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TD n°11 Lois de Newton − Corrigé
Thème II. Mouvements et interactions (Mécanique)

Capacités
Exercice n° 1 2 3 4 5 6 7 8 9 10

Établir un bilan des forces sur un système ou sur plusieurs
systèmes en interaction et en rendre compte sur un schéma.
Déterminer les équations du mouvement d’un point matériel
ou du centre de masse d’un système fermé dans un référentiel
galiléen.
Étudier le mouvement d’un système modélisé par un point
matériel dans un champ de pesanteur uniforme en l’absence
de frottement.
Exploiter, sans la résoudre analytiquement, une équation dif-
férentielle : analyse en ordres de grandeur, détermination de la
vitesse limite, utilisation des résultats obtenus par simulation
numérique.
Établir l’équation du mouvement du pendule simple.
Justifier l’analogie avec l’oscillateur harmonique dans le cadre
de l’approximation linéaire.
Exploiter les lois de Coulomb fournies dans les trois situa-
tions : équilibre, mise en mouvement, freinage. Formuler une
hypothèse (quant au glissement ou non) et la valider.

Parcours possibles
Si vous avez des difficultés sur ce chapitre : exercices n°1, n°2, n°3

Si vous vous sentez moyennement à l’aise, mais pas en difficulté : exercices n°3, n°4, n°5
Si vous êtes à l’aise : exercices n°4, n°5, n°6, n°7

I Exercices d’application directe du cours
Exercice n°1 Bouchon de champagne

En 2022, un groupe de chercheurs français et indiens ont montré que le pop caractéristique d’un bouchon de
champagne est dû au franchissement du mur du son du gaz s’échappant de la bouteille. Le bouchon de masse
m est éjecté avec une vitesse initiale v0 Une acquisition par une caméra rapide permet de pointer la position du
bouchon en fonction du temps.
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Figure 1 – Pointage vidéo, d’après Computational fluid dynamic simulation of the
supersonic CO2 flow during champagne cork popping, Physics of Fluid (2022)

Figure 2

R1. À partir du pointage ci-dessus, déterminer la vitesse v0 d’éjection d’un bouchon de champagne en m · s−1.

Solution: Le pointage ci-dessus correspond au mouvement du bouchon pendant l’échappement. On
constate que la position en fonction du temps est une droite, donc la vitesse au cours de cette phase est
constante. v0 est la pente de la droite : v0 = 25.10−3 − 0

1400.10−6 − 100.10−6 = 25
13 × 101 = 20 m · s−1

On considère que la bouteille forme un angle θ avec l’horizontale. Le vecteur vitesse initiale du bouchon est noté
−→v0 . On se place dans le référentiel terrestre supposé galiléen muni d’un repère (Ox,Oy) (voir le schéma). On
néglige les frottements.
R2. Exprimer les composantes horizontale v0x et verticale v0y du vecteur −→v0 en fonction de v0 et θ.

Solution: v0x = v0 cos(θ) et v0y = v0 sin(θ)

R3. Déterminer les deux composantes de l’accélération de M .

Solution: Système : bouchon de champagne
Référentiel : terrestre RT galiléen
Bilan des forces : m−→g = −mg−→uy
Principe fondamental de la dynamique : m−→a = m−→g , soit −→a = −→g
Enfin : ax = 0 et ay = −g

R4. En déduire, compte tenu des conditions initiales, les composantes du vecteur vitesse.

Solution: Par intégration : vx(t) = C or vx(0) = v0 cos(θ) = C

Donc vx(t) = v0 cos(θ)
vy(t) = −gt+ C ′, or vy(0) = v0 sin(θ) = C ′

Ainsi vy(t) = −gt+ v0 sin(θ)

R5. En déduire, les équations horaires du mouvement : x(t) et y(t).

Solution: x(t) = v0 cos(θ)t+ A et y(t) = −1
2gt

2 + v0 sin(θ)t+B

Or x(0) = 0 et y(0) = 0 donc A = 0 et B = 0.
Enfin x(t) = v0 cos(θ)t et y(t) = −gt2 + v0 sin(θ)t
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R6. Déterminer l’équation cartésienne y = f(x) de la trajectoire.

Solution: t = x

v0 cos(θ) , ainsi y(x) = −g x2

2v2
0 cos2(θ) + tan(θ)x

R7. Exprimer la coordonnée ys de son sommet S et la calculer pour θ = 80◦. Commenter la valeur obtenue.

Solution: Au sommet, la vitesse verticale est nulle, donc ẏ(ts) = 0, donc ts = v0 sin(θ)
g

ys = y(ts) = −v
2
0 sin2(θ)

2g + v2
0 sin2(θ)
g

, soit ys = v2
0 sin2(θ)

2g
A.N. : ys = 20 m ! (modèle un peu grossier...)

Exercice n°2 Pendule simple

On considère un pendule simple de longueur ` dont la masse m est soumise, en
plus de son poids et de la tension du fil, à une force de frottement fluide de type−→
f = −h−→v .

x�yO

z

•
G

θ

R1. Rappeler l’expression du vecteur vitesse et du vecteur accélération en coordonnées polaires sur un mou-
vement circulaire.

R2. Établir l’équation différentielle du mouvement vérifiée par θ.

Solution:

R3. Dans le cas où l’amplitude des oscillations est faible devant 1 radian, quelle équation connue retrouve-t-on ?

Solution:

R4. À quelle condition sur m, `, h et g le système peut-il présenter un mouvement pseudo-périodique ?

Solution:

R5. Résoudre complètement l’équation différentielle dans le cas précédent si à t = 0, θ(0) = 0 et θ(0) = θ̇0 >
0. On pourra introduire une pseudo-pulsation Ω et une constante de temps τ .

Solution:

Exercice n°3 Descente à ski
La piste de kilomètre lancé de Chabrière dans le Queyras est d’une longueur
de L = 1400 m pour une inclinaison de α = 45◦.
Elle permet d’atteindre une vitesse de vL = 260 km · h−1.
On considère un skieur de masse m = 80 kg s’élançant sans vitesse initiale
du sommet O de la piste.
On modélise les frottements de l’air par une force de frottement −→F = −k−→v ,
où k = 8, 0 uSI est un coefficient constant positif et −→v la vitesse du skieur.
La neige exerce sur le skieur une force de composante tangentielle −→RT et de
composante normale −→RN , reliées par les lois de Coulomb de coefficient de
frottement f = 0, 1.
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R1. Déterminer l’unité du coefficient k.

Solution: [k] = [F ]
[v] = kg · m · −2

m · s−1 = kg · s−1

R2. En nommant le référentiel choisi, effectuer un bilan des forces sur le skieur.

Solution:
Système : le skieur
Référentiel : terrestre, lié à la piste galiléen.
Bilan des forces :

— poids m−→g =
(
mg sin(α)
−mg cos(α)

)

— réaction normale du support −→RN =
(

0
‖
−→
RN‖

)

— réaction tangentielle du support −→RT =
(
−‖
−→
RT‖
0

)

— force de frottement fluide : −→F = −k−→v = −kvx−→ux =
(
−kvx

0

)

R3. Par projection du principe fondamental de la dynamique selon −→uy, exprimer −→RN en fonction m, g et α.
R4. En exploitant les lois de Coulomb sur le frottement solide, déterminer ‖−→RT‖, puis

−→
RT lorsque le skieur

glisse.

Solution: D’après le PFD :

m−→a = m−→g +−→RN +−→RT +−→F

m

dvx
dt
0

 =
(
mg sin(α)
−mg cos(α)

)
+
(

0
‖
−→
RN‖

)
+
(
−‖
−→
RT‖
0

)
+
(
−kvx

0

)

Selon −→uy : ‖−→RN‖ = mg cos(α)
D’après la loi de frottement de Coulomb : ‖−→RT‖ = fmg cos(α)

R5. En appliquant le principe fondamental de la dynamique, déterminer la vitesse limite atteinte par le skieur,
et la calculer.

Solution:
Selon −→ux : mdvx

dt = mg sin(α)− fmg cos(α)− kvx

La vitesse limite vlim est telle que :mg sin(α)−fmg cos(α)−kvlim = 0, soit vlim = mg(sin(α)− f cos(α))
k

A.N. α = 45◦, donc cos(α) = sin(α) = 1√
2

Ainsi vlim = 80× 10× (1− 0, 1)
8
√

2
= 90√

2
= 63 m · s−1 = 226, 8 km · h−1 (proche de la valeur annoncée

par l’énoncé).

R6. Montrer que l’équation différentielle sur vx(t) peut se mettre sous la forme : dvx
dt + vx

τ
= vL

τ
. Exprimer

vL et τ .
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Solution:

m
dvx
dt = mg sin(α)− fmg cos(α)− kvx

dvx
dt + k

m
vx = g(sin(α)− f cos(α)

On identifie τ = m

k
et on retrouve vL = τ × g(sin(α)− f cos(α) = mg(sin(α)− f cos(α))

k

R7. Résoudre complètement l’équation différentielle.

Solution: Solution générale v(t) = Ke−
t
τ + vL

Or à = t0, v(0) = 0, donc K = −vL, soit v(t) = vL(1− e− t
τ )

R8. Déterminer la vitesse à partir de laquelle les frottements visqueux sont plus importants que les frottements
solides.

Solution: ‖−→F ‖ > ‖−→RT‖ ⇔ kv > fmg cos(α)⇔ v >
fmg cos(α)

k

A.N. : v > 0, 1× 80× 10√
2× 8

= 10√
2

= 7 m · s−1

II Exercices d’approfondissement
Exercice n°4 Tarzan et Jane
La liane a été popularisée au cinéma comme moyen de locomotion très apprécié de Tarzan.
Afin de retrouver Jane, celui-ci saisit l’extrémité d’une liane et se laisse penduler jusqu’à
sa bien-aimée.
La position du centre de masse G de Tarzan est repérée par l’angle θ que fait la liane avec
l’axe (Oz) vertical descendant. Sa position initiale est notée A et est repérée par l’angle
α = 30◦, d’où il se lâche sans vitesse initiale.
Jane se situe au point B défini par θB = −α.
La masse de Tarzan, peau de bête comprise, est m = 80 kg, celle de Jane est m′ = 50 kg.
La longueur de la liane est OG = L = 10 m et sa masse est négligée.
Nous négligeons tout frottement et prenons pour valeur de l’accélération de la pesanteur
g = 9, 8 m · s−2.
La liane utilisée par Tarzan est usée et ne pourra résister à des tensions supérieures à
2, 0 kN.

•O

z

AB

α

•
G

θ

Le but de cet exercice est de déterminer si Tarzan pourra retrouver Jane puis la ramener en A.
R1. Établir deux équations : l’équation différentielle du mouvement de Tarzan et une deuxième renseignant

sur la tension T de la corde.

Solution: En projection :
{
−mLθ̇2 = mg cos(θ)− T Permet de déterminer T
mLθ̈ = −mg sin(θ) Équation différentielle du mouvement

Système : Tarzan
Référentiel d’étude : référentiel terrestre considéré galiléen à l’échelle de l’ex-
périence (R lié à (Oxyz))
Bilan des actions mécaniques :
— poids : m−→g = mg

(
cos(θ)−→ur − sin(θ)−→uθ

)
— Tension du fil : −→T = −T−→ur , avec T la norme de la tension.

•O

z

AB

α

•
G

θ

m−→g

−→T
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Principe fondamental de la dynamique à Tarzan dans le référentiel terrestre galiléen : m−→a (G) = m−→g +−→T
Comme G décrit un mouvement circulaire de rayon L : −→a (G) = −Lθ̇2−→ur + Lθ̈−→uθ

R2. (a) Multiplier l’équation du mouvement par θ̇.
(b) Par intégration, en déduire que Lθ̇2 = 2g(cos(θ)− cos(α))

Solution: On multiplie l’équation diff du mvt par θ̇ : Lθ̈θ̇ = −g sin(θ)θ̇ (*)

On reconnaît deux dérivées temporelles : dLθ̇2

dt = 2θ̇θ̈ et d cos(θ)
dt = −θ̇ sin(θ)

On intègre (*) par rapport au temps : L2 θ̇
2 = g cos(θ) + C, où C est une constante d’intégration, que

l’on détermine avec les conditions initiales θ(0) = α et θ̇(0) = 0.
Soit 0 = g cos(α) + C, soit C = −g cos(α)
Ainsi Lθ̇2 = 2g(cos(θ)− cos(α))

R3. En déduire une expression de la tension de la corde en fonction de θ et des données de l’exercice.

Solution: D’après la projection du PFD selon −→ur : T = mg cos(θ) +mLθ̇2

On en déduit T = mg
(
3 cos(θ)− 2 cos(α)

)
La tension de la corde est maximale pour cos(θ) maximale, c’est-à-dire pour θ = 0.
Tmax = mg(3− 2 cos(α)) = 0, 99 kN < 2, 0 kN : Tarzan peut arriver jusqu’à Jane.
Que se passe-t-il lorsque Tarzan fait le retour avec Jane ? Les mêmes calculs sont à refaire en remplaçant
m par m+m′, soit T ′max = (m+m′)g(3− cos(α)) = 1, 6 kN < 2, 0 kN : La liane résistera également au
retour ! ouf ! :-)

R4. Conclure : Tarzan peut-il rejoindre Jane sans risque ? et ramener en A sans risque ?

Exercice n°5 Volcan

Le Stromboli, volcan italien encore actif, culmine à 924 m. Il crache
régulièrement des bombes volcaniques issues du magma. On note −→v0 la
vitesse d’éjection de ces bombes, inclinée d’un angle α par rapport à
l’horizontal. On néglige les frottements.
On note (Ox) l’axe horizontal et (Oy) l’axe vertical ascendant.

R1. Établir l’équation cartésienne y = f(x) de la trajectoire.

Solution: Cf cours
Équations horaires : x(t) = v0 cos(α)t et y(t) = −g t

2

2 + v0 sin(α)t+ h

Équation de la trajectoire : y(x) = − gx2

2v2
0 cos2(α) + tan(α)x+ h

R2. En utilisant 1
cos2 α

= 1 + tan2 α, écrire l’équation cartésienne de la trajectoire sous la forme

tan2 α− 2v2
0

gx
tanα +

(
1 + 2v2

0(y − h)
gx2

)
= 0
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Solution:

y(x) = − gx2

2v2
0 cos2(α) + tan(α)x+ h

y − h = −gx
2

2v2
0

(1 + tan2(α)) + tan(α)x

−2v2
0(y − h)
gx2 = 1 + tan2(α)− 2v2

0
gx

tan(α)

0 = tan2(α)− 2v2
0

gx
tan(α) + 1 + 2v2

0(y − h)
gx2

R3. En considérant cette trajectoire comme une équation du second degré en tanα, établir qu’elle n’admet
aucune solution réelle si

y > h+ v2
0

2g −
gx2

2v2
0

Vérifier l’homogénéité de cette expression.

Solution: Un point A de coordonnées (x, y) est accessible par une bombe volcanique, s’il existe au

moins une valeur de α qui vérifie tan2(α)− 2v2
0

gx
tan(α) + 1 + 2v2

0(y − h)
gx2 = 0.

Inversement, le point A de coordonnées (x, y) n’est âs accessible par une bombe volcanique si aucune
valeur de α vérifie l’équation.
Pour cela, il ne doit pas y avoir de solution réelle, donc le discriminant doit être négatif.

∆ = 4v4
0

g2x2 − 4− 8v2
0(y − h)
gx2 < 0

v2
0

g2x2 − 1 <
2v2

0(y − h)
gx2

v2
0

2g −
gx2

2v2
0

< y − h

h+ v2
0

2g −
gx2

2v2
0

< y

La courbe d’équation y = h+ v2
0

2g −
gx2

2v2
0
est appe-

lée parabole de sureté car tout point situé au-delà
n’est pas accessible par les bombes volcaniques,
quel que soit l’angle d’éjection.
Elle est représentée sur la figure ci-contre.

0 200 400 600 800 1000 1200
x (m)

0

200

400

600

800

1000

1200

y 
(m

)

Parabole de sûreté
alpha=20°
alpha=30°
alpha=40°
alpha=50°
alpha=60°
alpha=70°
alpha=80°
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R4. Établir que le périmètre de sécurité au sol est tel que

x >

√√√√2v2
0h

g
+ v4

0
g2

Le calculer.

Solution: Pour être en sécurité, il ne doit y avoir aucune bombe qui puisse nous atteindre quelque soit
la valeur de α.
De plus au sol y = 0.

En reprenant la réponse précédente, il faut h+ v2
0

2g −
gx2

2v2
0
< 0

Ainsi x >
√

2v2
0h

g
+ v4

0
g2 = 1, 2 km (conforme à la courbe ci-dessus).

Données : m = 0, 28 kg ; v0 = 76, 3 m · s−1 ; α = 50◦ = 0, 873rad ; g = 9, 81 m · s−2 ; h = 924 m ;

Exercice n°6 Avalanche

Il est possible de modéliser une ava-
lanche par un glissement avec frotte-
ment solide d’une plaque de neige sur
le sol. On notera f le coefficient de
frottement solide, on supposera l’éga-
lité entre le coefficient statique et dy-
namique.
La plaque de neige est accélérée sur 150
m puis freinée sur 250 m.

Figure 3 – Avalanche de plaque de neige le 18 mars 2006 au
Hanengretji au-dessus de Davos (Suisse). D’après P. Weilenmann,

18.03.2006
R1. En notant α l’angle de la piste, exprimer la norme de la force de frottement exercée sur la plaque de neige

en fonction de sa masse m, de g, de f et de l’angle α.

Solution:
Système : plaque de neige
Référentiel : terrestre considéré galiléen
Bilan des forces :

— poids m−→g =
(
mg sin(α)
−mg cos(α)

)

— réaction normale du support −→RN =
(

0
‖
−→
RN‖

)

— réaction tangentielle du support −→RT =
(
−‖
−→
RT‖
0

)
Principe fondamental de la dynamique :

m−→a = m−→g +−→RT +−→RN

m

(
ẍ
0

)
=

(
mg sin(α)
−mg cos(α)

)
+
(

0
‖
−→
RN‖

)
+
(
−‖
−→
RT‖
0

)
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Selon −→uy : ‖−→RN‖ = mg cos(α)

La plaque glisse, d’après la loi de Coulomb sur le frottement solide : ‖−→RT‖ = fmg cos(α)

R2. Établir l’expression de la composante du vecteur accélération dans la direction de la pente.

Solution: Selon −→ux : ẍ = g(sin(α)− f cos(α))

R3. À quelle condition sur α et f la plaque accélère-t-elle ? ralentit-elle ?

Solution: Le mouvement a lieu dans le sens de +−→ux.
Le mouvement de la plaque est accéléré, si −→a ·−→v < 0, soit si ẍ > 0, si tan(α) > f

Il est décéléré si ẍ < 0, donc si tan(α) < f .

R4. À partir des pentes mesurées sur le cliché, donner un encadrement de la valeur du coefficient de frottement
f .

Solution: La plaque est accélérée sur 150 m pour α = 40◦, donc f < tan(40◦) = 0, 84
La plaque est freinée sur 250 m pour α = 25◦, donc f > tan(25◦) = 0, 47
En supposant que le coefficient de frottement f est identique sur les deux portions, f ∈ [0, 47; 0, 84]

R5. Sachant qu’en bas de la pente la plaque est immobile, déterminer la valeur de f .

Solution: On intègre l’accélération :
— Première phase : ẋ(t) = g(sin(α1)− f cos(α1))t+ ẋ(0)

La plaque est initialement immobile, donc ẋ(0) = 0, donc ẋ(t) = g(sin(α1)− f cos(α1))t

Puis x(t) = g(sin(α1)− f cos(α1)
2 t2

— Cette première phase se termine à t1 tel que x(t1) = d1 = 250 m, soit t1 =
√

2d1

g(sin(α1)− f cos(α1)
où la vitesse vaut v1 = g(sin(α1)− f cos(α1)t1 =

√
2d1g(sin(α1)− f cos(α1)

— Sur la deuxième phase, en changeant l’origine es temps t′ = t− t1.
ẋ(t′) = g(sin(α2)− f cos(α2))t′ + v1

x(t′) = g(sin(α2)− f cos(α2))
2 t′2 + v1t

′ + d1

En bas de la temps x(t′2) = d2 + d1 et ẋ(t′2) = 0
Soit t′2 = v1

−g(sin(α2)− f cos(α2))

x(t′2) = g(sin(α2)− f cos(α2))
2

v2
1

g2(sin(α2)− f cos(α2))2 −
v2

1
g(sin(α2)− f cos(α2)) + d1

= d1 −
v2

1
2g(sin(α2)− f cos(α2))

d1 + d2 = d1 −
v2

1
2g(sin(α2)− f cos(α2))

d2 = −2d1g(sin(α1)− f cos(α1)
2g(sin(α2)− f cos(α2))

d2 sin(α2)− d2f cos(α2) = −d1 sin(α1) + fd1 cos(α1)
f(d1 cos(α1) + d2 cos(α2)) = d1 sin(α1) + d2 sin(α2)
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Soit f = d1 sin(α1) + d2 sin(α2)
d1 cos(α1) + d2 cos(α2) = 0, 59 (bien dans l’intervalle précédent).

Rq : ce serait beaucoup plus rapide avec des théorèmes énergétiques...

Exercice n°7 Phénomène du stick-slip

Dans le référentiel R lié au support, on considère un système
masse-ressort représenté sur la figure suivante. Une masse m
est accrochée à un ressort de raideur k, de longueur à vide
`0 dont l’extrémité I animée d’un mouvement rectiligne et
uniforme à la vitesse −→VI = V0

−→ux.
L’action du support sur la masse est modélisée par une force
de frottement solide de coefficient f .

O x

y

•I
−→
V0

x(t)

Figure 4 – Modélisation d’un système «
stick-slip ».

R1. Le référentiel R(Ixyz) lié au point I peut-il être considéré comme galiléen ?

Solution: Le référentiel R(Ixyz) lié au point I est en translation rectiligne uniforme par rapport au
référentiel terrestre, considéré galiléen à l’échelle de l’expérience, donc R peut être considéré galiléen.

R2. À l’instant t = 0, on a x(0) = 0 et `(0) = `0. Exprimer la longueur `(t) du ressort pour t > 0, en fonction
de `0, V0, x(t) et t.

Solution:
`(t) = xI(t)− x(t) = V0t+ C − x(t)
Or à t = 0, `(0) = `0, donc `(t) = V0t+ `0 − x(t)

R3. On suppose de plus que ẋ(0) = 0.Montrer que l’évolution du système pour t > 0 commence nécessairement
par une phase de non-glissement. Déterminer à quel instant t0 se termine cette phase.

Solution: Pour t = 0, −→vg (0) = −→v −−→0 = −→0 , puisque ẋ(0) = 0, donc il n’y a pas de glissement au début
du mouvement.
Pendant la première phase, la masse m ne bouge pas dans le référentiel d’étude.
Elle est soumise à son poids, à la réaction normale et tangentielle du support et à la force de rappel
élastique −→F = −k(`(t)− `0)(−−→ux)
Le PFD s’écrit alors :

−→0 = m−→g +−→RN +−→RT +−→Fél

−→0 =
(

0
−mg

)
+
(

0
RN

)
+
(
RT,x

)
+
(
k(`(t)− `0)

0

)

Ainsi RN = mg et RT,x = −k(`(t) − `0) = −(V0t − x(t)) = −V0t (puisque x(0) = 0 et que la masse ne
bouge pas durant cette première phase).
La masse m ne glisse-pas tant que |RT,x| < fRN , soit V0t < fmg

Cette phase cesse à l’instant t0 = fmg

V0

R4. Établir l’équation du mouvement de la masse m lors de la phase de glissement. Identifier la pulsation
propre ω0 du système.
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Solution: En présence de glissement (la masse m se déplace selon +−→ux) RN = mg et RT,x = −fmg < 0
(−→RT de sens opposé à −→v .
Ainsi le PFD selon −→ux donne :

mẍ = k(`(t)− `0)− fmg
mẍ = kV0t− kx(t)− fmg

ẍ+ k

m
x = k

m
V0t− fg

On identifie la pulsation propre ω0 =
√
k

m

R5. La solution de l’équation précédente s’écrit sous la forme :

x (t′) = C1 cos (ω0t
′) + C2 sin (ω0t

′) + V0t
′ avec t′ = t− t0

Déterminer les expressions des constantes C1 et C2 correspondant à cette phase du mouvement.

Solution: à t′ = 0, soit t = t0, ẋ(t′ = 0) = C2ω0 + V0 = 0 (n’a pas encore bougé), donc C2 = −V0

ω0

à t′ = 0, soit t = t0, x(t′ = 0) = C1 = 0 (n’a pas encore bougé), donc C1 = 0

Ainsi x(t′) = −V0

ω0
sin(ω0t

′) + V0t
′

Une simulation numérique permet de représenter l’évo-
lution de la solution mathématique x (t′).
Les paramètres choisis pour réaliser cette simulation
sont ω0 = 2π rad · s−1, V0 = 1 m · s−1, `0 = 1 m,
g = 10 m · s−2 et f = 0, 5.

Figure 5 – Simulation de x(t)
R6. Faire apparaitre, le point représentatif de l’instant t′ = 0.

Solution: À la fin du premier palier : t0 = 0, 3 s

R7. En justifiant votre raisonnement par des considérations graphiques précises, indiquer si la phase de glisse-
ment perdure indéfiniment.

Solution:

III Résolution de problèmes
Exercice n°8 Bobby et sa fronde

Bobby s’est fabriqué une fronde en accrochant un caillou au bout d’une ficelle. Le bras tendu au dessus de
sa tête, il fait tournoyer la fronde (dans un plan horizontal) à la vitesse angulaire ω = 120 tours/minute) puis
la lâche. À quelle distance de Bobby le caillou va-t-il atterrir ?
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Solution:

Exercice n°9 Tennis
Les grands joueurs de tennis peuvent frapper la balle en coup droit à plus de 240 km · h−1. On considère

que la balle est frappée à cette vitesse depuis le fond de cours à une hauteur de h = 1, 0 m. À quelle condition
la balle touche l’autre extrémité du terrain sans toucher le filet de hauteur H.
Données :
• longueur du terrain : L = 24 m
• hauteur du filet : H = 1, 1 m.

• 1
cos2(α) = 1 + tan2(α)

Exercice n°10 Vitesse de sédimentation du plasma sanguin
La Vitesse de Sédimentation fait partie des examens de routine effectués au cours d’un bilan sanguin per-

mettant de détecter des phénomènes inflammatoires ou infectieux.
La Vitesse de Sédimentation à la première heure correspond à la hauteur (exprimée en millimètres) de globules
rouges ayant sédimenté en une heure au fond d’un tube à essai, le sang ayant été rendu incoagulable.

Déterminer la fourchette dans laquelle doit se trouver la vitesse de sédimentation à la
première heure d’un sang sain.

Doc. 1 Aspect, en microscopie électro-
nique à balayage, des cellules du sang : de
gauche à droite, érythrocyte, plaquette et
leucocyte (source Wikipedia)

Doc 2. Caractéristique des cellules du sang

Cellules Dimension Numération
(103 /mm3)

Erythrocytes
(globules
rouges)

De 6, 8 µm à
7, 3 µm

De 4500 à 6000

Thrombocytes
(plaquettes)

De 2 µm à 4 µm De 150 à 450

Leucocytes (glo-
bules blancs)

De 4 µm à
12 µm

De 4 à 10

Les globules rouges peuvent être considérés cylindriques de
hauteur égale à 1/5ème de son diamètre.

Doc 3. Forces de frottement
Un objet sphérique en mouvement à vitesse de norme v dans un fluide subit une force de frottement fluide.
On propose deux modèles de frottement fluide :
— le modèle de Stokes, pour lequel la force de frottement est d’expression : −→f = −6πηR−→v

— le modèle quadratique, pour lequel la force de frottement est d’expression : −→f = −1
2ρπR

2Cxv
−→v

Dans ces expressions, R est le rayon de l’objet, ρ la masse volumique du fluide dans lequel se déplace l’objet,
η la viscosité du fluide dans lequel se déplace l’objet, Cx le coefficient de traînée, de valeur Cx = 0, 5 pour
une sphère.
Doc 4. Nombre de Reynolds Re

L’adéquation à l’une ou l’autre des deux forces de frottement proposées dans le doc.3 peut être testée en
considérant le nombre de Reynolds, grandeur adimensionnée d’expression : Re = ρLv

η
, avec L est une grandeur

caractéristique des dimensions de l’objet, ρ la masse volumique du fluide, η la viscosité du fluide, v la norme
de la vitesse de l’objet.
On admettra que le modèle de Stokes reste acceptable si le nombre de Reynolds Re est au maximum de l’ordre
de quelques dizaines, et que le modèle quadratique est acceptable pour un nombre de Reynolds supérieur à
1000.
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Doc 5. Valeurs numériques
— Hauteur d’un tube à essais 70 mm
— Diamètre d’un tube à essais 12 mm
— Accélération de la pesanteur g = 9, 81 m · s−2

— Masse volumique du plasma ρp = 1, 0.103 kg · m−3

— Masse volumique des globules rouges ρg = 1, 3.103 kg · m−3

— Viscosité dynamique du plasma η = 1, 6.10−3 uSI

Solution:

Système : globule rouge G(m)
Référentiel : terrestre considéré galiléen à l’échelle de l’expérience
Bilan des actions mécaniques :
— poids m−→g = −mg−→uz ;
— poussée d’Archimède : −→ΠA = −ρpV−→g = −ρp

ρg
m−→g = +ρp

ρg
mg

— force de frottement fluide : −→f = −6πηR−→v
•O

z

•M(m)

m−→g

−→
f−→ΠA

D’après le PFD : m−→a = m−→g +−→f +−→ΠA

En projection selon −→uz : mdvz
dt = −mg + ρp

ρg
mg − 6πηRvz

Soit dvz
dt + 6πηR

m
vz = −g + ρp

ρg
g

C’est une équation différentielle linéaire du 1er ordre.
La vitesse limite atteinte est telle que : 6πηR

m
vz,lim = −g + ρp

ρg
g

Soit vz,lim = − mg

6πηR

(
1− ρp

ρg

)

Soit vlim = mg

6πηR

(
1− ρp

ρg

)
A.N. : vlim = 2, 8.10−6 m · s−1

Validité du modèle linéaire ? Re = ρp × 2R× vlim

η
= 9, 9.10−6 � 1 : le modèle choisi ici est donc adapté.

Pour que les globules rouges aient le temps de tomber au fond du tube à essai, ils doivent se trouver à
une hauteur inférieure à H = vlim×∆t = 2, 8.10−6×3600 = 1, 0 cm (hauteur inférieure à la hauteur du tube
à essai : ouf !)

Les globules rouges ayant le temps de chuter sont contenu dans un volume :
Vchute = H × πD

2

4 = 1, 1.10−6 m3 = 1, 1.103 mm3, en notant D le diamètre d’un tube à essais.
Ainsi, il y a N = 1, 1.103 × 5.106 = 5, 7.109 globules rouges qui chutent durant l’expérience d’une heure.
Volume d’un globule rouge, modélisé par une sphère de rayon R : V = 4

3πR
3 = 5, 1.10−17 m3

Le volume occupé par les globules rouges ayant chuté :
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Vgr = N × V

= n×H × π × D2

4 × V

= nvlim∆t× πD
2

4 × V

Hsedim = Vgr

π
D2

4
= nvlim∆t× V

La vitesse de sédimentation, qui est la hauteur occupée par les globules rouges ayant sédimentés en 1 h
est de : Hsedim = nvlim∆t× V

La vitesse de sédimentation est donc de 2,6 mm.
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