poche durant le mou-
vement qui entraîne tout ce qui se trouve 
sur la table. L’écartement idéal des mains 
correspond à la largeur des épaules. De 
plus une fois la nappe tenue, elle doit res-
ter bien tendue dans le sens perpendicu-
laire au mouvement à venir en tirant avec 
ses mains vers les côtés. Cette tension sera 
maintenue jusqu’à la fin de l’expérience.

En ce qui concerne la longueur, prenez 
le bord de la nappe et froncez-le dans les 

À VOS MARQUES, PRÊT, TIREZ !

De face, à environ 80 centimètres de la table, inclinez un peu le buste vers l’avant  
en gardant les bras tendus. Tenez également la nappe tendue sans créer de pli ou  
de poches, et, quand vous tirez, veillez à garder constant l’écart entre vos bras  
jusqu’à la fin. Et hop, le tour est joué !
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Le gond et le violon
Tant les grincements que les sons mélodieux d’un violon
résultent de la combinaison de frottements solides et d’élasticité.

La caisse reste immobile tant que la force de traction est inférieure à la friction statique (a). Lorsque la caisse se met en mouvement, la force de frot-
tement diminue (b). La caisse accélère, rattrape le marcheur, puis s’arrête (c). L’élastique n’étant plus tendu, le cycle de fixe-glisse recommence.
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a voiture s’arrête en un crissement de freins…
Le détective écoute… Un violon pleure au
loin dans la maison isolée… Le détective pousse
la grille qui grince… Ces sons, qui ajoutent au
frisson des films d’angoisse et contribuent à
l’agrément des concerts, ont une même cause : 
l’action combinée des frottements solides et

d’un comportement élastique.
La raison première des grincements est une propriété de

la force de frottement solide qui s’exerce entre deux surfaces
sèches en contact : l’intensité de cette force diminue quand la
vitesse relative entre les surfaces augmente. Nous en avons
tous fait l’expérience en faisant glisser une caisse ou un meuble
sur le sol. Pour mettre la caisse en mouvement, il faut pous-
ser horizontalement en exerçant une force minimale. Cette
force est égale au produit du poids de la caisse par un coeffi-
cient, appelé coefficient de frottement statique, de valeur
comprise entre 0,5 et 1. Le mouvement amorcé, la force néces-
saire à la poursuite du mouvement est plus faible, car la fric-
tion entre la caisse et le sol a diminué. Elle est toujours
proportionnelle au poids, mais le facteur de proportionnalité,
appelé coefficient de frottement dynamique, est de l’ordre de
25 pour cent plus faible que le coefficient statique.

Ajoutons maintenant de l’élasticité à cet exemple en tirant
la caisse avec une corde élastique, par exemple un tendeur.
Partant d’une situation où le tendeur n’exerce aucune force sur
la caisse, tirons-le lentement à vitesse constante. À mesure
que le tendeur s’allonge, sa tension et la force qu’il exerce sur
la caisse augmentent. La caisse reste cependant immobile jus-

qu’à ce que cette force dépasse la force de frottement statique ;
elle se met alors en mouvement et la force de frottement dimi-
nue de 25 pour cent. Tant que l’allongement du tendeur n’a
pas diminué de 25 pour cent, la force qu’il exerce sur la caisse
reste supérieure à la force de frottement dynamique et la caisse
accélère. Ensuite, la caisse, freinée, ralentit, puis s’arrête.

Fixe-glisse
Pour remettre la caisse en mouvement, le frottement étant
redevenu statique, il faut de nouveau allonger le tendeur, et
ainsi de suite. Ce comportement est dénommé mouvement
de fixe-glisse (stick-slip en anglais). C’est l’alternance
d’une phase statique durant laquelle l’énergie fournie par
l’opérateur est stockée sous forme élastique (ici dans le
tendeur) et d’une phase de glissement pendant laquelle cette
énergie est brutalement libérée sous forme d’énergie ciné-
tique et dissipée par en chaleur le frottement.

Les mouvements saccadés caractéristiques du fixe-
glisse ne sont pas toujours visibles à l’œil nu, mais ils peuvent
s’entendre quand leur fréquence devient suffisante : c’est une
porte qui grince, des freins qui couinent, des pneus qui cris-
sent, et un doigt mouillé qui fait vibrer le verre à la fin des
repas de famille. L’élasticité est toujours présente même si
elle est parfois bien cachée : ainsi, quand on ouvre une porte,
la lame de métal qui relie le cadre de la porte aux gonds, et
donc au mur, se plie et agit comme un ressort tant que les
frottements empêchent les deux parties du gond de glisser
l’une sur l’autre. Lorsque la force exercée est suffisante, les
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deux surfaces glissent d’un coup l’une sur l’autre, la lame reprend
sa forme initiale et le cycle recommence.

Comment supprimer le grincement ? Reprenons notre
modèle de la caisse.Pour éviter l’arrêt et la répétition des cycles
fixe-glisse, il faut que la tension dans le tendeur ne diminue pas
trop lorsque la caisse se met en mouvement, c’est-à-dire que
la vitesse de la caisse ne soit pas trop supérieure à la vitesse
à laquelle on tire sur le tendeur. Une première solution est de
diminuer l’énergie élastique stockée et de tirer la valise par
une tige quasi inélastique.Une seconde possibilité est de tirer
rapidement. C’est cette solution que nous utilisons pour éviter
de faire grincer une porte en attendant de graisser les gonds :
nous ouvrons la porte d’un coup.

Grincements harmonieux
Au lieu d’éliminer les grincements, nous pouvons aussi les
embellir en associant le mouvement de fixe-glisse à un sys-
tème qui présente naturellement un mouvement périodique
comme une corde de violon. En effet, une petite déformation
transverse qui s’y propage est réfléchie par chacune des extré-
mités de la corde : quelle que soit sa forme, elle effectue des
allers-retours périodiques, de période égale au double de la
longueur de la corde divisé par la vitesse de propagation.

Que se passe-t-il lorsque l’on frotte un archet sur une
telle corde vibrante ? Les crins de l’archet, enduits de
colophane, augmentent le coefficient de frottement statique
et l’archet « mord » la corde. Au début de son mouvement,
lors de l’attaque de la note, l’archet entraîne la corde.
Celle-ci fait un coude et, telle une corde d’arc, elle exerce
une force de plus en plus grande sur l’archet. Quand cette
force dépasse une valeur limite, la corde « décroche » et
se met à glisser dans le sens opposé au mouvement de l’ar-
chet. La déformation créée se propage le long de la corde
jusqu’au chevalet, s’y réfléchit, s’inverse et revient au niveau
de l’archet.Ce premier passage donne à la corde une petite
secousse qui la « réaccroche » à l’archet, lequel l’entraîne

à nouveau. Pendant ce temps, le coude continue son che-
min, est réfléchi par le sillet ou par le doigt du musicien,
revient au niveau de l’archet et décroche la corde qui se
remet à glisser, et ainsi de suite.

Ainsi, sauf lors de l’attaque d’une note, ce n’est pas l’élas-
ticité de la corde qui déclenche glissement et recollement,
mais l’arrivée périodique d’une déformation. Le fixe-glisse
n’est plus spontané, mais contrôlé ! La hauteur du son est
fixée par la période du mouvement qui dépend de la longueur
de la corde (éventuellement modifiée par la position du
doigt) et de sa tension (qui détermine la vitesse de propa-
gation de la déformation).

Le musicien, qui veut produire un beau son, s’assure que
l’accrochage et le décrochage de la corde ne se produisent
pas spontanément, mais seulement au passage de la
déformation. Il veille à maintenir une pression, suffisante pour
que l’archet ne glisse pas intempestivement, mais pas trop
importante pour que la secousse, provoquée par le pas-
sage du coude puisse décrocher la corde. Quand il y par-
vient, la position et la vitesse de déplacement de l’archet
n’ont plus aucun effet sur la hauteur du son. En revanche,
comme cette dernière détermine la vitesse d’entraînement
de la corde lors des phases de « fixe », c’est-à-dire de
corde entraînée, elle détermine l’amplitude de la déforma-
tion, donc le volume du son : plus le musicien déplace rapi-
dement l’archet, plus le son est intense.

Un débutant qui contrôle mal la pression de son archet
appuiera trop ou trop peu, il ne laissera pas la corde chanter
et produira des sons désagréables. La connaissance des lois
physiques n’est certes pas synonyme de virtuosité, mais si
vous ne jouez pas bien, au moins vous saurez pourquoi…

Jean-Michel Courty • Édouard Kierlik

D. E. HALL, Musical acoustics, Brooks/Cole Publishing Company, 1990.

F. HESLOT et al. Crepp, stick-slip, and dry friction dynamics : experiments
and a heuristic model, in Phys. Rev. E 49, p. 4973, 1994.

a b fdc e

Le « fixe-glisse » de l’archet sur la corde. Lors de la phase
« fixe » du régime fixe-glisse, l’archet qui se déplace vers la droite (flèche
rouge) entraîne la corde (a). L’arrivée de la déformation (flèche noire)
décroche la corde qui se met à glisser sur l’archet (b) indépendamment du
mouvement de celui-ci : c’est une phase glisse. La déformation se propage

vers le chevalet (c), s’y réfléchit et revient vers l’archet (d). L’arrivée de la
déformation sur l’archet réaccroche la corde sur celui-ci (e). Tandis que
l’archet entraîne la corde, la déformation va vers le sillet (f). Après s’y être
réfléchie, la déformation revient vers l’archet (a) et le cycle recommence.
Les mouvements d’ensemble de la corde sont indiqués par les flèches bleues.
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