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TD n°8 Filtrage linéaire − Filtres passifs
− Corrigé

Thème I. Ondes et signaux (Électricité)

Capacités
Exercice n° 1 2 3 4 5 6 7 8 9 10 11

Analyser la décomposition fournie d’un signal périodique
en une somme de fonctions sinusoïdales.
Tracer le diagramme de Bode (amplitude et phase) associé
à une fonction de transfert d’ordre 1.
Utiliser les échelles logarithmiques et interpréter les zones
rectilignes des diagrammes de Bode en amplitude d’après
l’expression de la fonction de transfert.
Utiliser une fonction de transfert donnée d’ordre 1 ou 2
(ou ses représentations graphiques) pour étudier la réponse
d’un système linéaire à une excitation sinusoïdale, à une
somme finie d’excitations sinusoïdales, à un signal pério-
dique.
Choisir un modèle de filtre en fonction d’un cahier des
charges.
Expliciter les conditions d’utilisation d’un filtre en tant que
moyenneur, intégrateur, ou dérivateur.

Parcours possibles
Si vous avez des difficultés sur ce chapitre : exercices n°1, n°2, n°3, n°4 + cahier d’entraînement :

Si vous vous sentez moyennement à l’aise, mais pas en difficulté : exercices n°1, n°2, n°4, n°5, n°6.
Si vous êtes à l’aise : exercices n°1, n°6, n°8, n°9, n°10.
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I Exercices d’application directe du cours
Exercice n°1 TP : Mesure d’un déphasage
R1. Qui de u1 ou u2 est en avance sur l’autre ?
R2. Quel est le signe du déphasage de u2 par rapport à u1 ?
R3. Déterminer le déphasage de u2 par rapport à u1.

0
t (ms)

s(t) (V)

0, 5 V

1 ms

u1(t)
u2(t)

Solution: s2 est en retard sur s1, donc ∆ϕ2/1 < 0
Retard : ∆t = 0, 6 ms et Période : T = 5 ms
|∆ϕ2/1| = 2π∆t

T
= 2π × 0, 6

5 = 0, 24π rad

ainsi ∆ϕ2/1 = −0, 75 rad = −43, 2◦

Exercice n°2 Spectre d’un signal triangulaire
On étudie un signal triangulaire de période 1 ms, et d’amplitude 0, 5 V.

t

Le développement en série de Fourier du signal triangulaire est donné par :

s(t) =
∞∑

n=1

8A
((2n− 1)π)2 cos((2n− 1)ωt) avec ω = 2πf

R1. Quelle est la fréquence du signal triangulaire ?
R2. Quelles sont les fréquences et amplitudes des 4 premiers harmoniques ?
R3. Tracer le spectre.

Exercice n°3 Comportements asymptotiques
R1. À partir des comportements asymptotiques, assigner à chaque grandeur

ci-dessous le type de filtre correspondant.

w • • Passe-bas
u • • Passe-bande
v • • Passe-haut e

R

w
i

C

u

L

v
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Solution:

À BF : e

R
i = 0

C

u
L

v = 0

Loi des mailles : u = e

À HF : e

R
i = 0

C

u = 0

L

v

Loi des mailles : v = e

u = e à BF et u = 0 à HF : c’est un passe-bas
v = 0 à BF et v = e à HF : c’est un passe-haut
w = 0 à BF et HF : c’est un passe-bande

R2. Pour chacun des circuits ci-dessous, déterminer la nature du filtre.

(a) e

L

R s (b) e

R

L C s (c) e

L

R

L R s

Solution: IL FAUT REPRÉSENTER LES CIRCUITS à BF et HF
Circuit de gauche : s = e à BF ; s = 0 à HF : c’est un passe-bas
Circuit du milieu : s = 0 à BF et HF : c’est un passe-bande
Circuit à droite : s = 0 à BF ; (PDT) s = e

2 à HF : c’est un passe-haut.

Exercice n°4 Filtre RL

On étudie le filtre ci-contre constitué d’une résistance R = 1, 0 kΩ
et d’une bobine idéale d’inductance L = 0, 5 H.

R
Lue R us

R1. Déterminer la nature du filtre d’après le comportement asymptotique des dipôles.

Solution: À BF, la bobine est équivalente à un fil, donc us est la tension aux bornes d’un fil, donc
us = 0 : le circuit ne transmet pas les signaux basse fréquence.
À HF, la bobine est équivalente à un interrupteur ouvert, donc (pont diviseur de tension) us =
R

R +R
ue = ue

2
Ce circuit est donc un passe-haut.

R2. Établir sa fonction de transfert.

Solution:
Association parallèle à droite : Yéq = 1

R
+ 1
Ljω
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Pont diviseur de tension :

us =
Zéq

R + Zéq
ue

H(jω) = 1
1 +R× Yéq

= 1

1 +R

(
1
R

+ 1
Ljω

)

= 1

2 + R

Ljω

R3. Identifier la ou les affirmations fausses concernant la pulsation de coupure d’un filtre :
© c’est la pulsation de l’intersection des deux asymptotes du diagramme de Bode en gain ;
√ c’est la pulsation pour laquelle le gain en décibels vaut le gain en décibels maximal

diminué de 3 décibels ;
© c’est la pulsation pour laquelle le gain vaut la moitié du gain maximal.

R4. Établir l’expression de la pulsation de coupure du filtre étudié. Faire l’application numérique.

Solution: Pulsation de coupure ωc telle que G(ωc) = Gmax√
2

, avec Gmax = lim
ω→∞G = 1

2
Ainsi

1√
4 + R2

(Lωc)2

= 1/2√
2

4 + R2

(Lωc)2 = 8

R2

(Lωc)2 = 4

ω2
c = R2

4L2

Soit ωc = R

2L

Ainsi H = 1/2
1 + ωc

jω

R5. Diagramme de Bode asymptotique
(a) À basse fréquence :

i. Déterminer l’équivalent de la fonction de transfert.

Solution: À BF : H ∼
0

1/2
ωc

jω

= jω

2ωc

ii. En déduire l’équation de l’asymptote au gain en décibel. Comment est-elle ?

Page 4



Physique − TD n°8 − Corrigé
Page 5 / 14

PCSI
Année 2025-2026

Solution: GdB,BF = −20 log(2) + 20 log
(
ω

ωc

)

C’est une asymptote oblique de pente +20dB/dec.

iii. Déterminer l’équation de l’asymptote de la phase.

Solution: φBF = +π2 , car H ∈ jR
+

(b) Faire de même à haute fréquence.

Solution: À BF : H ∼
+∞

1/2
1 = 1

2
GdB,HF = −20 log(2)
C’est une asymptote horizontale à −20 log(2).
φBF = 0, car H ∈ R+

(c) Tracer le diagramme de Bode asymptotique sur le papier semi-log fourni ci-dessous.
R6. Tracer le diagramme de Bode réel en ajoutant les points essentiels.

101 102 103 104 105
−60

−50

−40

−30

−20

−10

0

ω (rad/s)

G
d
B
(d
B)

101 102 103 104 105
0

20

40

60

80

100

ω (rad/s)

φ
(◦
)

Exercice n°5 Filtrage avant un haut-parleur tweeter
Avant d’envoyer le signal en entrée d’un haut-parleur tweeter chargé d’émettre les sons aigus, on place un

filtre passe-haut du premier ordre de fréquence de coupure fc = 3500 Hz.
On en donne la fonction de transfert :

H =
j f

fc

1 + j f
fc

et son diagramme de Bode :
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102 103 104

−30

−25

−20

−15

−10

−5

0

f (Hz)

G
d
B
(d
B)

102 103 104
20

30

40

50

60

70

80

90

f (Hz)

φ
(◦
)

On modélise le son que l’on souhaite transmettre par la somme de trois signaux sinusoïdaux (le spectre de
musique est bien plus complexe, ce qui en donne toute sa beauté, mais l’objectif est de comprendre l’idée...) :

ue = E cos(2πf1t) + E cos(2πf2t+ π/4) + E cos(2πf3t− π/5)

avec f1 = 587 Hz (do du milieu du piano) ; f2 = 2093 Hz (do7) ; f3 = 4186 Hz (do8 : dernière touche du piano)
R1. Représenter le spectre en amplitude de ue.

Solution:

f

Amplitudes

f1 f2 f3f1 f2 f3

R2. Proposer une écriture générale du signal en sortie du filtre et qui sera envoyée en entrée du haut-parleur.

Solution: Signal de sortie : s(t) = S1 cos(2πf1t+ ϕ1) + S2 cos(2πf2t+ ϕ2) + S3 cos(2πf3t+ ϕ3)

R3. Déterminer toutes les caractéristiques du signal de sortie.

Solution:
— Signal à f1 :

GdB(f1) = −17 dB, donc S1 = E × 10− 17
20 = 0, 14E

φ(f1) = 82◦ = ϕ1 − 0
— Signal à f2 :

GdB(f2) = −6 dB, donc S1 = E × 10− 6
20 = 0, 5E

φ(f2) = 60◦ = ϕ1 − π/4, soit ϕ2 = π

3 + π

4 = 7π
12

— Signal à f3 :
GdB(f3) = −2 dB, donc S1 = E × 10− 6

20 = 0, 8E
φ(f3) = 40◦ = ϕ1 + π/5, soit ϕ3 = 0, 42 rad
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s(t) = 0, 14 cos(2πf1t+ 1, 4 rad) + 0, 5 cos(2πf2t+ 7π/12) + 0, 8E cos(2πf3t+ 0, 42)

R4. En utilisant une autre couleur, superposer sur le spectre de R1 le spectre en amplitude de us.

Solution:

II Exercices d’approfondissement
Exercice n°6 Filtre de Wien

On s’intéresse au filtre de Wien représenté ci-dessous.
R1. Par analyse des comportements asymptotiques des dipôles, déterminer le type de filtre dont il s’agit.

Solution:
À BF : s = RiR = 0

•
R C

i = 0 •

• •

R

iR = 0

C
i = 0

e(t) s(t)

À HF, s est la tension aux bornes d’un fil, donc
s = 0

•
R

C •

• •

R Ce(t) s(t)

Le filtre ne transmet ni les basses fréquences ni les hautes fréquences, c’est un filtre passe-bande

R2. Déterminer la fonction de transfert H du filtre et l’écrire sous la forme H = H0

1 + jQ
(
x− 1

x

) où

x = ω

ω0
.

Identifier l’expression de ω0. Quelle valeur commune ont Q et H0 ? On vérifiera succinctement l’homogénéité.

Solution:
L’association série est équivalente à une impédance Zéq,1 = R + 1

Cjω
L’association parallèle est équivalente à une admittance
Yéq,2 = 1

R
+ Cjω

Pont diviseur de tension : s =
1/Yéq,2

Zéq,1 + 1/Yéq,2
e

Soit H = s

e
= 1

1 + Zéq,1 × Yéq,2

•
R

C

•

• •

R Ce(t) s(t)

Ainsi H = 1

1 +
(
R + 1

Cjω

)
×
( 1
R

+ Cjω
) = 1

1 + 1 +RCjω + 1
RCjω

+ 1
= 1

3 + j

(
RCjω − 1

RCjω

)

SoitH = 1/3

1 + j

3

(
RCjω − 1

RCjω

) = H0

1 + jQ
(
ω

ω0
− ω0

ω

) , en identifiant ω0 = 1
RC

; Q = 1
3 et H0 = 1

3

R3. Pour quelle pulsation le gain de ce filtre est-il maximal ?
Calculer la valeur maximale du gain. En déduire sa valeur de dB, et calculer le déphasage correspondant.
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Solution:
Le gain s’écrit G = |H| = H0√

1 +Q2
(
ω

ω0
− ω0

ω

)2
est maximal en ω = ω0

Alors GdB,max = GdB(ω0) = 20 log(H0) = −9, 5 dB et φ(ω0) = arg(H) = 0 , car H ∈ R+.

R4. On donne le diagramme de Bode du filtre de Wien ci-dessous.
En exploitant la fonction de transfert, retrouver les pentes des asymptotes du diagramme de Bode en gain
fourni.

10−3 10−2 10−1 100 101 102 103
−60

−50

−40

−30

−20

−10

x

G
d
B
(d
B)

10−3 10−2 10−1 100 101 102 103
−100

−50

0

50

100

x

φ
(◦
)

Solution:

— À BF : H ≈ H0

1− jQω0

ω

= H0ω

−jQω0
(avec H0 = Q = 1/3)

GdB,BF = 20 log(ω/ω0) : c’est une asymptote de pente +20dB/dec et φBF = +π2

— À HF : H ≈ H0

1− jQω0

ω

= H0ω0

jQω
(avec H0 = Q = 1/3)

GdB,HF = −20 log(ω/ω0) : c’est une asymptote de pente −20dB/dec et φHF = −π2

R5. Mesurer graphiquement la largeur en fréquence de la bande passante. Retrouver la valeur du facteur de
qualité.

Exercice n°7 Dimensionnement d’un moyenneur
Le signal ci-dessous est délivré par un capteur. La grandeur que vous cherchez à mesurer est directement

reliée à la valeur moyenne du signal.

Électronique — Filtres linéaires TD

Exercice 8 Dimensionnement d’un moyenneur STARSTARSTAR

Chouchou souhaite extraire la valeur moyenne du signal qu’il reçoit sur son os-
cilloscope :

horizontal:
100 µs / div

vertical:
1 V / div

1. Où se trouve la valeur moyenne d’un signal dans son spectre ? En déduire
duquel de ces filtres Chouchou a besoin :

e s

L

C R

e s

R

C L e s

C

L R

2. Exprimer la fonction de transfert et la mettre sous la forme

H = 1

1 −
(

ω
ω0

)2
+ j ω

Qω0

avec ω0 = 1√
LC

Donner l’expression du facteur de qualité Q en fonction de R, L et C.
3. Tracer le diagramme asymptotique de Bode en amplitude et y faire expli-

citement apparaître ω0. Quel rôle joue cette grandeur ?
4. Chouchou cherche-t-il à produire un phénomène de résonance, ou bien à

l’éviter ? En déduire parmi les jeux proposés ci-dessous le plus adapté pour
moyenner le signal observé :

Composant Jeu 1 Jeu 2 Jeu 3
R (Ω) 10 100 1
L (H) 1 10−2 10−2

C (F) 10−4 10−2 10−6

Lycée Jean Zay, PTSI Clément de la Salle © clementdelasalle.fr 5/5

R1. Où se trouve la valeur moyenne d’un signal dans son spectre ?
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Solution: La valeur moyenne est la composante continue, c’est un « pic » qui est en f = 0 sur le spectre.

R2. En déduire duquel de ces filtres vous avez besoin.

e

R

C L s e

C

L R s e

L

C R s

Solution: Pour récupérer la valeur moyenne d’un signal, et donc supprimer les signaux sinusoïdaux, il
faut utiliser un filtre passe-bas.
Le circuit de droite est un passe-bas.

e

L

C R s e

L

C R s e

L

C R s

À BF, s = e

À HF : s = 0, c’est la tension aux bornes d’un fil.

R3. Exprimer la fonction de transfert et la mettre sous la forme

H = 1

1−
(
ω

ω0

)2
+ j

ω

Qω0

avec ω0 = 1√
LC

Donner l’expression du facteur de qualité Q en fonction de R,L et C.

Solution: On associe R et C en parallèle : 1
Zéq

= 1
R

+ Cjω

e

L

Zéq s

D’après la relation du pont diviseur de tension :

s =
Zéq

Ljω + Zéq
e

= 1
1 + Ljω 1

Zéq

e

= 1
1 + Ljω

(
1
R

+ Cjω
)e

H = 1
1− LCω2 + L

R
jω

Par identification : ω0 = 1√
LC

et 1
ω0Q

= L

R
, soit Q = R

√
C

L
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R4. Tracer le diagramme asymptotique de Bode en amplitude et y faire explicitement apparaître ω0. Quel rôle
joue cette grandeur ?

Solution:
À BF : H ∼

0
1, donc GdB,BF = 0 : l’asymptote est horizontale

À HF : H ∼
0

1
−ω2

ω2
0

GdB,HF = 20 log 1
ω2
ω2

0

= −40 log ω

ω0
: asymptote oblique de −40 dB/dec

10−2 10−1 100 101 102
−80

−60

−40

−20

0

x

G
d
B
(d
B)

En ω0, les deux asymptotes se croisent.

R5. Cherchez-vous à produire un phénomène de résonance, ou bien à l’éviter ? En déduire parmi les jeux proposés
ci-dessous le plus adapté pour moyenner le signal observé :
Composant Jeu 1 Jeu 2 Jeu 3
R (Ω) 10 100 1
L (H) 1 10−2 10−2

C (F) 10−4 10−2 10−6

Solution:
Composant Jeu 1 Jeu 2 Jeu 3
R (Ω) 10 100 1
L (H) 1 10−2 10−2

C (F) 10−4 10−2 10−6

ω0 100 100 104

Q 0,1 100 0,01
Il faut choisir ω0 très faible devant la pulsation du signal. Or T = 200 µs, donc ω = 31.103 rad · s−1

Les deux premiers jeux conviennent. Il n’est pas souhaitable d’avoir une résonance, plus Q est élevé,
plus le diagramme de Bode est au-delà de l’asymptote pour des pulsations élevées.
Par conséquent, seul le jeu 1 convient.

Exercice n°8 Transformation d’un triangle
On considère un signal triangle, dont l’allure est représentée ci-après. T représente la période du signal, qu’on

pourra faire varier, tout en maintenant l’amplitude constante.
On obtient pour les fréquences f = 100 Hz et f = 10 kHz les oscillogrammes suivants.
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H1 = H0

1 + j
f

fc

H2 =
H0j

f

fc

1 + j
f

fc

H3 = H0

1 + jQ

(
f

fc

− fc

f

)

H4 = H0

1 + j

Q

f

fc

−
(
f

fc

)2

R1. Quelle opération réalise ce filtre pour f = 100 Hz ? et pour f = 10 kHz ? En déduire la nature du filtre.

Solution: Ce filtre réalise une dérivation pour f = 100 Hz. Pour f = 10 kHz, le filtre transmet fidèle-
ment le signal, sans modification.
On peut en déduire que le filtre est un filtre passe-haut puisqu’il transmet fidèlement un signal triangle
de fréquence f = 10 kHz qui contient un grand nombre d’harmoniques.
Le filtre est dérivateur à basse fréquence, donc il doit présenter une asymptote de pente +20 dB/dec ,
donc il s’agit d’un filtre passe-haut du premier ordre.

R2. Parmi les fonctions de transferts suivantes, laquelle choisiriez-vous pour décrire ce filtre ?

Solution: La fonction de transfert H2 est celle d’un filtre passe-haut du premier ordre. Elle est du
premier ordre contrairement aux deux dernières.
Et à BF : H2 ' 0 et à HF H2 ' H0 : c’est bien un passe-haut.

R3. En vous servant des oscillogrammes fournis, déterminer les paramètres inconnus intervenant dans cette
fonction de transfert.

Solution: La fréquence de coupure fc doit être très grande devant 100 Hz, car afin de dériver le signal
d’entrée à 100 Hz, il est nécessaire que tous les harmoniques soient dans la zone « basse fréquence » du
filtre. fc doit de plus être inférieure à 10 kHz pour transmettre fidèlement le signal à 10 kHz. On peut
proposer fc = 5 kHz.
À haute fréquence, l’amplitude du signal n’est pas modifié, donc H0 = 1

R4. Proposer un montage simple qui permettrait de réaliser ce filtre. On proposera des valeurs pour les compo-
sants.

Solution:
On peut proposer les filtres simples suivants :
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C

Rue us

R

Lue us

Pour le circuit de gauche : fc = 1
2πRC , et pour celui de droite fc = R

2πL
Pour les valeurs numériques, on peut proposer :
— à gauche : C = 10 nF et R = 3 kΩ
— à droite : L = 100 mH et R = 3 kΩ

Exercice n°9 Filtre passe-haut
On cherche à traiter un signal électrique issu d’un enregistrement musical proche de 300 Hz (plutôt dans les

sons graves), bruité par le réseau électrique à 50 Hz que l’on veut filtrer. Plus précisément, on souhaite construire
un filtre présentant une atténuation importante à f1 = 50 Hz (GdB(f1) ≤ −20 dB), mais la plus faible possible
à f2 = 300 Hz (GdB(f2) ≥ −0, 5 dB).
R1. On appelle gabarit d’un filtre la traduction graphique sur le diagramme de Bode des contraintes imposées

par le cahier des charges, c’est-à-dire une représentation du plan (GdB, log(ω)) sur laquelle sont matérialisées
les zones interdites (à hachurer) du diagramme de Bode.
Le représenter pour le filtre considéré

R2. Rappeler les pentes des asymptotes d’un filtre passe-haut du premier ordre.
R3. Un filtre passe-haut du premier ordre peut-il convenir ? Justifier.

Solution:

f

GdB

−20 dB

−0, 5 dB

50 Hz 300 Hz

Déterminons la pente de l’asymptote nécessaire pour vérifier la contrainteGdB(f1) ≤ −20 dB etGdB(f2) >
0, 5 dB

pente minimale = −0, 5− (−20)
log(300)− log(50) = 19, 5

log(6) = 25, 1 dB/dec

Ainsi la pente de l’asymptote doit être supérieure à 25, 1 dB, donc un filtre du premier ordre ne peut
pas convenir, il faut un filtre d’ordre 2.

R4. Proposer un montage simple (avec R, L et C) répondant au cahier des charges.

Exercice n°10 Mesure d’un écart de fréquence
Le décalage Doppler fD proportionnel à la vitesse à mesurer est souvent inférieur à 1 Hz et il concerne une

onde dont la fréquence initiale est de l’ordre de 10 MHz. La mesure précise de cette minuscule variation est
réalisée par détection synchrone.
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On considère deux signaux sinusoïdaux v1(t) = A cos (2πf1t) et v2 = B cos (2πf2t+ ϕ0), où A,B et ϕ0 sont
des constantes, dont on souhaite mesurer l’écart de fréquence f2 − f1, supposé très inférieur aux fréquences f1
et f2. Le montage de détection synchrone qui permet d’y parvenir est représenté schématiquement sur la figure
1 : il est formé d’un multiplieur analogiqueM (qui donne une tension de sortie proportionnelle au produit de
ses deux tensions d’entrée) et d’un filtre F dont la nature sera étudiée plus loin.

0.6 0.8 1.00.4

R1

Pendeen

R2

Perranporth

vitesse (en m/s)

M

#  ”uE

#  ”uN

#   ”ux1

#   ”ux2

Figure 4 – Carte des courants en Mer Celtique fournie par les radars de Pendeen et Perranporth repérés par les
points R1 et R2 [1]. Les spectres de la figure 3 concernent le point M signalé par un carré au bord blanc.

Partie B – Traitement des signaux radar
Le décalage Doppler fD proportionnel à la vitesse à mesurer est souvent inférieur à 1 Hz et il concerne une onde dont
la fréquence initiale est de l’ordre de 10 MHz. La mesure précise de cette minuscule variation est réalisée par détection
synchrone, technique dont la section I introduit le principe. Parallèlement, l’antenne réceptrice capte une multitude
d’échos provenant de chaque petit élément de la mer sur une surface de plusieurs centaines de kilomètres carrés. Pour
établir une carte de courant du type de celle visible sur la figure 4, il faut analyser simultanément tous ces échos et
déterminer d’où chacun provient, en calculant notamment la distance à l’antenne de chaque petit élément réflecteur.
Cette résolution en distance fait elle aussi appel à la détection synchrone (section II) et, dans les installations modernes,
on la conduit conjointement à la détermination des décalages Doppler. Par souci de simplicité, on dissocie l’étude de
ces deux aspects.

I – Mesure d’une différence de fréquence par détection synchrone
On considère deux signaux sinusoïdaux v1(t) = A cos(2πf1t) et v2 = B cos(2πf2t + φ0), où A, B et φ0 sont des
constantes, dont on souhaite mesurer l’écart de fréquence f2 − f1, supposé très inférieur aux fréquences f1 et f2.
Le montage de détection synchrone qui permet d’y parvenir est représenté schématiquement sur la figure 5 : il est
formé d’un multiplieur analogique M (qui donne une tension de sortie proportionnelle au produit de ses deux tensions
d’entrée) et d’un filtre F dont la nature sera étudiée plus loin.

Figure 5 – Principe d’un montage de détection synchrone.
Jusqu’à la question Q20 incluse, la partie inférieure

sur fond gris n’a pas à être considérée.
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Figure 1 – Principe d’un montage de détection synchrone. Jusqu’à la question R3 incluse, la partie inférieure
sur fond gris n’a pas à être considérée.

R1. Exprimer à un facteur près le signal intermédiaire vi, puis justifier que son spectre fait apparaître les
fréquences f2 + f1 et |f2 − f1|. Indiquer le type de filtrage qui permet d’obtenir, à la sortie du filtre, un
signal vd de fréquence |f2 − f1|.

Le traitement des signaux radars fait intervenir des composants spécifiques aux hautes fréquences. Pour des
ultrasons au contraire, avec des fréquences de l’ordre de 104 Hz, des composants usuels disponibles dans un
lycée (résistances, condensateurs et bobines d’auto-induction) fonctionneraient.
R2. Proposer pour F un schéma électrique de filtre passif convenable, sans préciser pour l’instant les valeurs

des composants. Un filtre d’ordre 1 est acceptable mais le jury valorisera davantage un filtre d’ordre 2, plus
efficace.

R3. Exprimer la fonction de transfert du montage de la question précédente. Pour f1 ≈ f2 ≈ 40 kHz, proposer
des valeurs réalistes pour les composants du filtre F .

À l’issue du filtrage, vd est pratiquement sinusoïdal et mesurer sa fréquence revient à mesurer |f2 − f1|, ce qui
était le but à atteindre.
Cependant, dans le cas de l’effet Doppler (où f1 = f et f2 = fr), il est important de connaître le signe de f2−f1
(pour connaître le sens de déplacement). Pour cela, on complète le montage de la figure 1 par une seconde voie
(représentée sur fond gris) dans laquelle on applique des opérations analogues après avoir déphasé v1 de +π/2
(démodulation en quadrature).
R4. Dans l’hypothèse d’un filtrage idéal, exprimer le signal vdQ et expliquer comment son observation conjointe

à celle de vd permet d’obtenir le signe de f2 − f1.

III Résolution de problème
Exercice n°11 Identification d’un filtre

On soumet un filtre à un signal créneau de fréquence 400 Hz puis 3600 Hz, et on obtient les courbes ci-dessous.
Déterminer la nature et les caractéristiques du filtre.

Page 13



Physique − TD n°8 − Corrigé
Page 14 / 14

PCSI
Année 2025-2026

0.000 0.001 0.002 0.003 0.004 0.005
t (s)

0.5

0.0

0.5

1.0

1.5

2.0

v e
,v

s (
V)

0.0000 0.0001 0.0002 0.0003 0.0004 0.0005
t (s)

0.6

0.4

0.2

0.0

0.2

0.4

0.6

v s
 (V

)

Page 14


	Exercices d'application directe du cours
	TP : Mesure d'un déphasage
	Spectre d'un signal triangulaire
	Comportements asymptotiques 
	Filtre RL 
	Filtrage avant un haut-parleur tweeter 

	Exercices d'approfondissement
	Filtre de Wien 
	Dimensionnement d'un moyenneur 
	Transformation d'un triangle 
	Filtre passe-haut 
	Mesure d'un écart de fréquence 
	Identification d'un filtre


