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Chapitre n°12 Approche énergétique du
mouvement d’un point matériel

Thème II. Mouvements et interactions (Mécanique)

Le saut à la perche a pris ses racines dans la Grèce
Antique où des perches rigides en bois étaient utilisées
afin de franchir des ruisseaux ou des haies de faibles
hauteurs. Sport rendu Olympique en 1896 par Pierre
de Coubertin, les hauteurs franchies n’ont depuis cessé
d’augmenter grâce aux évolutions du matériel et des
techniques de saut, passant ainsi de 3,30 m à 6,18 m
en un peu plus de 100 ans.
L’énergie potentielle du centre de masse de l’athlète est
un bon indicateur de la performance d’un saut. D’un
point de vue énergétique, l’athlète se doit d’accumuler
le plus d’énergie cinétique puis potentielle possible afin
d’amener son centre de masse le plus haut possible. Mais
pourquoi donc utiliser une perche ?
Bien que l’humain soit limité en vitesse lors de la course
d’élan, d’autant plus lorsqu’il tient une perche à bout de
bras, il peut encore accumuler de l’énergie après le décol-
lage afin d’atteindre des altitudes toujours plus élevées. Évolution des différentes énergies lors d’un saut en

fonction du temps.

Pré-requis
• Première : Thème Mouvement et interactions
◦ Énergie cinétique d’un système modélisé par un point matériel.
◦ Expression du travail dans le cas d’une force constante.
◦ Théorème de l’énergie cinétique
◦ Forces conservatives. Énergie potentielle. Cas du champ de pesanteur terrestre. Forces non-conservatives :

exemple des frottements.
◦ Énergie mécanique. Conservation et non conservation de l’énergie mécanique. Gain ou dissipation d’énergie.
• Terminale : Thème Mouvement et interactions
◦ Aspects énergétiques. Exploiter la conservation de l’énergie mécanique ou le théorème de l’énergie cinétique

dans le cas du mouvement dans un champ uniforme.
• PCSI : Thème Mouvement et interactions
◦ Chapitre n°10 : Description et paramétrage du mouvement d’un point
◦ Chapitre n°11 : Lois de Newton

Objectifs du chapitre
Dans le chapitre précédent, nous avons étudié le mouvement de points matériels en appliquant le principe

fondamental de la dynamique.
Dans ce chapitre, nous allons compléter les connaissances sur l’aspect énergétique vues au lycée et développer

d’autres méthodes d’étude du mouvement, en complément du PFD.
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Ai-je bien appris mon cours ?
1 − − − Définir le travail et la puissance d’une force.
2 − − − Énoncer le théorème de la puissance cinétique et le théorème de l’énergie cinétique (en français

et avec l’équation).
3 − − − Définir ce qu’est une force conservative.
4 − − − Donner les expressions de l’énergie potentielle de pesanteur (champ uniforme), de l’énergie po-

tentielle gravitationnelle (champ créé par un astre ponctuel), de l’énergie potentielle élastique.
5 − − − Établir les expressions de l’énergie potentielle de pesanteur (champ uniforme), de l’énergie po-

tentielle gravitationnelle (champ créé par un astre ponctuel), de l’énergie potentielle élastique.
6 − − − Donner la relation entre force conservative et énergie potentielle associée à l’aide du vecteur

gradient −−→grad .
7 − − − Définir l’énergie mécanique.
8 − − − Énoncer le théorème de la puissance mécanique et le théorème de l’énergie mécanique (en français

et avec l’équation).
9 − − − Définir mouvement conservatif.
10 − − − Définir position d’équilibre, position d’équilibre stable et position d’équilibre instable.
11 − − − Donner les caractéristiques d’une position d’équilibre, d’une position d’équilibre stable et d’une

position d’équilibre instable en terme d’énergie potentielle.
12 − − − Comment identifie-t-on les positions accessibles à un point matériel à partir du graphe de l’énergie

potentielle ?
13 − − − Établir l’équation différentielle du mouvement au voisinage d’une position d’équilibre.
14 − − − Expliquer l’algorithme d’Euler.
15 − − − Réécrire l’équation différentielle du deuxième ordre sous forme d’une équation vectorielle du

premier ordre pour pouvoir la résoudre avec la méthode d’Euler.

Page 2



Physique − Chapitre n°12
Page 3 / 19

PCSI
Année 2025-2026

I Travail et puissance
I.1 Travail d’une force
Capacité exigible : Reconnaître le caractère moteur ou résistant d’une force.

Le travail élémentaire de la force
−→
f appliquée au point M au cours du

déplacement élémentaire d−−→OM dans le référentiel R est défini par :

δW/R(−→f ) = −→f · d−−→OM

Un travail s’exprime en Joule (J).

A

M

B

−→
f

−−−→dOM
•

•

•

Définition : Travail élémentaire d’une force

� Si δW (−→f ) = −→f · d−−→OM > 0, la force est dite motrice. A

M

B

−→
f

−−−→dOM•
•

•

� Si δW (−→f ) = −→f · d−−→OM < 0, la force est dite résistante. A

M

B

−→
f −−−→dOM•

•

•

� Si δW (−→f ) = −→f · d−−→OM = 0, la force ne travaille pas. A

M

B

−→
f

−−−→dOM•
•

•

À retenir

Le travail de la force
−→
f appliquée au pointM au cours d’un déplacement deM allant de A (à l’instant

tA) vers B (à l’instant tB > tA) est la somme des travaux élémentaires en suivant le chemin suivi par M
pour aller de A à B :

WA→B(−→f ) =
∫
M∈chemin A→B

δW(−→f ) =
∫
M∈chemin A→B

−→
f · d−−→OM

Définition : Travail d’une force

On considère un point M de masse m qui glisse sur un plan incliné faisant un angle α avec l’horizontale, d’un
point A à un point B séparés d’une altitude h.

On prend en compte les frottements solides de coefficient f modélisés par la loi de Coulomb : ‖−→RT‖ =
f‖
−→
RN‖.

Q1. En exploitant le principe fondamental de la dynamique projeté dans la direction perpendiculaire au plan
incliné, exprimer ‖−→RN‖. En déduire ‖−→RT‖, puis

−→
RT .

Q2. Exprimer le travail de la réaction du support (normale et tangentielle).

On considère le système du pendule simple : un point M de masse m est attaché à l’extrémité d’un fil de
longueur ` inextensible et sans masse. On repère la position du point M par l’angle θ que fait le fil avec la
verticale descendante.
Q3. Exprimer le travail du poids au cours du déplacement du point M depuis l’angle θA à l’angle θB.

Activité n°1 − Calculs de travaux
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Après avoir calculé un travail (ou une puissance, cf § suivant), prenez l’habitude de TOUJOURS
vérifier la cohérence physique : homogénéité et signe du travail avec la nature motrice ou résistante
de la force !

Méthode

La formule apprise en terminale WAB(−→f ) = −→f ·−→AB, est valable uniquement pour une force constante (en
norme, direction et sens). Ne la généralisez pas !

Attention

I.2 Puissance d’une force
Capacité exigible : Reconnaître le caractère moteur ou résistant d’une force. Savoir que la puissance
dépend du référentiel.

La puissance de la force
−→
f appliquée à M(m) animé de la vitesse

−−−−−→
v(M/R) dans R :

P/R(−→f ) = −→f ·
−−−−−→
v(M/R)

P s’exprime en Watt (W).

Définition : Puissance d’une force

P/R(−→f ) = δW/R(−→f )
dt ⇔ δW/R(−→f ) = P/R(−→f )dt

À retenir : Relation puissance / travail élémentaire

Reprendre les cas de l’exercice du § I.1 et exprimer la puissance des forces. Étudier le signe des puissances et
conclure sur le caractère résistant ou moteur des forces.

Activité n°2 − Puissances

II Théorème de l’énergie cinétique
II.1 Énergie cinétique

Soit M un point matériel de masse m et de vecteur vitesse
−−−−−→
v(M/R) par rapport à un référentiel R.

L’énergie cinétique de M dans le référentiel R est : Ec(M/R) = 1
2m
∥∥∥−−−−−→v(M/R)

∥∥∥2

L’énergie cinétique s’exprime en Joule (J).

Définition : Énergie cinétique

Remarque : Ec(M/R) dépend du référentiel R tout comme
−−−−−→
v(M/R).
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II.2 Théorèmes de la puissance et de l’énergie cinétique
Système étudié : point matériel M(m).
Référentiel d’étude : R

(
O;−→ux,−→uy,−→uz

)
supposé galiléen à l’échelle de l’expérience

Bilan des forces : M(m) est soumis à des forces −→fi de résultante
∑
i

−→
fi

Le théorème de la puissance cinétique, dans un référentiel R galiléen énonce que la dérivée par
rapport au temps de l’énergie cinétique d’un point matériel M(m) est égale à la somme des puissances
des forces qui s’exercent sur le système :

dEc(M/R)
dt =

∑
Pext =

∑
i

−→
fi ·
−−−−−→
v(M/R)

À connaître : Théorème de la puissance cinétique

Le théorème de l’énergie cinétique, dans un référentiel R galiléen, énonce que la variation de l’énergie
cinétique d’un point matériel M(m) entre deux points A et B de sa trajectoire est égale à la sommes des
travaux des forces entre les deux points A et B :

∆A→BEc(M/R) =
∑
Wext

AB =
∑
i

∫
AyB

−→
fi · d−−→OM

avec ∆A→BEc(M/R) notation= Ec(tB)− Ec(tA)

À connaître : Théorème de l’énergie cinétique

II.3 Utilisation du TPC et du TEC
Capacité exigible : Utiliser le théorème approprié en fonction du contexte.
Lorsque vous serez confrontés à un problème de mécanique, plusieurs pistes de résolution sont possibles mais
dans certaines situations, une piste s’avère plus judicieuse que les autres. Il faut donc savoir repérer ces situa-
tions pour être le plus efficace possible. Les lois de la puissance et de l’énergie cinétiques n’apportent aucune
information supplémentaire par rapport au PFD. On passe simplement d’une équation vectorielle (PFD) à une
équation scalaire (soit TPC soit TEC), on perd donc de l’information.

• Pour établir l’équation différentielle du mouvement d’un système à un seul degré de liberté (ddl)
(une seule variable d’espace suffit à la description du mouvement) ;
• Si les forces non connues (réaction normale du support, tension du fil) ne travaillent pas.

Méthode : Quand utiliser le TPC?

• Pour déterminer un scalaire (par ex : norme du vecteur vitesse, distance) d’un système à 1 ddl à un
instant t1 particulier et que l’on connaît la valeur de ce scalaire à un autre instant t0.
• Si les forces non connues (réaction normale du support, tension du fil) ne travaillent pas.

Méthode : Quand utiliser le TEC?
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� Rédaction commune à tous les exercices de mécanique : système ; référentiel ; bilan des forces ;
choisir la base de projection adaptée (cartésienne, polaire, cylindrique, sphérique) ; schéma complet du
système étudié, avec la base adaptée et les forces représentées dessus.

� Écrire la phrase : « Théorème de la puissance cinétique au système . . . dans le référentiel ........ (gali-

léen) » et écrire cette loi : dEc(M/R)
dt =

∑
Pext

� Exprimer la puissance des différentes forces.
� Exprimer l’énergie cinétique à partir de l’expression du vecteur vitesse dans la base de projection

choisie. Calculer la dérivée de l’énergie cinétique.
� Égaliser la dérivée de l’énergie cinétique calculée précédemment et la somme des puissances des forces

calculée précédemment.
� Conclure sur l’équation différentielle du mouvement.

Méthode : Comment appliquer le TPC?

� Rédaction commune à tous les exercices de mécanique : système, référentiel, choix de la base
de projection, bilan des forces, schéma complet.

� Choisir les deux instants tA et tB, adaptés aux données du problème et à la question posée, entre
lesquels appliquer la TEC.

� Écrire la phrase : « Théorème de l’énergie cinétique au système . . . dans le référentiel ........ (galiléen)
entre les points A et B » et écrire ce théorème : ∆A→BEc = Ec(B)− Ec(A) =

∑
WA→B

� Exprimer le travail des différentes forces sur le trajet AB.
� Exprimer la différence d’énergie cinétique entre A et B : ∆A→BEc = Ec(B)− Ec(A)
� Égaliser la différence d’énergie cinétique et les travaux calculés précédemment.
� Conclure sur ce qu’est demandé dans l’énoncé.

Méthode : Comment appliquer le théorème de l’énergie cinétique (TEC) ?

Avant d’appliquer la TEC, il faut bien préciser les deux instants/positions entre lesquels on l’écrit.
Attention − Erreur à ne pas commettre

Le curling est un sport pratiqué sur la glace avec des pierres en granite, taillées et polies selon un gabarit
international. Le but est de placer les pierres le plus près possible d’une cible circulaire dessinée sur la glace,
appelée la maison. Nous envisageons le lancer d’une pierre assimilée à un pointM de masse m = 20 kg glissant
selon l’axe Ox vers le point B visé (la maison). La pierre est lancée de la position initiale A avec une vitesse
−→v0 = v0

−→ux, la maison se trouvant à la distance D = AB = 25 m du point A.
Les frottements dûs à la glace sont modélisés par les lois de Coulomb sur le frottement solide de coefficient de
frottement f = 0, 015. Nous négligerons par ailleurs toute force de frottement fluide.
Q1. Par application du principe fondamental de la dynamique et projection sur la direction orthogonale au

mouvement, déterminer ‖−→RN‖.
Q2. En déduire ‖−→RT‖, puis

−→
RT .

Q3. Par application d’un théorème énergétique judicieusement choisi, déterminer la vitesse initiale v0 pour
que le lancer étudié soit gagnant : la pierre atteint la maison et s’y arrête !

Exercice à maîtriser n°3 − Curling
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III Force conservative et énergie potentielle
III.1 Définition

Une force conservative
−→
f est une force dont le travail WAB(−→f ) ne dépend pas du chemin

suivi pour aller de A à B.

Définition : Force conservative et énergie potentielle

III.2 Énergie potentielle

� Le travail d’une force conservative −→f lors d’un déplacement entre A et B peut alors s’écrire comme
l’opposé de la variation d’une fonction de la position appelée énergie potentielle :

WAB(−→f ) = −
(
Ep(B)− Ep(A)

) notation= −∆ABEp

� Il existe une fonction de la position uniquement, appelée énergie potentielle telle que le travail élémen-
taire de la force s’exprime selon : δW (−→f ) = −dEp

Force conservative et énergie potentielle

À l’inverse, une force dont le travail dépend du chemin suivi entre deux points A et B, n’est pas
conservative.

III.3 Différentes énergies potentielles
Capacité exigible : Établir et citer les expressions de l’énergie potentielle de pesanteur (champ uniforme),
de l’énergie potentielle gravitationnelle (champ créé par un astre ponctuel), de l’énergie potentielle
élastique.

1. Calculer le travail de la force −→f s’exerçant sur M au cours d’un déplacement entre deux positions A
et B : WA→B(−→f ) =

∫
AyB

−→
f · d−−→OM .

2. Mettre le travail sous la forme de l’opposé de la différence d’une fonction de la position uniquement en
B et en A : −(Ep(B)− Ep(A)).

3. Identifier l’énergie potentielle à une constante additive près.
Il est aussi possible d’exprimer le travail élémentaire, constater qu’il ne dépend pas du mouvement, et de
l’écrire ensuite sous la forme −dEp.

Méthode : Comment exprimer une énergie potentielle ?

Q1. Établir l’énergie potentielle de pesanteur.
Q2. Établir l’énergie potentielle élastique.
Q3. Rappeler l’expression de la force gravitationnelle exercée par une masse mC située en C sur une masse m

située en M . On utilisera les coordonnées sphériques de centre C.
Établir l’expression de l’énergie potentielle gravitationnelle.

Démonstration à maîtriser n°4 − Établir les expressions des énergies potentielles
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� L’énergie potentielle de pesanteur d’un point matériel de masse m, se trouvant à l’altitude z d’un
axe (Oz) ascendant s’écrit

Epp = +mgz + cste

� L’énergie potentielle de pesanteur d’un point matériel de masse m, se trouvant à l’altitude z d’un
axe (Oz) descendant s’écrit

Epp = −mgz + cste

� L’énergie potentielle élastique d’un ressort de longueur `(t), de constante de raideur k, de longueur
à vide `0 s’écrit

Ep,él = 1
2k
(
`(t)− `0

)2 + cste

� L’énergie potentielle gravitationnelle d’un point matériel M de masse m en interaction gravita-
tionnelle avec un astre ponctuel A de masse mA s’écrit :

Ep,grav = −G× m×mA

AM

À connaître : Expressions des énergies potentielles

Attention au signe devant mgz pour exprimer l’énergie potentielle de pesanteur.
Toujours vérifier le signe à l’aide du sens physique de l’énergie potentielle :
— Si l’axe (Oz) est ascendant, lorsque z augmente, alors Epp doit augmenter, d’où +mgz.
— Si l’axe (Oz) est descendant, lorsque z augmente, alors Epp doit diminuer, d’où −mgz.

Attention − Erreur à ne pas commettre

III.4 Expression d’une force conservative à l’aide du gradient
III.4.a) Introduction

Pour une force −→f conservative, le travail élémentaire s’écrit en fonction de la variation infinitésimale de
l’énergie potentielle : δW (−→f ) = −dEp

Or par définition du travail élémentaire : δW (−→f ) = −→f · d−−→OM
On peut alors écrire que la variation infinitésimale de l’énergie potentielle s’écrit : dEp = −−→f · d−−→OM

III.4.b) Outils mathématiques

On définit la dérivée partielle de g par rapport à la variable x, avec y et z maintenues constantes, notéeÅ
∂g

∂x

ã
y,z

par : Å
∂g

∂x

ã
y,z

= lim
δx→0

g(x+ δx, y, z)− g(x, y, z)
δxÅ

∂g

∂x

ã
y,z

(x0, y0, z0) se dit « dérivée partielle de g par rapport à x, à y et z constants, évaluée en x0, y0,

z0 », ou se lit « d-rond g sur d-rond x »

Définition : Dérivée partielle d’une fonction de plusieurs variables

Soit g une fonction scalaire réelle des trois coordonnées d’un point M , de différentielle dg.
On définit le vecteur gradient de la fonction scalaire g, noté −−→grad g, par :

dg =
( −−→grad (g)

)
· d−−→OM

Définition : Opérateur gradient
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L’expression du vecteur gradient dépend du système de coordonnées :
• Le vecteur gradient de la fonction scalaire f en coordonnées cartésiennes s’exprime selon :

−−→grad (f) =
Å
∂f

∂x

ã
y,z

−→ux +
Å
∂f

∂y

ã
x,z

−→uy +
Å
∂f

∂z

ã
x,y

−→uz

• Le vecteur gradient de la fonction scalaire f en coordonnées cylindriques (r, θ, z) s’exprime selon :

−−→grad (f) =
Å
∂f

∂r

ã
θ,z

−→ur + 1
r

Å
∂f

∂θ

ã
r,z

−→uθ +
Å
∂f

∂z

ã
r,θ

−→uz

• Le vecteur gradient de la fonction scalaire f en coordonnées sphériques (r, θ, ϕ) s’exprime selon :

−−→grad (f) =
Å
∂f

∂r

ã
θ,ϕ

−→ur + 1
r

Å
∂f

∂θ

ã
r,ϕ

−→uθ + 1
r sin(θ)

Å
∂f

∂ϕ

ã
r,θ

−→uϕ

III.4.c) Force conservative et gradient
Revenons à la définition de l’énergie potentielle : ∃Ep, fonction uniquement des variables d’espace telle que :

δW (−→f ) = −dEp
−→
f · d−−→OM = −dEp

or dEp = −−→grad (Ep) · d−−→OM
donc −→f · d−−→OM = −

−−→grad (Ep) · d−−→OM

On dit qu’une force conservative dérive d’une énergie potentielle, et peut s’écrire comme l’opposé du
gradient de l’énergie potentielle : −→

f = − −−→grad (Ep)

À connaître : Lien entre force conservative et énergie potentielle

Capacité exigible : Déterminer l’expression d’une force à partir de l’énergie potentielle, l’expression du
gradient étant fournie.

Utiliser le lien entre une force conservative et l’énergie potentielle et le formulaire des gradients dans les
différents systèmes de coordonnées pour répondre aux questions suivantes.
Q1. On donne l’énergie potentielle de pesanteur en coordonnées polaires : Ep = −mgr cos(θ). Exprimer le

poids subit par la masse en coordonnées polaires.

Q2. L’énergie de Van der Waals d’interaction entre deux molécules s’écrit Ep(r) = −K
r6 . Établir l’expression

de la force associée.

Activité n°5 − Gradient et énergie potentielle

IV Énergie mécanique
IV.1 Définition

Soit M un point matériel de masse m. On note Ep son énergie potentielle qui correspond à la somme des
énergies potentielles associées à toutes les forces extérieures conservatives.
L’énergie mécanique Em du point M est : Em(M/R) = Ec(M/R) + Ep(M)

Définition : Énergie mécanique
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IV.2 Théorème de la puissance mécanique et de l’énergie mécanique
Système étudié : point matériel M(m).
Référentiel d’étude : R

(
O;−→ux,−→uy,−→uz

)
supposé galiléen à l’échelle de l’expérience

Bilan des forces : M(m) est soumis à des forces −→fi de résultante
∑
i

−→
fi

Le théorème de la puissance mécanique, dans un référentiel R galiléen énonce que la dérivée par
rapport de l’énergie mécanique d’un point matériel M(m) au temps est égale à la somme des puissances
des forces non conservatives qui s’exercent sur le système :

dEm(M/R)
dt =

∑
i

Pnon conservative =
∑
i

−−→
fi,nc ·

−−−−−→
v(M/R)

À connaître : Théorème de la puissance mécanique

Le théorème de l’énergie mécanique, dans un référentiel R galiléen, énonce que la variation de l’éner-
gie mécanique d’un point matériel M(m) entre deux points A et B de sa trajectoire est égale à la sommes
des travaux des forces non conservatives entre les deux points A et B :

∆A→BEm(M/R) =
∑
Wnon conservative

AB =
∑
i

∫
AyB

−−→
fi,nc · d−−→OM

À connaître : Théorème de l’énergie mécanique

� Utilisez les théorèmes de l’énergie mécanique ou de la puissance mécanique,
plutôt que le TEC/TPC

� L’application du TEM/TPM est identique à celle du TEC/TPC :
• Lors du bilan des actions mécaniques, distinguer les forces conservatives des forces non
conservatives.
• Exprimer les énergies potentielles des forces conservatives.
• Calculer les travaux/puissances uniquement des forces non conservatives. (Les forces conservatives

sont déjà prises en compte dans l’énergie potentielle.)
• Poursuivre l’application du TEM/TPM.

Méthode : Vive le TEM/TPM!

On étudie le pendule simple : une masse ponctuelle m est accrochée à l’extrémité d’un fil inextensible sans
masse de longueur `, que l’on fait osciller dans un plan vertical.
Par application d’un théorème énergétique judicieusement choisi, établir l’équation différentielle du mou-
vement.

Exercice à maîtriser n°6 − Pendule simple

On étudie la descente en luge de la petite Louise. L’ensemble est assimilé à un point matériel M de masse
m = 20 kg. La piste est de longueur L = 100 m et est inclinée de 11 %. Elle part avec une vitesse nulle du
haut de la piste. On néglige les frottements fluides ; les frottements solides sont modélisés par les frottements
de Coulomb de coefficient f = 0, 10.
Par application d’un théorème énergétique judicieusement choisi, déterminer la vitesse avec laquelle
Louise arrive en bas.

Exercice à maîtriser n°7 − Descente en luge
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IV.3 Mouvement conservatif/non conservatif
Capacité exigible : Reconnaître les cas de conservation de l’énergie mécanique. Utiliser les conditions
initiales.

L’énergie mécanique se conserve, c’est-à-dire reste constante, si et seulement si la puissance des
forces non conservatives est nulle, c’est-à-dire ssi le système n’est soumis qu’à des forces conser-
vatives et à des forces non conservatives qui ne travaillent pas.

À connaître : Cas de conservation de l’énergie mécanique

Si toutes les forces qui interviennent sont conservatives (et dont on connaît l’énergie potentielle
associée), il est préférable d’écrire la conservation de l’énergie mécanique au lieu d’appliquer le
théorème de l’énergie cinétique. Il est en effet beaucoup plus facile d’exprimer la variation d’énergie
potentielle que de calculer le travail d’une force.

Méthode

V Mouvements conservatifs à une dimension
Un système à un degré de liberté est un système dont le repérage du système dans l’espace ne nécessite qu’un

seul paramètre. Dans le cours on considèrera que le seul paramètre est l’abscisse x des coordonnées cartésiennes.
Cela pourrait être également une distance r, un angle θ . . . Dans cette partie on considère un système sur lequel
s’exercent des forces conservatives −→F = Fx(x)−→ux, on définit alors une énergie potentielle résultante Ep, reliée à
−→
F , qui ne dépend que de x.

V.1 Utilisation du graphe d’énergie potentielle
L’étude dans cette partie est essentiellement qualitative et se fait à partir du graphe de Ep en fonction de

l’unique variable d’espace x, situé ci-dessous.

Em3

Em2

Em1

Em4

x3 x′
3 x′′

3
x

Ep(x)

Figure 1 – Énergie potentielle d’un système conservatif à 1 degré de liberté
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V.1.a) Sens de la force
Capacité exigible : Déduire qualitativement, en un point du graphe d’une fonction énergie potentielle,
le sens et l’intensité de la force associée.

Q1. Exprimer la force −→F en fonction de Ep(x).

Q2. Dans quel sens est la force −→F par rapport à −→ux selon le sens de variation de Ep ? L’indiquer sur le graphe
page 11.

Q3. Où la norme de la force est-elle nulle ? maximale ? L’indiquer sur le graphe de la figure 1 page 11.

Exercice à maîtriser n°8 − Sens et l’intensité de la force

V.1.b) Position d’équilibre

On dit que xe est une position d’équilibre ssi lorsqu’on placeM en cette position xe sans vitesse initiale
il y reste.

Définition : Position d’équilibre

� On dit qu’une position est un équilibre stable, si quand on écarte légèrement un point M de sa
position d’équilibre, il apparaît une force qui tend à ramener M vers sa position d’équilibre initiale.

� On dit qu’une position est un équilibre instable, si quand on écarte légèrement un point M de sa
position d’équilibre, il apparaît une force qui tend à éloigner davantage M de sa position d’équilibre
initiale.

Définitions : Position d’équilibre stable/instable

Capacité exigible : Déduire d’un graphe d’énergie potentielle l’existence de positions d’équilibre, et la
nature stable ou instable de ces positions.

En une position d’équilibre stable, l’énergie po-
tentielle présente un .................................

x

Ep Cela se traduit par :

dEp
dx (xe) = . . . . . .

d2Ep
dx2 (xe) . . . . . . . . .

En une position d’équilibre instable, l’énergie po-
tentielle présente un .....................................

x

Ep Cela se traduit par :

dEp
dx (xe) = . . . . . .

d2Ep
dx2 (xe) . . . . . . . . .

À connaître

� La détermination des positions d’équilibre se fait bien par des calculs de dérivées par rapport à la
variable d’espace et non par une dérivée temporelle

��
�
��H

HHHH

dEp
dt = 0.

� L’écriture dEp
dx (xe) = 0 signifie que : on commence par dériver Ep par rapport à x :

ÅdEp
dx

ã
, PUIS on

évalue la dérivée en x = xe (et non l’inverse !). Le (xe) se met à la hauteur du trait de fraction et donc
également à la hauteur du signe égal, et encore moins au-dessus du trait de fraction.

Attention − Erreurs à ne pas commettre
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Q1. Identifier sur le graphe de la figure 1 page 11 les positions d’équilibre.
Q2. Déterminer la stabilité de ces positions d’équilibre.

Exercice à maîtriser n°9 − Identifier les positions d’équilibre et leur stabilité

V.1.c) Nature des trajectoires à partir de la courbe de Ep(x)
Capacité exigible : Déduire d’un graphe d’énergie potentielle le comportement qualitatif : trajectoire
bornée ou non, mouvement périodique, positions de vitesse nulle.

� Si les états accessibles de M sont bornés, c’est-à-dire x ∈ [xinf, xsup], on dit que la trajectoire de M
est bornée. La conservation de l’énergie mécanique assure alors que le mouvement est périodique : le
point M va osciller entre les deux bornes.

� Si les états accessibles de M ne sont pas bornés, c’est-à-dire x ∈ [xinf,+∞[, on dit que la trajectoire
de M n’est pas bornée. Le point M peut alors s’éloigner à l’infini.

Définitions : Trajectoire bornée / non bornée

Pour prévoir le comportement d’un système conservatif à un degré de liberté à partir d’un graphe d’énergie
potentielle représentatif de Ep : x 7→ Ep(x) :
1. Déterminer la valeur de Em à l’aide des conditions initiales.

Le système étant conservatif, Em est constante.
2. Placer la droite d’équation Em sur le même graphe que Ep.

3. Utiliser le fait que Em = Ec + Ep(x) et Ec = 1
2mv

2
x ≥ 0, donc Em ≥ Ep(x)

⇒ Les seules positions x accessibles au système sont celles pour lesquelles la courbe de Ep est en-dessous
de la courbe de Em.

4. On en déduit deux types de trajectoires :
• trajectoire bornée : on parlera d’état lié (où le comportement peut être oscillant).
• trajectoire bornée : on parlera d’état de diffusion

5. on repère les points de vitesse nulle au niveau de l’intersection de la courbe d’énergie potentielle et de
celle d’énergie mécanique.

Méthode : Comment prédire l’évolution du système à l’aide du graphe de Ep ?

Q1. Donner l’expression de Em en fonction de m, ẋ et Ep(x).
Quelle inégalité est vérifiée par l’énergie mécanique Em et l’énergie potentielle Ep(x) ?

Q2. En déduire que les positions x accessibles au point M sont imposées par une inégalité entre Ep et Em.
Q3. À l’aide du graphe de la figure 1 page 11, décrire la nature du mouvement du point M selon la valeur de

l’énergie mécanique : Em1, Em2, Em3 et Em4.
Pour chaque valeur de Em, décrire les positions de vitesse nulle.

Exercice à maîtriser n°10 − Étude des trajectoires à partir de la courbe Ep(x)

Page 13



Physique − Chapitre n°12
Page 14 / 19

PCSI
Année 2025-2026

� Si Em = Em1 : une seule position satisfait à la condition Em ≥ Ep(x), donc la seule position accessible
est xe1. Le système est donc immobile à la position d’équilibre xe1.

� Si Em = Em2 : les positions qui satisfont à la condition Em ≥ Ep(x) sont comprises entre x2 et x′
2 :

la trajectoire est donc bornée.

• En x = x2 ou x = x′
2, Em = Ep, alors Ec = 0, donc ce sont des positions de vitesse nulle.

• Supposons qu’initialement, M se trouve en x2 avec une vitesse nulle.

◦ x2 n’étant pas une position d’équilibre, M va nécessairement se déplacer, la seule position
possible est au-delà de x2, donc M va se déplacer dans le sens des x croissants.
M se dirigeant vers des positions d’énergie potentielle plus faible, son énergie cinétique va
augmenter jusqu’en xe1.
◦ M passe en xe1 avec une vitesse non nulle, et ne s’y arrête donc pas. M poursuit vers les x

croissants, pour lesquels Ep augmente, donc Ec diminue. Jusqu’à x′
2, où Em = Ep, la vitesse de

M s’annule.
x′

2 n’étant pas une position d’équilibre M va nécessairement se déplacer, la seule position
possible est en-dessous de x′

2, donc M va se déplacer dans le sens des x décroissants, et donc
emprunter le chemin exactement inverse avec la même vitesse en valeur absolue.
◦ Et ainsi de suite.

Le mouvement deM est alors ici périodique :M oscille périodiquement entre x2 et x′
2. (attention,

périodique ne veut pas dire sinusoïdal !).

� Si Em = Em3 : les positions qui satisfont à la condition Em ≥ Ep(x) sont x ∈ [x3, x
′
3] et x ∈ [x′′

3,+∞[
En x = x3 ou x = x′

3 ou x = x′′
3, Em = Ep, alors Ec = 0, donc ce sont des positions de vitesse

nulle.
Les positions accessibles au point M dépendent de sa position initiale.
Si x(0) ∈ [x3, x

′
3], alors la trajectoire de M sera bornée.

Si x(0) ∈ [x′′
3,+∞[, alors M pourra s’éloigner à l’infini, la trajectoire n’est donc pas bornée.

� Si Em = Em4, alors toutes les positions x ∈ [x4,+∞[ sont accessibles, la trajectoire n’est pas
bornée.

V.1.d) Barrière et puits de potentiel
Capacité exigible : Identifier sur un graphe d’énergie potentielle une barrière et un puits de potentiel.

Une barrière de potentiel est une énergie potentielle dont la dépendance spatiale est caractérisée par
une région d’énergie potentielle maximale.

Définition : barrière de potentiel

Considérons la situation décrite sur la figure 1. Supposons que M se trouve initialement en x0 > x′′
3 avec une

«vitesse» ẋ < 0. Au cours du temps, x diminue et le point M se rapproche de l’état x′′
3. Il atteint ce point avec

une «vitesse» nulle, puisque Em = Ep(x3) et subit une force fx = −dEp
dx > 0 de sorte que le M repart dans

l’autre sens. La position x = x′′
3 agit ainsi comme une barrière infranchissable.

Un puits de potentiel est une énergie potentielle dont la dépendance spatiale est caractérisée par une
région d’énergie potentielle minimale dans lequel un système peut être piégé.

Définition : puits de potentiel
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Supposons maintenant la situation où x0 se trouve entre x3 et x′
3. Le point M va atteindre la barrière x′

3
avec une vitesse nulle, puis rebrousser chemin pour rencontrer une autre barrière en x3. Finalement le point va
osciller entre ces deux états : on dit que le M est piégé dans un puits de potentiel.

V.2 Petits mouvements au voisinage d’une position d’équilibre stable
Soit xe une position d’équilibre stable d’un système conservatif à 1 ddl d’énergie potentielle Ep(x).

On a donc, en xe :
dEp
dx (xe) = 0 et d2Ep

dx2 (xe) > 0
On étudie le mouvement de faible amplitude du système autour de l’équilibre stable xe.

Capacité exigible : Établir l’équation différentielle du mouvement au voisinage d’une position d’équi-
libre.

Q1. Exprimer l’énergie potentielle au voisinage de la position d’équilibre xe en utilisant le développement de
Taylor au deuxième ordre.

Q2. En déduire l’expression de l’énergie mécanique au voisinage de la position d’équilibre.
Q3. Que peut-on dire de l’énergie mécanique dans le cadre de l’étude ?
Q4. Exprimer la dérivée de l’énergie mécanique par rapport au temps. Et en déduire l’équation différentielle

du mouvement ?
Q5. Quelle est la nature de l’équation différentielle ? En identifier sa caractéristique.

Exercice à maîtriser n°11 − Mouvement au voisinage d’une position d’équilibre stable

L’équation du mouvement d’un système conservatif à un degré de liberté, au voisinage d’une
position xe d’équilibre stable est celle d’un oscillateur harmonique

ẍ+ ω2
0(x− xe) = 0 de pulsation propre ω0 =

…
1
m

d2Ep
dx2 (xe)

Le point M oscille donc au voisinage de la position d’équilibre stable xe avec une période T0 = 2π
ω0

.

À connaître : Mouvements conservatifs au voisinage d’un équilibre stable
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V.3 Étude numérique : Effets de non-linéarité
Capacité numérique exigible : À l’aide d’un langage de programmation, résoudre numériquement une
équation différentielle du deuxième ordre non-linéaire et faire apparaître l’effet des termes non-linéaires.

V.3.a) Position du problème
L’équation différentielle du pendule simple

d2θ

dt2 + ω2
0 sin(θ) = 0

ne peut pas être résolue analytiquement. On peut la résoudre numériquement à l’aide de l’algorithme d’Euler
(le plus simple à mettre en œuvre, mais aussi le moins précis) ou à l’aide d’algorithmes plus évolués qui sont
déjà programmés dans certaines bibliothèques python.

Cependant, la méthode d’Euler, ou les autres algorithmes de résolution numérique permet de résoudre
numériquement des équations différentielles du premier ordre du type dX

dt = f(t,X) avec X(t0) = X0 (CI).

Q1. Réécrire l’équation différentielle du mouvement du pendule simple sous la forme d’un problème du

premier ordre c’est-à-dire dX
dt = f(t,X), en posant X =

(
θ

dθ
dt

)
.

Q2. Écrire la fonction f_pendule(t,X) qui définit l’équation différentielle selon la relation précédente.
Q3. Utiliser la documentation de solve_ivp pour résoudre l’équation du pendule simple.
Q4. Écrire les instructions permettant de tracer la courbe de θ en fonction du temps pour m = 100 g,

` = 10 cm. On prendra t0 = 0 , tf = 4T0 (T0 est la période propre des petites oscillations) , N = 10000
pas de calculs et successivement θ(0) = 0, 1 rad; 0, 3 rad; 1 rad; 2 rad; 2.8 rad

Q5. Commenter les courbes obtenues. Qu’observe-t-on pour les faibles amplitudes ? Que se passe-t-il quand
l’amplitude du mouvement n’est plus petite devant 1 rad ? Le mouvement est-il toujours harmonique ?
A-t-on toujours isochronisme des oscillations ?

Résolution numérique d’une équation différentielle du 2e ordre non linéaire

Cf polycopié distribué en TP « Boîte à outils Python »
Méthode : Manipulation des tableaux de numpy

V.3.b) Réécriture de l’équation différentielle

On réécrit l’équation différentielle : d2θ

dt2 + ω2
0 sin(θ) = 0

sous la forme : dX
dt = f(t,X)
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Pour cela, on introduit X =
(

θ
dθ
dt

)
, alors :

dX
dt =

Ö dθ
dt
d2θ

dt2

è
dX
dt =

( dθ
dt

−ω2
0 sin(θ)

)
dX
dt = f

(
t,

(
θ

dθ
dt

))

avec f(t,X) = f

(
t,

(
θ
dθ
dt

))
=

( dθ
dt

−ω2
0 sin(θ)

)
On peut écrire la fonction f_pendule(t,X) qui définit l’équation différentielle.

1 def f_pendule (t,X):
2 # X tableau , où X[0] est theta(t), X[1] est dtheta/dt(t)
3 f0 = X[1] # 1er élément : dérivée de theta(t)
4 f1 = -w0 **2* np.sin(X[0]) # 2è élément : dérivée seconde donnée par l’ED
5 return np.array ([f0 ,f1]) # renvoie la liste des deux fonctions

V.3.c) Utilisation de solve_ivp
On utilise la fonction solve_ivp qui permet de résoudre les équations différentielles sous la forme

dy
dt

= f(t, y)

avec la condition initiale y(0) = y0, où y est un vecteur de taille N et f une fonction de RN dans RN . Dans le
cas du pendule simple, la fonction f va de R2 dans R2. La fonction solve_ivp attend 4 variables :
— la fonction f(t, y)
— l’intervalle de temps de résolution
— le vecteur de condition initiale y0

— le tableau des instants de résolution

1 resol=sci. solve_ivp (f_pendule ,(t0 ,tf),np.array ([2.8 ,0]) ,t_eval= liste_t )
2 #resol.t contient les instants de résolutions
3 #resol.y est le tableau des valeurs de y, chaque colonne correspondant à un

instant de résolution . La 1ière ligne correspond ici aux valeurs de theta ,
la 2ième ligne aux valeurs de dtheta/dt

4 theta=resol.y[0]
5 dtheta_sur_dt =resol.y[1]

V.3.d) Résolution et commentaires
Pour résoudre l’équation différentielle, il est nécessaire de commencer par définir les différents paramètres

utiles :
1 g=0.81 # m/s2
2 l=0.10 # m
3 w0=np.sqrt(g/l) # pulsation propre
4 t0 = 0
5 tf = 4*2* np.pi/w0 # choix de tf (4 périodes propres )
6 N=10000 # nombre de pas de calculs
7 liste_t = np. linspace (t0 ,tf ,N+1) # liste des N+1 instants de calculs
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Puis, on effectue la résolution à proprement parlé en appliquant la fonction Euler à notre problème avec les
paramètres définis précédemment.

1 theta0 =2 # rad -> à choisir
2 dtheta0 =0 # rad/s -> à choisir
3 CI= np.array ([ theta0 , dtheta0 ]) # conditions initiales
4 solution = solve_ivp (f_pendule ,(t0 ,tf),CI ,t_eval= liste_t )
5 # récupération des angles aux différents instants
6 theta= solution .y[0] # première ligne du tableau

Enfin, pour visualiser l’évolution temporelle, on représente la courbe de θ en fonction du temps
1 plt.plot(liste_t ,theta)
2 plt.xlabel(’t’)
3 plt.ylabel(’theta ’)
4 plt.show ()

Pour visualiser les effets de la non linéarité de l’équation différentielle, résolvons-la pour différentes valeurs de
l’angle initial, allant des petites valeurs (pour lesquelles nous avons résolu analytiquement l’équation différentielle
en la linéarisant) à des valeurs plus importantes.

1 # On définit la liste des angles et/ou vitesses initiales que l’on veut
étudier

2 liste_theta0 =[0.1 ,0.3 ,1 ,2 ,2.8]
3 plt.figure () # on trace toutes les évolutions sur le même graphe
4 for theta0 in liste_theta0 : # pour les différentes valeurs de theta0
5 CI= np.array ([ theta0 ,0]) # tableau des conditions initiales
6 # pour chaque valeur de theta0 on résout numériquement l’équation

différentielle
7 solution = solve_ivp (f_pendule ,(t0 ,tf),CI ,t_eval= liste_t )
8 # on récupère la liste des theta
9 theta= solution .y[0]

10 # tracé de theta(t)
11 plt.plot(liste_t ,theta)
12 plt.xlabel(’t (s)’)
13 plt.ylabel(’theta (rad)’)
14 plt.grid ()
15 plt.show ()
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Commentaires :
— Pour un angle initial de 0,10 rad (faible devant 1 rad), et 0,3 rad, les oscillations du pendule sont harmo-

niques (sinusoïdales) et la période des oscillations est celle des petites oscillations T0 = 2π
 
`

g
= 2 s.

— Pour des angles initiaux plus importants, on constate que la période des oscillations est d’autant plus
grande que l’angle initial est grand. La période dépend des conditions initiales, il n’y a plus isochronisme
des oscillations (observé uniquement pour des oscillations d’amplitude faible devant 1 rad).

— Les oscillations du pendule sont toujours périodiques mais ne sont plus sinusoïdales (harmoniques) quand
l’amplitude du mouvement n’est plus petite devant 1 rad.
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