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@ Théme II. Mouvements et interactions (Mécanique)

TD n°11 Lois de Newton — Corrigé

Exercice n°
Capacités

Etablir un bilan des forces sur un systéme ou sur plusieurs
systemes en interaction et en rendre compte sur un schéma.

Déterminer les équations du mouvement d’un point matériel
ou du centre de masse d’un systeme fermé dans un référentiel
galiléen.

Etudier le mouvement d’un systéme modélisé par un point
matériel dans un champ de pesanteur uniforme en ’absence
de frottement.

Exploiter, sans la résoudre analytiquement, une équation dif-
férentielle : analyse en ordres de grandeur, détermination de la
vitesse limite, utilisation des résultats obtenus par simulation
numérique.

Etablir I’équation du mouvement du pendule simple.
Justifier I’analogie avec 1'oscillateur harmonique dans le cadre
de 'approximation linéaire.

Exploiter les lois de Coulomb fournies dans les trois situa-
tions : équilibre, mise en mouvement, freinage. Formuler une
hypothese (quant au glissement ou non) et la valider.

Parcours possibles

d Si vous avez des difficultés sur ce chapitre : exercices n°1, n°2, n°3

P P Si vous vous sentez moyennement a l’aise, mais pas en difficulté : exercices n°3, n°4, n°5

D P D Sivous stes a laise : exercices n°4, n°5, n°6, n°7

| Exercices d'application directe du cours

Exercice n°1  Bouchon de champagne &

En 2022, un groupe de chercheurs frangais et indiens ont montré que le pop caractéristique d’un bouchon de
champagne est dii au franchissement du mur du son du gaz s’échappant de la bouteille. Le bouchon de masse
m est éjecté avec une vitesse initiale vy Une acquisition par une caméra rapide permet de pointer la position du

bouchon en fonction du temps.
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Fi1GURE 1 — Pointage vidéo, d’apres Computational fluid dynamic simulation of the
supersonic COy flow during champagne cork popping, Physics of Fluid (2022)

R1. A partir du pointage ci-dessus, déterminer la vitesse v d’éjection d’un bouchon de champagne en m - s~ 1.

Solution: Le pointage ci-dessus correspond au mouvement du bouchon pendant I’échappement. On
constate que la position en fonction du temps est une droite, donc la vitesse au cours de cette phase est

25.1072 — 2
010 0 = 5><101:20m-s._1

tante. t1 te de la droite : vy = =15
constante. vy est la pente de la droite : vo = 1702 =F 7007076 = T3

On considere que la bouteille forme un angle 8 avec I’horizontale. Le vecteur vitesse initiale du bouchon est noté
7. On se place dans le référentiel terrestre supposé galiléen muni d’'un repére (Ox,Oy) (voir le schéma). On
néglige les frottements.

R2. Exprimer les composantes horizontale vy, et verticale vy, du vecteur v_g en fonction de vy et 6.

Solution: vy, = vg cos(f) et vy, = vy sin(6)

R3. Déterminer les deux composantes de 'accélération de M.

Solution: Systeme : bouchon de champagne
Référentiel : terrestre Zr galiléen
Bilan des forces : m? = —mgu_g

Principe fondamental de la dynamique : md = m?, soit @ = ?

Enfin : a, =0 et ay, = —g

R4. En déduire, compte tenu des conditions initiales, les composantes du vecteur vitesse.

Solution: Par intégration : v,(t) = C or v,(0) = vy cos(d) = C
Donc |v,(t) = vy cos(f)
vy(t) = —gt + C’, or v, (0) = vy sin(f) = C’
Ainsi | v, (t) = —gt + vo sin(6)

R5. En déduire, les équations horaires du mouvement : x(t) et y(¢).

1
Solution: xz(t) = vycos(f)t + A et y(t) = —§gt2 + v sin(f)t + B
Or z(0) =0et y(0) =0 donc A=0et B=0.
Enfin |2(t) = vo cos(0)t | et | y(t) = —gt* + vy sin(6)t
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R6. Déterminer I’équation cartésienne y = f(z) de la trajectoire.

2

_972118 co02(0) + tan(f)x

Solution: ¢t = vocfs(e)’ ainsi |y(x) =

R7. Exprimer la coordonnée y, de son sommet S et la calculer pour § = 80°. Commenter la valeur obtenue.

in(0
Solution: Au sommet, la vitesse verticale est nulle, donc y(t5) = 0, donc ¢, = M
g
visin?(0)  vZsin?(0 . v2 sin?(0
ys:y(tS):_O ()+0 (),SOIt ys:()i()
29 29
AN.: y, =20 m! (modele un peu grossier...)
Exercice n°2 Pendule simple &
Yy x

On considere un pendule simple de longueur ¢ dont la masse m est soumise, en
plus de son poids et de la tension du fil, a une force de frottement fluide de type 0
7 —_nv.

G

z

R1. Rappeler I'expression du vecteur vitesse et du vecteur accélération en coordonnées polaires sur un mou-
vement circulaire.

R2. Etablir I’équation différentielle du mouvement vérifiée par 6.

Solution:

R3. Dans le cas ou I'amplitude des oscillations est faible devant 1 radian, quelle équation connue retrouve-t-on ?

Solution:

R4. A quelle condition sur m, ¢, h et ¢ le systéme peut-il présenter un mouvement pseudo-périodique ?

Solution:

R5. Résoudre complétement I’équation différentielle dans le cas précédent si at = 0, #(0) = 0 et (0) = f, >
0. On pourra introduire une pseudo-pulsation €2 et une constante de temps 7.

Solution:

Exercice n°3 Descente a ski &

La piste de kilometre lancé de Chabriere dans le Queyras est d'une longueur
de L = 1400 m pour une inclinaison de o = 45°.

Elle permet d’atteindre une vitesse de vy = 260 km - h™'.

On considere un skieur de masse m = 80 kg s’élancant sans vitesse initiale
du sommet O de la piste.

On modélise les frottements de I’air par une force de frottement ? = —k?,
ou k = 8,0 uSI est un coefficient constant positif et U la vitesse du skieur.
La neige exerce sur le skieur une force de composante tangentielle E; et de

composante normale Ry, reliées par les lois de Coulomb de coefficient de
frottement f = 0. 1.
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R1. Déterminer 'unité du coeflicient k.
F ko - )
Solution: [k] = F_ g% = kg - s7!
v] m - s~

R2. En nommant le référentiel choisi, effectuer un bilan des forces sur le skieur.

Solution:

Systeme : le skieur

Référentiel : terrestre, lié a la piste galiléen.
Bilan des forces :

— poids mg = ( mgsin(a) )

—myg cos(«)

L — 0
— réaction normale du support Ry = | ,—
R ||
—
% _
— réaction tangentielle du support Ry = ( HRTH)

— force de frottement fluide : ? =k = —kvxu_; = <_]8Ux>

—
R3. Par projection du principe fondamental de la dynamique selon 175 , exprimer Ry en fonction m, g et «.

— —
R4. En exploitant les lois de Coulomb sur le frottement solide, déterminer ||Rr||, puis Ry lorsque le skieur
glisse.

Solution: D’apres le PFD :

md = m?+]%—]v>+l_%;+?
dv . —

" ) mg sin(«) 0 —|| Rz —kuv,
(%t) (o) * () = (1) = (75)

_>
Selon @, : | Rx|| = mg cos(a)

_%
D’apres la loi de frottement de Coulomb : ||Ry|| = fmg cos(a)

R5. En appliquant le principe fondamental de la dynamique, déterminer la vitesse limite atteinte par le skieur,
et la calculer.

Solution:
do,
Selon iz, : md—i; = mgsin(a) — fmgcos(a) — kv,

mg(sin(a) — f cos(a))

La vitesse limite vy, est telle que : mg sin(a)— fmg cos(a) — kv, = 0, S0it | vy, =

AN. a = 45°, donc cos(a) = sin(«a) =

Sl

80 x 10 x (1 -0,1 90
X 10 x 1) _ 90 _ 63m - s ! =226,8 km - h™! (proche de la valeur annoncée

Ainsi vy, = Wi 7

par I’énoncé).

d x x
v + Yo _ 0L Exprimer
dt T T

R6. Montrer que I’équation différentielle sur v,(¢) peut se mettre sous la forme :

vr, et 7.
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Solution:
dv,, .
Mo = Mg sin(a) — fmg cos(a) — kv,
dv, k

N + —up = g(sin(a) — f cos(a)

mg(sin(a) — f cos(a))
k

On identifie |7 = et on retrouve vy, = 7 X g(sin(a) — f cos(a) =

m
k

R7. Résoudre compléetement 1’équation différentielle.

Solution: Solution générale v(t) = Ke™+ + vy,

Or a =t0, v(0) = 0, donc K = —wvy, soit |v(t) = v (1 — 6_£)

R8. Déterminer la vitesse a partir de laquelle les frottements visqueux sont plus importants que les frottements

solides.

Solution: || F|| > ||Rr| & kv > fmgcos(a) < |v > fm!JZOS(OO
0,1x80 x10 _ 10

V2x8 2

=7m - s !

AN.:v>

Il Exercices d'approfondissement

Exercice n°4 Tarzan et Jane & &

La liane a été popularisée au cinéma comme moyen de locomotion tres apprécié de Tarzan.
Afin de retrouver Jane, celui-ci saisit I’extrémité d’une liane et se laisse penduler jusqu’a
sa bien-aimée.

La position du centre de masse GG de Tarzan est repérée par 'angle 6 que fait la liane avec
I'axe (Oz) vertical descendant. Sa position initiale est notée A et est repérée par I'angle
a = 30°, d’ou il se lache sans vitesse initiale.

Jane se situe au point B défini par 0 = —a.

La masse de Tarzan, peau de béte comprise, est m = 80 kg, celle de Jane est m’ = 50 kg.

La longueur de la liane est OG = L = 10 m et sa masse est négligée. B. S
Nous négligeons tout frottement et prenons pour valeur de 'accélération de la pesanteur

g=19,8m - s72 oY

La liane utilisée par Tarzan est usée et ne pourra résister a des tensions supérieures a

2,0 kN.

Le but de cet exercice est de déterminer si Tarzan pourra retrouver Jane puis la ramener en A.

R1. Etablir deux équations : 'équation différentielle du mouvement de Tarzan et une deuxiéme renseignant

sur la tension 7" de la corde.

—mL#? = mgcos(d) — T Permet de déterminer T

Solution: E jection : - .
orution: i projection { mL6 = —mgsin(0) Equation différentielle du mouvement

Systeme : Tarzan

Référentiel d’étude : référentiel terrestre considéré galiléen a I’échelle de 'ex-
périence (Z lié a (Oxyz))

Bilan des actions mécaniques :

[ ]
———— T ) 2
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Principe fondamental de la dynamique a Tarzan dans le référentiel terrestre galiléen : m?(G) = m? + ?

Comme G décrit un mouvement circulaire de rayon L : @ (G) = —L0%u, + Liw;

R2. (a) Multiplier I'équation du mouvement par .

(b) Par intégration, en déduire que L6? = 2g(cos(6) — cos(a))

Solution: On multiplie I'équation diff du mvt par 6 : L9 = —gsin(0)f (*)
dL6? d cos(0 :
C(();( ) = —0sin(0)

I .
On integre (*) par rapport au temps : 592 = gcos(f) + C, ou C est une constante d’intégration, que

= 200 et

On reconnailt deux dérivées temporelles :

I'on détermine avec les conditions initiales 8(0) = « et §(0) = 0.
Soit 0 = gcos(a) + C, soit C' = —gcos(a)
Ainsi | L6? = 2g(cos(6) — cos(a))

R3. En déduire une expression de la tension de la corde en fonction de # et des données de ’exercice.

Solution: D’aprés la projection du PFD selon u, : T' = mg cos(d) + mL6?
On en déduit |7 = mg<3 cos(f) — 2 cos(a))

La tension de la corde est maximale pour cos(f) maximale, c’est-a-dire pour 6 = 0.

Tinax = mg(3 — 2cos(a)) = 0,99 kN < 2,0 kN : Tarzan peut arriver jusqu’a Jane.

Que se passe-t-il lorsque Tarzan fait le retour avec Jane ? Les mémes calculs sont a refaire en remplacant
m par m + m/, soit T . = (m +m/)g(3 — cos(a)) = 1,6 kN < 2,0 kN : La liane résistera également au
retour ! ouf! :-)

R4. Conclure : Tarzan peut-il rejoindre Jane sans risque ? et ramener en A sans risque 7

Exercice n°5 Volcan & &

Le Stromboli, volcan italien encore actif, culmine a 924 m. Il crache
régulierement des bombes volcaniques issues du magma. On note 7 la
vitesse d’éjection de ces bombes, inclinée d’un angle « par rapport a
I’horizontal. On néglige les frottements.

On note (Ox) 'axe horizontal et (Oy) I'axe vertical ascendant.

R1. Etablir I'équation cartésienne y = f(z) de la trajectoire.

Solution: Cf cours
. t2
Equations horaires : z(t) = vg cos(a)t et y(t) = —95 + v sin(a)t + h

ga®

———+1t h
208 cos?(a) + tan(a)z +

Equation de la trajectoire : |y(z) =

R2. En utilisant

=1+ tan? v, écrire 'équation cartésienne de la trajectoire sous la forme
cos? o

202 202(y — h
tanza—ﬂtana—l— 1+M =0
gx gx?
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Solution:
() 9| fan()e + b
r) = ——"——— +tan(a)z
Y 208 cos?(a)
ga’
y—h = —=—(1+tan’*(a))+ tan(a)z
2v§
—92v2(y — h 202
Yo (y2 ) _ 1+ tan?(a) — % tan(a)
gx gx
202 202 (y — h
0 = tan’(a) — 2% tan(a) + 1 + MQ)
gx gx

R3. En considérant cette trajectoire comme une équation du second degré en tan «, établir qu’elle n’admet

aucune solution réelle si

Vérifier ’homogénéité de cette expression.

v2 ga?
h4+ 0 _ 27
+ 2 208

valeur de a vérifie I’équation.

peaill

Solution: Un point A de coordonnées (x,y) est accessible par une bombe volcanique, s’il existe au

202 202 (y — h
moins une valeur de a qui vérifie tan?(a) — =2 tan(a) + 1 + 2uly —h)
gr

Inversement, le point A de coordonnées (z,y) n'est as accessible par une bombe volcanique si aucune

Pour cela, il ne doit pas y avoir de solution réelle, donc le discriminant doit étre négatif.

4 2
A 4vg _BUo(y_h) < 0
2.2 2
g°x gz
2 2
Y9 < 2v5(y — h)
2.2 2
g-x gxr
2 2
Vg 9T
- < y—h
29  2v§
2 2
v gzx
h+ -2 — 5 < ¥
29 20§
1200 1 == Parabole de siireté
alpha=20°
—— alpha=30°
1000 1 —— alpha=40°
—— alpha=50°
2 2
/ . v qr —— alpha=60°
La courbe d’équation y = h + 2—0 52 est appe- 800 1 alpha=70°
g Vo alpha=80°

lée parabole de sureté car tout point situé au-dela
n’est pas accessible par les bombes volcaniques,
quel que soit I'angle d’éjection.

Elle est représentée sur la figure ci-contre.

600 A

y (m)

400 A

200 A

400 600

X (m)

800

1000 1200
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R4. Etablir que le périmetre de séeurité au sol est tel que

203h N vy

T >
g g*

Le calculer.

Solution: Pour étre en sécurité, il ne doit y avoir aucune bombe qui puisse nous atteindre quelque soit
la valeur de a.

De plus au sol y = 0.
2 2

v x
En reprenant la réponse précédente, il faut h 4+ —> — 972 <0
29 20§
203h g
Ainsi z > 0 4+ —g = 1,2 km (conforme a la courbe ci-dessus).
9 g

Données : m = 0,28 kg; vo=76,3m - s '; a=50°=0,873rad; g =9,81m - s 2; h=924m;

Exercice n°6 Avalanche & &

Il est possible de modéliser une ava-
lanche par un glissement avec frotte-
ment solide d’une plaque de neige sur
le sol. On notera f le coefficient de
frottement solide, on supposera 1’éga-
lité entre le coefficient statique et dy-
namique.

La plaque de neige est accélérée sur 150
m puis freinée sur 250 m.

FI1GURE 3 — Avalanche de plaque de neige le 18 mars 2006 au
Hanengretji au-dessus de Davos (Suisse). D’apres P. Weilenmann,
18.03.2006

R1. En notant o I'angle de la piste, exprimer la norme de la force de frottement exercée sur la plaque de neige
en fonction de sa masse m, de g, de f et de 'angle «.

Solution:
Systéme : plaque de neige
Référentiel : terrestre considéré galiléen
Bilan des forces :
— poids m¢ = ( mgsin(a) )

—mg cos(a)

L — 0
— réaction normale du support Ry = ||f?||
N

%
— [
— réaction tangentielle du support Ry = < Hé%TH)

Principe fondamental de la dynamique :

- =
md = mq + Ry + Ry

m(o) = (o)) (i) + <_”§_>T”>
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Selon T, : | | || = mg cos(a)

%
La plaque glisse, d’apres la loi de Coulomb sur le frottement solide : | || Rr|| = fmg cos(«)

R2. Etablir expression de la composante du vecteur accélération dans la direction de la pente.

Solution: Selon @} : | = g(sin(a) — f cos(a))

R3. A quelle condition sur a et f la plaque accélére-t-elle ? ralentit-elle ?

Solution: Le mouvement a lieu dans le sens de —HT;.
Le mouvement de la plaque est accéléré, si qd U< 0, soit si & > 0, si tan(a) > f

Il est décéléré si & < 0, donc si tan(a) < f.

R4. A partir des pentes mesurées sur le cliché, donner un encadrement de la valeur du coefficient de frottement

f

Solution: La plaque est accélérée sur 150 m pour o = 40°, donc f < tan(40°) = 0, 84
La plaque est freinée sur 250 m pour a = 25°, donc f > tan(25°) = 0,47

En supposant que le coefficient de frottement f est identique sur les deux portions, | f € [0,47;0, 84]

R5. Sachant qu’en bas de la pente la plaque est immobile, déterminer la valeur de f.

Solution: On integre I'accélération :
— Premiere phase : (t) = g(sin(ay) — f cos(aq))t + (0)

La plaque est initialement immobile, donc #(0) = 0, donc %(t) = g(sin(ay) — f cos(aq))t

g(sin(ay) — fcos(ay)

t2
2

Puis z(t) =

2d;

— Cette premiére phase se termine a t; tel que z(¢;) = d; = 250 m, soit t; = \/

ou la vitesse vaut v; = g(sin(ay) — f cos(ay )t = \/2dlg(sin(oz1) — feos(ay)
— Sur la deuxieme phase, en changeant 1'origine es temps t' =t — t;.
z(t") = g(sin(ag) — f cos(an))t’ + vy

ey fsinfen) — Feostan)

g(sin(ay) — fcos(ay)

2g(sin(ag) — f cos(az))
dysin(ag) — daof cos(az) = —dysin(ay) + fd; cos(ay)

f(dycos(aq) + dycos(ag)) = dysin(ay) + dasin(az)

2
En bas de la temps x(t)) = dy + d; et &(t},) =0
g U1
Sott by = i) — J cos(aa))
Ly gtsin(a) — fcos(on) 5 . 5
SO 2 g?(sin(ag) — fcos(az))?  g(sin(ag) — f cos(dz)
o v
= & 2¢(sin(ag) — f cos(as))
o i
hitdy = d 2¢(sin(ag) — f cos(az))
4 — _ 2dyg(sin(aq) — f cos(ay)
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_ dysin(ay) + dysin(ag)

Soit | f =
oit |/ dy cos(aq) + dy cos(a)

= 0,59| (bien dans U'intervalle précédent).

Rq : ce serait beaucoup plus rapide avec des théoremes énergétiques...

Exercice n°7 Phénomeéne du stick-slip @ & &

Dans le référentiel R 1lié au support, on considere un systeme 2(t)

masse-ressort représenté sur la figure suivante. Une masse m y 7
est accrochée a un ressort de raideur k, de longueur a vide m
ly dont l'extrémité I animée d’'un mouvement rectiligne et o T

uniforme a la vitesse \71 = Vyup.
L’action du support sur la masse est modélisée par une force

de frottement solide de coefficient f. FIGURE 4 — Modélisation d'un systéme «
stick-slip ».

R1. Le référentiel R(Izyz) lié au point I peut-il étre considéré comme galiléen ?

Solution: Le référentiel R(Ixyz) lié au point I est en translation rectiligne uniforme par rapport au
référentiel terrestre, considéré galiléen a I’échelle de I'expérience, donc R peut étre considéré galiléen.

R2. A Vinstant t = 0, on a z(0) = 0 et £(0) = {,. Exprimer la longueur /() du ressort pour ¢ > 0, en fonction
de 4y, Vo, x(t) et t.

Solution:
0(t) =xp(t) — x(t) = Vot + C — x(t)
Orat=0,¢0)={, donc|l(t) = Vot + £y — x(t)

R3. On suppose de plus que ©(0) = 0. Montrer que I'évolution du systeme pour ¢ > 0 commence nécessairement
par une phase de non-glissement. Déterminer a quel instant ¢y se termine cette phase.

Solution: Pour ¢ = 0, v_;(()) g 6), puisque £(0) = 0, donc il n’y a pas de glissement au début
du mouvement.

Pendant la premiere phase, la masse m ne bouge pas dans le référentiel d’étude.

Elle est soumise a son poids, a la réaction normale et tangentielle du support et a la force de rappel
dlastique B = —k(£(£) — £o)(—a2)

Le PFD s’écrit alors :

— mg + Ry + Ry + F
(Yo (2) s (1)

Ainsi Ry = mg et Rr, = —k(l(t) — {y) = —(Vot — z(t)) = — Vot (puisque 2(0) = 0 et que la masse ne
bouge pas durant cette premiere phase).

o] o

La masse m ne glisse-pas tant que |Rr .| < fRy, soit Vot < fmg

_ fmg
Vo

Cette phase cesse a 'instant |t

R4. Etablir I’équation du mouvement de la masse m lors de la phase de glissement. Identifier la pulsation
propre wqy du systeme.
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Solution: En présence de glissement (la masse m se déplace selon —HT;) Ry=mget Rp, = —fmg <0
__)
(Ry de sens opposé a .
Ainsi le PFD selon QT; donne :

mi = k(l(t) —ly) — fmg

mi = kVit — kx(t) — fmg

k k

i+ —x = —Wt—fg
m

m

| k
On identifie la pulsation propre wy = {/ —
m

R5. La solution de I’équation précédente s’écrit sous la forme :
z (') = Cycos (wot') + Cosin (wot’) + Vot avec ¢ =1t —tg

Déterminer les expressions des constantes C et C5 correspondant a cette phase du mouvement.

1%
Solution: a ¢’ = 0, soit ¢ = to, #(t' = 0) = Chwy + Vo = 0 (n'a pas encore bougé), donc |Cy = ——

Wo
at = O, soit t = to, x(t =0) = Ol =0 (na pas encore bougé s donc Cl =0
g

Ainsi |z(t) = _Y sin(wot") + Vot'

wWo
L ——— .
2 Vit /
Une simulation numérique permet de représenter 1'évo- 20 ——
lution de la solution mathématique x (). Eis /
N . . , . . . > v
Les parametres choisis pour réaliser cette simulation o P
sont wg = 27rad s, Vo = 1m - s7% 6y = 1m, o
0.5
g=10m - s 2et f=0,5.
0.0] < —

0.0 0.5 1.0 15 20 15 3.0

t(s)

FIGURE 5 — Simulation de z(t)
R6. Faire apparaitre, le point représentatif de l'instant ¢’ = 0.

Solution: A la fin du premier palier : ty = 0,3 s

R7. En justifiant votre raisonnement par des considérations graphiques précises, indiquer si la phase de glisse-
ment perdure indéfiniment.

Solution:

[l Résolution de problemes

Exercice n°8 Bobby et sa fronde

Bobby s’est fabriqué une fronde en accrochant un caillou au bout dune ficelle. Le bras tendu au dessus de
sa téte, il fait tournoyer la fronde (dans un plan horizontal) & la vitesse angulaire w = 120 tours/minute) puis
la lache. A quelle distance de Bobby le caillou va-t-il atterrir 7
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Solution:

Exercice n°9 Tennis

Les grands joueurs de tennis peuvent frapper la balle en coup droit & plus de 240 km - h™*. On considére
que la balle est frappée a cette vitesse depuis le fond de cours a une hauteur de h = 1,0 m. A quelle condition
la balle touche ’autre extrémité du terrain sans toucher le filet de hauteur H.

Données :

e longueur du terrain : L =24 m

e hauteur du filet : H = 1,1 m.

———— =1+ tan?
* cos?(a) + tan’(a)

Exercice n°10 Vitesse de sédimentation du plasma sanguin

La Vitesse de Sédimentation fait partie des examens de routine effectués au cours d’un bilan sanguin per-
mettant de détecter des phénomenes inflammatoires ou infectieux.
La Vitesse de Sédimentation a la premiere heure correspond a la hauteur (exprimée en millimetres) de globules
rouges ayant sédimenté en une heure au fond d’un tube a essai, le sang ayant été rendu incoagulable.

Déterminer la fourchette dans laquelle doit se trouver la vitesse de sédimentation a la
premiére heure d’un sang sain.

Doc. 1 Aspect, en microscopie électro- Doc 2. Caractéristique des cellules du sang

nique a balayage, des cellules du sang : de Cellules Dimension Numération
gauche a droite, érythrocyte, plaquette et (10° /mm?)
leucocyte (source Wikipedia) Erythrocytes De 6,8 um & | De 4500 a 6000
(globules 7,3 wm
rouges)
Thrombocytes De 2 um a 4 um | De 150 a 450
(plaquettes)
Leucocytes (glo- | De  4um a | De4a 10
bules blancs) 12 pm

Les globules rouges peuvent étre considérés cylindriques de
hauteur égale & 1/5°¢ de son diametre.

Doc 3. Forces de frottement
Un objet sphérique en mouvement a vitesse de norme v dans un fluide subit une force de frottement fluide.
On propose deux modeles de frottement fluide :

— le modele de Stokes, pour lequel la force de frottement est d’expression : ? = —67r77R7

1
— le modele quadratique, pour lequel la force de frottement est d’expression : ? = —iprQCmvﬁ

Dans ces expressions, R est le rayon de I'objet, p la masse volumique du fluide dans lequel se déplace 1'objet,
n la viscosité du fluide dans lequel se déplace 'objet, C, le coefficient de trainée, de valeur C, = 0,5 pour
une sphere.

Doc 4. Nombre de Reynolds R,
L’adéquation a I'une ou l'autre des deux forces de frottement proposées dans le doc.3 peut étre testée en

gy . . , . pLY
considérant le nombre de Reynolds, grandeur adimensionnée d’expression : R, = ——, avec L est une grandeur

caractéristique des dimensions de 1’objet, p la masse volumique du fluide, n la viscosité du fluide, v la norme
de la vitesse de 1'objet.

On admettra que le modele de Stokes reste acceptable si le nombre de Reynolds R, est au maximum de ’ordre
de quelques dizaines, et que le modéle quadratique est acceptable pour un nombre de Reynolds supérieur a
1000.
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Doc 5. Valeurs numériques
— Hauteur d’un tube a essais 70 mm

— Diametre d’un tube a essais 12 mm

— Accélération de la pesanteur g = 9,81 m - s>

— Masse volumique du plasma p, = 1,0.10° kg - m™®

— Masse volumique des globules rouges p, = 1,3.10* kg - m™3

— Viscosité dynamique du plasma n = 1,6.1073 uSI

Solution:
z
Systeme : globule rouge G(m) . ?
Référentiel : terrestre considéré galiléen a I’échelle de I'expérience s
Bilan des actions mécaniques : M(m
— poids m? = —mg@;
__>
— poussée d’Archimede : 14 = —ppV7 = —&mﬁ = +&mg
Pg Py
mq

— force de frottement fluide : ? = —67T77R7

_>
D’apres le PFD : md = m? + ? + 114

dv,
En projection selon u m dvt =—mg+ &mg — 6mn R,
Pg
dv, 6mR
Soit | = 4 2T vzz—g+&g
dt m Pg
C’est une équation différentielle linéaire du 1" ordre.
. - . 6mnR Pp
La vitesse limite atteinte est telle que : ——v, 1im = —g + —¢
m Py
. mg Pp
Soit |V, pim = — 1——=
" 6mR ( pg>
. mg Pp
Soit | Vi = 1—--=+
" 6mR ( pg>

AN. : Ui = 2,810 %m - 57!

X 2R X Vim N . ,
Pr Ulim _ 9,9.107% <« 1 : le modele choisi ici est donc adapté.

Validité du modele linéaire ? Re =

U]

Pour que les globules rouges aient le temps de tomber au fond du tube a essai, ils doivent se trouver a
une hauteur inférieure & H = vy, X At = 2,8.107% x 3600 = 1,0 cm (hauteur inférieure a la hauteur du tube
a essai : ouf!)

Les globules rouges ayant le temps de chuter sont contenu dans un volume :

2

Venate = H x 1— =1,1.107° m® = 1, 1.103 mm?, en notant D le diametre d’un tube & essais.

Ainsi, il y a N =1,1.10% x 5.106 = 5, 7.10° globules rouges qui chutent durant ’expérience d’une heure.

Volume d’un globule rouge, modélisé par une sphére de rayon R : V = §7TR3 =5,1.10"" m?

Le volume occupé par les globules rouges ayant chuté :
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Voo = NXV
2
:anxwaxV

2
= nun AL X WT xV

Vr
D2
e
= num At XV

Hsedim

La vitesse de sédimentation, qui est la hauteur occupée par les globules rouges ayant sédimentés en 1 h
est de : | Heedim = MU, AL X V‘
La vitesse de sédimentation est donc de 2,6 mm.
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